Research Article
BibTex RIS Cite

Türkiye’nin Bilgi Bilim Alanında Yapay Zeka Araştırmaları: Web of Science İndeksli Yayınların Bibliyometrik Analizi (1994-2024)

Year 2025, Volume: 16 Issue: 3, 251 - 271, 31.08.2025
https://doi.org/10.5824/ajite.2025.03.004.x

Abstract

Bu çalışmada, Türkiye adresli ve Web of Science (WoS) veri tabanında indekslenen, bilgi bilimi alanında yapay zeka konulu 74 makale bibliyometrik yöntemlerle analiz edilmiştir. 1994–2024 yılları arasını kapsayan bu analiz kapsamında, Türkiye’de bilgi bilimi disiplininde yapay zeka araştırmalarının zaman içerisindeki gelişimini değerlendirmek amacıyla; yazar iş birliği ağları, en çok atıf alan çalışmalar, yayınların dergi dağılımları, tematik odak noktaları ve araştırma eğilimleri gibi çeşitli boyutlar incelenmiştir.

Çalışmanın sonuçları, 2000'li yıllardan itibaren Türkiye merkezli bilgi bilimi yayınlarının artış gösterdiğini, özellikle son on yılda uluslararası iş birliklerinin ve atıf performansının önemli ölçüde arttığını göstermektedir. Bununla birlikte, analizler, en çok tercih edilen dergileri, sık kullanılan anahtar kelimeleri ve ilgili alandaki etkili yazarları belirlemiştir. Alandaki araştırma eğilimlerini ve akademik üretimin dinamiklerini daha iyi anlamak için bibliyometrik yöntemler kullanılmıştır.

Bu çalışmanın, bilgi bilimi alanında Türkiye'nin uluslararası bilimsel görünürlüğünü ve katkılarını anlamamıza yardımcı olacağı beklenmektedir. Araştırmacıların ve politika yapıcıların bu çalışmanın bulgularını kullanarak stratejik planlama yapabileceği düşünülmektedir.

References

  • Aghaei Chadegani, A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Muniandy, B., & Farhadi, M. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18-26.
  • Chang, Y.-W., Huang, M.-H., & Lin, C.-W. (2015). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics, 105(3), 2071–2087. https://doi.org/10.1007/s11192-015-1762-8
  • Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229–2243. https://doi.org/10.1002/asi.21171
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Leydesdorff, L., & Bornmann, L. (2011). Mapping (USPTO) patent data on US inventors: Patent analysis as a tool for measuring science and technology interaction. Journal of the American Society for Information Science and Technology, 62(4), 660-669. https://doi.org/10.1002/asi.21434.
  • Liu, Z., Yin, Y., Liu, W., & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics, 103(1), 135–158. https://doi.org/10.1007/s11192-014-1517-y
  • Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd ed.). Pearson Education.
  • Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225. https://doi.org/10.1007/s11192-016-1889-2
  • Uzun, K., & Öztürk, O. (2022). Bibliometric Analysis of Organizational Ecology Theory (OET): To Review Past for Directing the Future of the Field. Ege Academic Review, 22(2), 195-212.
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Velmurugan, C. (2013). Bibliometric analysis with special reference to Authorship Pattern and Collaborative Research Output of Annals of Library and Information Studies for the Year 2007–2012. International Journal of Digital Library Services, 3(3), 13-21.
  • Wallin, J. A. (2005). Bibliometric methods: Pitfalls and possibilities. Basic & Clinical Pharmacology & Toxicology, 97(5), 261–275. https://doi.org/10.1111/j.1742-7843.2005.pto_139.x

Artificial Intelligence Research in the Field of Information Science in Turkey: A Bibliometric Analysis of Web of Science Indexed Publications (1994–2024)

Year 2025, Volume: 16 Issue: 3, 251 - 271, 31.08.2025
https://doi.org/10.5824/ajite.2025.03.004.x

Abstract

In this study, 74 articles addressing artificial intelligence within the field of information science, indexed in the Web of Science (WoS) database and affiliated with Turkey, were analyzed using bibliometric methods. Covering the period between 1994 and 2024, the analysis examines various dimensions such as the evolution of artificial intelligence research within Turkey’s information science discipline over time, author collaboration networks, the most highly cited works, journal distributions, thematic focuses, and research trends.

The results of the study reveal that, starting from the 2000s, information science publications originating from Turkey have shown a notable increase, with a significant rise in international collaborations and citation performance particularly over the past decade. Furthermore, the analyses identified the most preferred journals, frequently used keywords, and influential authors within the field. Bibliometric methods were utilized to gain a deeper understanding of research trends and the dynamics of academic production in the domain.

It is anticipated that this study will contribute to a better understanding of Turkey’s international scientific visibility and contributions in the field of information science. It is also considered that researchers and policymakers may utilize the findings of this study for strategic planning purposes.

References

  • Aghaei Chadegani, A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Muniandy, B., & Farhadi, M. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18-26.
  • Chang, Y.-W., Huang, M.-H., & Lin, C.-W. (2015). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics, 105(3), 2071–2087. https://doi.org/10.1007/s11192-015-1762-8
  • Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229–2243. https://doi.org/10.1002/asi.21171
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Leydesdorff, L., & Bornmann, L. (2011). Mapping (USPTO) patent data on US inventors: Patent analysis as a tool for measuring science and technology interaction. Journal of the American Society for Information Science and Technology, 62(4), 660-669. https://doi.org/10.1002/asi.21434.
  • Liu, Z., Yin, Y., Liu, W., & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics, 103(1), 135–158. https://doi.org/10.1007/s11192-014-1517-y
  • Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd ed.). Pearson Education.
  • Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225. https://doi.org/10.1007/s11192-016-1889-2
  • Uzun, K., & Öztürk, O. (2022). Bibliometric Analysis of Organizational Ecology Theory (OET): To Review Past for Directing the Future of the Field. Ege Academic Review, 22(2), 195-212.
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Velmurugan, C. (2013). Bibliometric analysis with special reference to Authorship Pattern and Collaborative Research Output of Annals of Library and Information Studies for the Year 2007–2012. International Journal of Digital Library Services, 3(3), 13-21.
  • Wallin, J. A. (2005). Bibliometric methods: Pitfalls and possibilities. Basic & Clinical Pharmacology & Toxicology, 97(5), 261–275. https://doi.org/10.1111/j.1742-7843.2005.pto_139.x
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence (Other)
Journal Section Research Articles
Authors

Okan Koç 0000-0002-5356-5940

Publication Date August 31, 2025
Submission Date January 14, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

APA Koç, O. (2025). Türkiye’nin Bilgi Bilim Alanında Yapay Zeka Araştırmaları: Web of Science İndeksli Yayınların Bibliyometrik Analizi (1994-2024). AJIT-E: Academic Journal of Information Technology, 16(3), 251-271. https://doi.org/10.5824/ajite.2025.03.004.x