Research Article
BibTex RIS Cite

Akademisyenlerin Mobil İnternet Tercihini Etkileyen Davranışsal ve Demografik Faktörler

Year 2018, , 121 - 136, 01.01.2018
https://doi.org/10.5824/1309-1581.2018.1.008.x

Abstract

Bu araştırma, akademisyenlerin mobil internet tercihini etkileyen davranışsal ve demografik faktörleri değerlendirmek amacıyla yapılmıştır. Kesitsel nitelikte ve analitik olan araştırma, Bingöl üniversitesinde görev yapmakta olan 300 akademisyenin tümü üzerinde gerçekleştirilmiştir. Veri toplama aracı olarak Kişisel Bilgi Formu ve Teknoloji Kabul Modeli kullanılmıştır. Bu anket, Kasım-Aralık 2015 tarihlerinde uygulanmıştır. Mobil internet tercih alt ölçekleri içinde “yakınsama” ölçeğinin ortalama puanı en yüksek, “İmaj” alt ölçeğinin ortalama puanının en düşük olduğu tespit edilmiştir. Erkek akademisyenler kadın akademisyenlerle kıyaslandığında anlamlı olarak algılanan kullanışlılığa daha fazla önem verdikleri saptanmıştır. Akademisyenlerin yaşı artıkça mobil internet tercihinde algılanan kullanışlılığa, algılanan kullanım kolaylığına, kullanım tutumuna ve yakınsamaya anlamlı olarak daha fazla önem verdikleri saptanmıştır. Gelir ve algılanan kullanım kolaylığı, kullanım tutumu ve yakınsama alt ölçeklerinin puan ortalaması arasında istatistiksel olarak anlamlı bir ilişki olduğu saptanmıştır. Ayrıca algılanan kullanım kolaylığı ile algılanan kullanışlılık, kullanım tutumu ve yakınsama ölçekleri arasında kuvvetli ve pozitif yönlü bir ilişki olduğu bulunmuştur. Sonuç olarak, akademisyenlerin mobil internet tercihini olumsuz etkileyen faktörlerin iyileştirmesi için gerekli önlemlerin alınması gerektiği kanaatine varılmıştır.

References

  • Aiken, M., Vanjani, M., Ray, B., Martin, J. (2003). College Student Internet Usage”, Campus-Wide Information Systems. 20 (5), 182-185.
  • Antoun, C. (2015). Who Are the Internet Users, Mobile Internet Users, and Mobile-Mostly Internet Users?: Demographic Differences across Internet-Use Subgroups in the U.S.. In: Toninelli, D, Pinter, R & de Pedraza, P (eds.) Mobile Research Methods: Opportunities and Challenges of Mobile Research Methodologies, pp. 99–117. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/bar.g. License: CC-BY 4.0.
  • Bilgi ve İletişim Teknolojileri Kurumu, (2017). Elektronik Haberleşme Sektörüne İlişkin İl Bazında Yıllık Haber Bülteni, https://www.btk.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fSayfalar%2fIl_Istatistikleri%2fEhs yib_%282011-2016%29.pdf
  • Bolat, Y.İ., Aydemir, M., Karaman, S. (2017). Uzaktan Eğitim Öğrencilerinin Öğretimsel Etkinliklerde Mobil İnternet Kullanımlarının Teknoloji Kabul Modeline Göre İncelenmesi. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 37(1), 63-91.
  • Chae, M. ve Kim, J. (2003). What’s So Different About the Mobile Internet?, Communications of the ACM - Mobile Computing Opportunities and Challenges. 46(12), 240-247.
  • Chatterjee, A. (2017). Customer Preference of Mobile Apps in W.B: Demographic Study. International Journal of Commerce and Management Research. 60-64. http://www.managejournal.com/up/conference/20170210155146.pdf (Erişim Tarihi:24.09.2017)
  • Chen, Z., Dubinsky, A.J. (2003). A conceptual model of perceived customer value in e-commerce: a preliminary investigation. Psychology & Marketing, 23(4), 323-347.
  • Cheng, T.C.E., Lam, D.Y.C., Yeung, A.C.L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems, 42, 1558-1572.
  • Çakmak, T. ve Yalçın, H. (2013). Üniversite Öğrencilerinin Mobil Teknoloji Kullanımı: Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü Örneği. Hacettepe Üniversitesi Türkiyat Araştırmaları Dergisi, 18, 47-61.
  • Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
  • Durak Batıgün, A. ve Kılıç, N. (2011). İnternet Bağımlılığı ve Kişilik Özellikleri, Sosyal Destek, Psikolojik Belirtiler ve Bazı Sosyo-Demografik Değişkenler Arasındaki İlişkiler. Türk Psikoloji Dergisi, 26(67), 1-10.
  • Gao, S., Krogstie, J., Siau, K. (2011). Developing an Instrument Measure the Adoption of Mobile Services”, Mobile Information Systems, 7(1), 45-67.
  • Gerpott, T.J., May, S., Nas, G. (2016). The impact of mobile Internet on mobile Voice usage: A two-level analysis of mobile communications Customers in a GCC country. Information & Management, pp. 1-13, http://dx.doi.org/10.1016/j.im.2017.02.003
  • Jenaro, C., Flores, N., Gómez-Vela, M., González-Gil, F., Caballo, C. (2007). Problematic Internet and CellPhone Use: Psychological, Behavioral, and Health Correlates. Addiction Research and Theory, 15(3), 309-320.
  • Jones, S., Johnson-Yale, C., Millermaier, S., Perez, F.S. (2009). Everyday Life Online: U.S. College Students’ Use of The Internet. First Monday, 14 (10).
  • Kim, H.W., Chan, H.C., Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43(1), 111 -126.
  • Klein Gröppel, A., Koenigstorfer, J. (2007). New insights in to the acceptance of mobile internet services: a mixed-method approach. International Journal of Internet Marketing and Advertising, 4(1), 72-92.
  • Koç, T., Turan, A.H. (2014). Mobil SABİS Kabul ve Kullanımı: Sakarya Üniversitesinde Ampirik Bir Değerlendirme. Bilgi Ekonomisi ve Yönetimi Dergisi, 9(2), 163-175.
  • Lee, W.J., Kim, T.U., Chungc J.Y. (2002). User Acceptance of the Mobile Internet. M-Business 2002. (2002, 8-9 Haziran). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.573 &rep=rep1&type=pdf (24.09.2017).
  • Ramirez-Correa, P.E., Rondan-Cataluña, F.J., Arenas-Gaitán, J. (2015). Predicting behavioral intention of mobile Internet usage. Telematics and Informatics, 32, 834-841.
  • Ratchford, B.T., Lee, M.S., Talukdar, D. (2003). The impact of the internet on information search for automobiles. Journal of Marketing Research. 40 (2), 193-209.
  • Roostika, R. (2012). Mobile Internet Acceptance among University Students: A Value-based Adoption Model. International Journal of Research in Management &Technology. 2(1), 21-27.
  • Shin, Y.M., Lee, S.C., Shin, B., Lee, H.G. (2010). Examining influencing factors of post-adoption usage of mobile internet: Focus on the user perception of supplier-side attributes. Information Systems Frontiers, 12(5), 595-606.
  • Smith, R., Deitz, G., Royne, M.B., Hansen, J.D., Grünhagen, M., Witte, C. (2013). Cross-cultural examination of online shopping behavior: A comparison of Norway, Germany, and the United States. Journal of Business Research, 66, 328-335.
  • Şıklar, E., Tunalı, D., Gülcan, B. (2015). Mobil İnternet Kullanımının Benimsenmesinde Yakınsama Faktörüyle Teknoloji Kabul Modeli, Anadolu Üniversitesi Sosyal Bilimler Dergisi, 15(2), 99-110.
  • Uğur, N.G., Turan, A.H. (2015). Üniversite Öğrencilerinin Mobil Uygulamaları Kabulü ve Kullanımı: Sakarya Üniversitesi Örneği. İnternet Uygulamaları ve Yönetimi, 6(2). 63-79
  • Venkatesh, V., Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46 (2), 186-204.
  • Vlachos, P.A., Vrechopoulos, A.P. (2008). Determinants of behavioral intentions in the mobile internet services market. Journal of Services Marketing, 22(4), 280-291.
  • Walmsley, A.D., White, D.A., Eynon, R., Somerfield, L. (2003). The Use of Internet Within a Dental School. European Journal of Dental Education, 7(1), 27-33.
  • We Are Social and Hootsuite, (2017). Digital in 2017 Global Overvie, https://wearesocial.com/specialreports/digital-in-2017-global-overview (08.09.2017)

Behavioral and Demographic Factors Affecting Academicians Mobile Internet Preference

Year 2018, , 121 - 136, 01.01.2018
https://doi.org/10.5824/1309-1581.2018.1.008.x

Abstract

This study has been carried out with the aim of assessing academicians' behavioral and demographic factors that affected mobile internet preferences. Being cross-sectional and analytical, the study was carried out all of 300 academicians who were working at Bingöl University. As a means of data collection, Personal Information Form and Technology Acceptance Model have been used. This questionnaire was implemented between November and December 2015. It was determined that the average score of the "convergence" scale was the highest and the average score of the "image" subscale was the lowest among the mobile internet preference subscales. When male academicians compare to female academicians, they have been found a significantly to give more importance to perceived usefulness. As the age of academicians increases, they were found to be significantly more important the perceived usefulness, perceived ease of use, intention to use and convergence in the mobile internet choice. It was found that there was a statistically significant relationship between income and the average of the perceived ease of use, the intention to use and the convergence subscales. In addition, it was found that there was a strong positive correlation between the perceived ease of use and the perceived usefulness, the intention to use and the convergence subscales. As a conclusion, it is recommended that the necessary precautions should be taken to improve the factors negatively affecting the mobile internet preference of the academicians.

References

  • Aiken, M., Vanjani, M., Ray, B., Martin, J. (2003). College Student Internet Usage”, Campus-Wide Information Systems. 20 (5), 182-185.
  • Antoun, C. (2015). Who Are the Internet Users, Mobile Internet Users, and Mobile-Mostly Internet Users?: Demographic Differences across Internet-Use Subgroups in the U.S.. In: Toninelli, D, Pinter, R & de Pedraza, P (eds.) Mobile Research Methods: Opportunities and Challenges of Mobile Research Methodologies, pp. 99–117. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/bar.g. License: CC-BY 4.0.
  • Bilgi ve İletişim Teknolojileri Kurumu, (2017). Elektronik Haberleşme Sektörüne İlişkin İl Bazında Yıllık Haber Bülteni, https://www.btk.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fSayfalar%2fIl_Istatistikleri%2fEhs yib_%282011-2016%29.pdf
  • Bolat, Y.İ., Aydemir, M., Karaman, S. (2017). Uzaktan Eğitim Öğrencilerinin Öğretimsel Etkinliklerde Mobil İnternet Kullanımlarının Teknoloji Kabul Modeline Göre İncelenmesi. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 37(1), 63-91.
  • Chae, M. ve Kim, J. (2003). What’s So Different About the Mobile Internet?, Communications of the ACM - Mobile Computing Opportunities and Challenges. 46(12), 240-247.
  • Chatterjee, A. (2017). Customer Preference of Mobile Apps in W.B: Demographic Study. International Journal of Commerce and Management Research. 60-64. http://www.managejournal.com/up/conference/20170210155146.pdf (Erişim Tarihi:24.09.2017)
  • Chen, Z., Dubinsky, A.J. (2003). A conceptual model of perceived customer value in e-commerce: a preliminary investigation. Psychology & Marketing, 23(4), 323-347.
  • Cheng, T.C.E., Lam, D.Y.C., Yeung, A.C.L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems, 42, 1558-1572.
  • Çakmak, T. ve Yalçın, H. (2013). Üniversite Öğrencilerinin Mobil Teknoloji Kullanımı: Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü Örneği. Hacettepe Üniversitesi Türkiyat Araştırmaları Dergisi, 18, 47-61.
  • Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
  • Durak Batıgün, A. ve Kılıç, N. (2011). İnternet Bağımlılığı ve Kişilik Özellikleri, Sosyal Destek, Psikolojik Belirtiler ve Bazı Sosyo-Demografik Değişkenler Arasındaki İlişkiler. Türk Psikoloji Dergisi, 26(67), 1-10.
  • Gao, S., Krogstie, J., Siau, K. (2011). Developing an Instrument Measure the Adoption of Mobile Services”, Mobile Information Systems, 7(1), 45-67.
  • Gerpott, T.J., May, S., Nas, G. (2016). The impact of mobile Internet on mobile Voice usage: A two-level analysis of mobile communications Customers in a GCC country. Information & Management, pp. 1-13, http://dx.doi.org/10.1016/j.im.2017.02.003
  • Jenaro, C., Flores, N., Gómez-Vela, M., González-Gil, F., Caballo, C. (2007). Problematic Internet and CellPhone Use: Psychological, Behavioral, and Health Correlates. Addiction Research and Theory, 15(3), 309-320.
  • Jones, S., Johnson-Yale, C., Millermaier, S., Perez, F.S. (2009). Everyday Life Online: U.S. College Students’ Use of The Internet. First Monday, 14 (10).
  • Kim, H.W., Chan, H.C., Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43(1), 111 -126.
  • Klein Gröppel, A., Koenigstorfer, J. (2007). New insights in to the acceptance of mobile internet services: a mixed-method approach. International Journal of Internet Marketing and Advertising, 4(1), 72-92.
  • Koç, T., Turan, A.H. (2014). Mobil SABİS Kabul ve Kullanımı: Sakarya Üniversitesinde Ampirik Bir Değerlendirme. Bilgi Ekonomisi ve Yönetimi Dergisi, 9(2), 163-175.
  • Lee, W.J., Kim, T.U., Chungc J.Y. (2002). User Acceptance of the Mobile Internet. M-Business 2002. (2002, 8-9 Haziran). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.573 &rep=rep1&type=pdf (24.09.2017).
  • Ramirez-Correa, P.E., Rondan-Cataluña, F.J., Arenas-Gaitán, J. (2015). Predicting behavioral intention of mobile Internet usage. Telematics and Informatics, 32, 834-841.
  • Ratchford, B.T., Lee, M.S., Talukdar, D. (2003). The impact of the internet on information search for automobiles. Journal of Marketing Research. 40 (2), 193-209.
  • Roostika, R. (2012). Mobile Internet Acceptance among University Students: A Value-based Adoption Model. International Journal of Research in Management &Technology. 2(1), 21-27.
  • Shin, Y.M., Lee, S.C., Shin, B., Lee, H.G. (2010). Examining influencing factors of post-adoption usage of mobile internet: Focus on the user perception of supplier-side attributes. Information Systems Frontiers, 12(5), 595-606.
  • Smith, R., Deitz, G., Royne, M.B., Hansen, J.D., Grünhagen, M., Witte, C. (2013). Cross-cultural examination of online shopping behavior: A comparison of Norway, Germany, and the United States. Journal of Business Research, 66, 328-335.
  • Şıklar, E., Tunalı, D., Gülcan, B. (2015). Mobil İnternet Kullanımının Benimsenmesinde Yakınsama Faktörüyle Teknoloji Kabul Modeli, Anadolu Üniversitesi Sosyal Bilimler Dergisi, 15(2), 99-110.
  • Uğur, N.G., Turan, A.H. (2015). Üniversite Öğrencilerinin Mobil Uygulamaları Kabulü ve Kullanımı: Sakarya Üniversitesi Örneği. İnternet Uygulamaları ve Yönetimi, 6(2). 63-79
  • Venkatesh, V., Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46 (2), 186-204.
  • Vlachos, P.A., Vrechopoulos, A.P. (2008). Determinants of behavioral intentions in the mobile internet services market. Journal of Services Marketing, 22(4), 280-291.
  • Walmsley, A.D., White, D.A., Eynon, R., Somerfield, L. (2003). The Use of Internet Within a Dental School. European Journal of Dental Education, 7(1), 27-33.
  • We Are Social and Hootsuite, (2017). Digital in 2017 Global Overvie, https://wearesocial.com/specialreports/digital-in-2017-global-overview (08.09.2017)
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Halim Tatlı This is me

Fuat Alaca This is me

Publication Date January 1, 2018
Submission Date January 1, 2018
Published in Issue Year 2018

Cite

APA Tatlı, H., & Alaca, F. (2018). Akademisyenlerin Mobil İnternet Tercihini Etkileyen Davranışsal ve Demografik Faktörler. AJIT-E: Academic Journal of Information Technology, 9(31), 121-136. https://doi.org/10.5824/1309-1581.2018.1.008.x