Research Article
BibTex RIS Cite

Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi

Year 2021, , 424 - 432, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050775

Abstract

Bu çalışmada, Ege bölgesinden toplanan turunçgil meyvelerinin (mandalina, limon, greyfurt, portakal) kabuk ve yapraklarından (taze ve kurutulmuş) elde edilen etanol ekstraktlarının, gıda kaynaklı üç Gram pozitif (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus) ve dört Gram negatif (Salmonella Typhi, Enterobacter aerogenes, Pseudomonas aeroginosa) patojen bakteri türü üzerindeki antimikrobiyal etkilerinin varlığı ile minimum inhibitör konsantrayon (MIC) ve minimum bakterisidal konsantrasyon (MBC) değerleri disk difüzyon metodu ile araştırılmıştır. Dört farklı turunçgil türünün taze ve kuru kabuklarından elde edilen etanol ekstraktları içerisinde en yüksek antimikrobiyal etkileri sırasıyla; 21.51 mm zon çapı ile Listeria monocytogenes ve 34.65 mm zon çapı ile Staphylococcus aureus üzerinde mandalina kabuğu etanol ekstrakları göstermiştir (p<0.05). Turunçgil kabuklarından elde edilen etanol ekstraktlarının en düşük MIC ve MBC değerleri sırasıyla 11.72 µg/mL ve 3.90 µg/mL ile Listeria monocytogenes üzerinde kurutulmuş mandalina ve limon kabukları etanol ekstraktında olduğu belirlenmiştir (p<0.05). Turunçgil yapraklarından elde edilen etanol ekstraktlarının en düşük MIC ve MBC değerleri ise sırasıyla 5.86 µg/mL ile Bacillus cereus üzerinde kurutulmuş limon ve 3.90 µg/mL ile Listeria monocytogenes üzerinde kurutulmuş mandalina kabukları etanol ekstraktında olduğu belirlenmiştir (p<0.05).

References

  • [1] Yılmaz, E. (2000). Turunçgil meyvelerinin insan sağlığına etkileri. Gıda Mühendisliği Dergisi, 47-52.
  • [2] Uysal, O., Polatöz, S. (2017). Dünyada ve Türkiye'de turunçgil üretimi ve dış ticareti. Türkiye Tohumcular Birliği Dergisi, 6-11.
  • [3] Saraçoğlu, T. (2017). Bazı turunçgil türlerinin seçilmiş fiziksel ve hidrodinamik özellikleri. Anadolu Tarım Bilimleri Dergisi, 206-215.
  • [4] Tağa, Ö. (2007). Ege ve Akdeniz Bölgelerinde Yetişen Turunçgil Ürünlerindeki Pestisit Kalıntı Düzeylerinin Belirlenmesi. Yüksek lisans Tezi, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ.
  • [5] Turhan, İ., Tetik, N., Karhan, M. (2006). Turunçgil kabuk yağlarının elde edilmesi ve gıda endüstrisinde kullanımı. Gıda Teknolojileri Elektronik Dergisi, 3, 71-77.
  • [6] Güzel, M., Akpınar, Ö. (2017). Turunçgil kabuklarının biyoaktif bileşenleri ve antioksidan aktivitelerinin belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstütisü Dergisi, 7, 153-167.
  • [7] Gülşen, O., Uzun, A. (2011). Turunçgil Araştırmalarında Biyoteknoloji çalışmaları. Anadolu Tarım Bilimleri Dergisi, 26, 68-76.
  • [8] Cin, P., Gezer, C. (2017). Fonksiyonel bir besin olarak turunçgiller ve metabolik sendrom ilişkisi. Gıda ve Sağlık Bilimleri Dergisi, 3(2), 49-58.
  • [9] Akarca, G., Tomar, O., Güney, İ., Erdur, S., Gök, V. (2019). Determination of sensivity of some food pathogens to spice extract. Journal of Food Science and Technology, 56(12), 5253-5261.
  • [10] Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 36, 493-496.
  • [11] Akarca, G. (2019). Composition and antibacterial effect on food borne pathogens of Hibiscus surrattensis L. calyces essential oil. Industrial Crops and Products, 137, 285-289.
  • [12] Tomar, O., Akarca, G. (2020). The Antibacterial effects of çiriş (Asphodelus aestivus Brot.) on some foodborne pathogenic bacteria. Avrupa Bilim ve Teknoloji Dergisi, 18, 11-15.
  • [13] Cruz-Gálvez, A.M., Castro-Rosas, J., Rodríguez-Marín, M.L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., Chavez-Urbiola, E., Abreu-Corona, A., Gómez-Aldapa, C.A. (2018). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT Food Science and Technology, 93: 300-305.
  • [14] EUCAST, (2018). European Commitee on Antimicrobial Susceptibilty Testing. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf
  • [15] Şahin, E. (2006). Bitkisel kaynaklı antimikrobiyallerin gıda kaynaklı bazı patojen mikroorganizmalar üzerinde etkileri. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [16] By Aamer, A.A., Abdul-Hafeez, M.M., Sayed, S.M. (2015). Minimum inhibitory and bactericidal concentrations (MIC & MBC) of honey and bee propolis against multidrug resistant (mdr) staphylococcus spp. isolated from bovine clinical mastitis. GJSFR D Agriculture Veterinary 15(2), Version 1.0.
  • [17] Chikezie, I.O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Africa Journal of Microbiology Research, 11(23), 977-980.
  • [18] Sümerkan, B., Gökahmetoğlu, S. (1998). MIC ve MBC Testleri, rutindeki önemi ve uygulamaları. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 3(2), 91-95.
  • [19] Bauer, A.W., Perry, D.M., Kirby, W.M.M. (1959). Single disc antibiotic sensitivity testing of Staphylococci. Archive of International Medicine, 104, 208-216.
  • [20] Dhiman, A., Nanda, A., Ahmad, S., Narasimhan, B. (2011). In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. Journal of Pharmacy an Bioallied Science, 3(2), 226-229.
  • [21] Anonymous, (2015). SPSS Version 23 for Windows SPSS Inc. Chicago IL, USA.
  • [22] Kirbaslar, S.¸ Boz, I., Kirbaslar, F.G. (2006). Composition of Turkish lemon and grapefruit peel oils. Journal of Essential Oil Research, 18(5): 525–543.
  • [23] Kirbaslar, F.G., Tavman, A., Dülger, B., Türker, G. (2009). Antimicrobial activity of Turkish citrus peel oils. Pakistan Journal of Botany, 41(6): 3207–3212.
  • [24] Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., Sebei, H. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123(4): 1098–1104.
  • [25] Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined. Food Control, 22(6): 896-902.
  • [26] Ozogul, Y., Ozogul, F., Kulawik, P. (2021). The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. LWT- Food Science and Technology, 136, 110362.
  • [27] Haiyan, L., Chongxin, X., Xiao, Z., Ying, L., Xianjin, L. (2016). Antibacterial effect of limonene on food-borne pathogen. Journal of Zhejiang University (Agriculture and Life Science), 42(3), 306-312.
  • [28] Yashaswini, P., Arvind. (2018). Antimicrobial properties of orange (Citrus reticulata var. kinnow) peel extracts against pathogenic bacteria. International Journal of Current Microbiology and Applied Sciences, 7(3), 737-746.
  • [29] Dorman, H.J.D., Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316.
  • [30] Mandalari, G., Bennett, R.N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C.B., Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, 103(6), 2056-2064.
  • [31] Du, W.X., Olsen, C.W., Avena‐Bustillos, R.J., Friedman, M., Mc.Hugh, T.H. (2011). Physical and antibacterial properties of edible films formulated with apple skin polyphenols. Journal of Food Science, 76(2), 149-155.
  • [32] Cushnie, T.P., Lamb, A.J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343-356.
  • [33] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods: a review. International Journal of Food Microbiology, 94, 223-253.
  • [34] Kalemba, D.A.A.K., Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10), 813-829.
  • [35] Hojiati, M., Barzegar, H. (2017). Chemical composition and biological activities of lemon (Citrus limon) leaf essential oil. Nutrition and Food Sciences Research, 4(4), 15-24.
  • [36] Filip, S., Durovic, S., Blagojevic, S., Tomic, A., Ratinovic, A., Gasic, U., Tesic, Z., Zekovi, Z. (2021). Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts. Archiv der Pharmazie, 354: e2000195 1-9.
  • [37] Lawal, O.A., Ogunwande, I.A., Owolabi, M.S., Giva, A.O., Kasali, A.A., Abudu, F.A., Sanni, A.A., Opoku, A.R. (2014). Comparative analysis of essential oils of Citrus aurantifolia swingle and Citrus reticulata Blanco, from two different localities of Lagos State, Nigeria. American Journal of Essential Oils and Natural Products, 2(2), 08-12.
  • [38] Huang, Y., Pu, Z., Chen, Q. (2000). The chemical composition of the leaf essential oils from 110 citrus species, cultivars, hybrids and varieties of Chinese origin. Perfumer and Flavorist, 25(1), 53-66.
  • [39] Waikedre, J., Dugay, A., Barrachina, I., Herrenknecht, C., Cabalion, P., Fournet, A. (2010). Chemical composition and antimicrobial activity of the essential oils from new Caledonian Citrus macroptera and Citrus hystrix. Chemistry and Biodiversity, 7(4), 871-877.
  • [40] Abdel-Gaber, A.M., Hijazi, K.M., Younes, G.O., Nsouli, B. (2017). Comparative study of the inhibitive action between the bitter orange leaf extract and its chemical constituent linalool on the mild steel corrosion in HCl solution. Quim Nova, 40(4), 395-401.
  • [41] Paoli, M., de Rocca Serraa, D., Tomia, F., Lurob, F., Bighellia, A. (2016). Chemical composition of the leaf essential oil of grapefruits (Citrus paradisi Macf.) in relation with the genetic origin. Journal of Essential Oil Research, 28(4), 265-271.
  • [42] Nwaogu, L.A., Alisi, C.S., Ibegbulem, C.O., Igwe, C.U. (2007). Phytochemical and antimicrobial activity of ethanolic extract of Landolphia owariensis leaf. African Journal of Biotechnology, 6(7), 890-893.
  • [43] Park, S.N., Lim, Y.K., Freire, M.O., Cho, E., Jin, D., Kook, J.K. (2012). Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe, 18(3), 369-372.
  • [44] Ouedrhiri, W., Balouiri, M., Bouhdid, S., Mja, S., Chahdi, F.O., Taleb, M., Greche, H. (2016). Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Industrial Crops and Products, 89, 1-9.
  • [45] Ben Salah, H., Bouaziz, H., Allouche, N. (2019). Chemical composition of essential oil from Rhanterium suaveolens desf. and its antimicrobial activity against foodborne spoilage pathogens and mycotoxigenic fungi. Journal of Essential Oil-Bearing Plants, 22(3), 592-603.
  • [46] Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980.
  • [47] Shetty, S.B., Mahin-Syed-Ismail, P., Varghese, S., Thomas-George, B., Kandathil-Thajuraj, P., Baby, D., Haleem, S., Sreedhar, S., Devang-Divakar, D. (2015). Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. Journal of Clinical and Experimental Dentistry, 8(1), 71-77.
  • [48] Chanthaphon, S., Chanthachum, S., Hongpattarakere, T. (2008). Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin Journal of Science and Technology, 30(1), 125-131.
  • [49] Swarnamoni, D., Bora, M., Ahmed, S. (2013). Antibacterial activity of the ethanolic extract of leaves of Citrus maxima (burm.) merr. on Escherichia coli and Pseudomonas aeruginosa. Asian Journal of Pharmaceutical and Clinical Research,6(4), 136-139.

Antimicrobial Activity of Citrus Peel and Leaf Extracts against Foodborne Pathogenic Bacteria

Year 2021, , 424 - 432, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050775

Abstract

In this study, the presence of antimicrobial effects of ethanol extracts obtained from the peel and leaves (fresh and dried) of citrus fruits (mandarin, lemon, grapefruit, orange) collected from the Aegean region of Turkey on three Gram positive (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus) and four Gram negative (Salmonella Typhi, Enterobacter aerogenes, Pseudomonas aeroginosa) foodborne pathogenic bacteria species and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were investigated by disk diffusion method. Among the ethanol extracts obtained from fresh and dried peels of four different citrus species, the highest antimicrobial effects were obtained for mandarin peel ethanol extracts on Listeria monocytogenes with a zone diameter of 21.51 mm and Staphylococcus aureus with a zone diameter of 34.65 mm (p<0.05). The lowest MIC and MBC values of ethanol extracts of citrus peels were obtained for dried tangerine and lemon peels on Listeria monocytogenes with 11.72 µg/mL and 3.90 µg/mL (p<0.05), respectively. The lowest MIC and MBC values of ethanol extracts of citrus leaves were determined for dried lemon peels on Bacillus cereus with 5.86 µg/mL and dried tangerine peels on Listeria monocytogenes with 3.90 µg/mL (p<0.05), respectively.

References

  • [1] Yılmaz, E. (2000). Turunçgil meyvelerinin insan sağlığına etkileri. Gıda Mühendisliği Dergisi, 47-52.
  • [2] Uysal, O., Polatöz, S. (2017). Dünyada ve Türkiye'de turunçgil üretimi ve dış ticareti. Türkiye Tohumcular Birliği Dergisi, 6-11.
  • [3] Saraçoğlu, T. (2017). Bazı turunçgil türlerinin seçilmiş fiziksel ve hidrodinamik özellikleri. Anadolu Tarım Bilimleri Dergisi, 206-215.
  • [4] Tağa, Ö. (2007). Ege ve Akdeniz Bölgelerinde Yetişen Turunçgil Ürünlerindeki Pestisit Kalıntı Düzeylerinin Belirlenmesi. Yüksek lisans Tezi, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ.
  • [5] Turhan, İ., Tetik, N., Karhan, M. (2006). Turunçgil kabuk yağlarının elde edilmesi ve gıda endüstrisinde kullanımı. Gıda Teknolojileri Elektronik Dergisi, 3, 71-77.
  • [6] Güzel, M., Akpınar, Ö. (2017). Turunçgil kabuklarının biyoaktif bileşenleri ve antioksidan aktivitelerinin belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstütisü Dergisi, 7, 153-167.
  • [7] Gülşen, O., Uzun, A. (2011). Turunçgil Araştırmalarında Biyoteknoloji çalışmaları. Anadolu Tarım Bilimleri Dergisi, 26, 68-76.
  • [8] Cin, P., Gezer, C. (2017). Fonksiyonel bir besin olarak turunçgiller ve metabolik sendrom ilişkisi. Gıda ve Sağlık Bilimleri Dergisi, 3(2), 49-58.
  • [9] Akarca, G., Tomar, O., Güney, İ., Erdur, S., Gök, V. (2019). Determination of sensivity of some food pathogens to spice extract. Journal of Food Science and Technology, 56(12), 5253-5261.
  • [10] Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 36, 493-496.
  • [11] Akarca, G. (2019). Composition and antibacterial effect on food borne pathogens of Hibiscus surrattensis L. calyces essential oil. Industrial Crops and Products, 137, 285-289.
  • [12] Tomar, O., Akarca, G. (2020). The Antibacterial effects of çiriş (Asphodelus aestivus Brot.) on some foodborne pathogenic bacteria. Avrupa Bilim ve Teknoloji Dergisi, 18, 11-15.
  • [13] Cruz-Gálvez, A.M., Castro-Rosas, J., Rodríguez-Marín, M.L., Cadena-Ramírez, A., Tellez-Jurado, A., Tovar-Jiménez, X., Chavez-Urbiola, E., Abreu-Corona, A., Gómez-Aldapa, C.A. (2018). Antimicrobial activity and physicochemical characterization of a potato starch-based film containing acetonic and methanolic extracts of Hibiscus sabdariffa for use in sausage. LWT Food Science and Technology, 93: 300-305.
  • [14] EUCAST, (2018). European Commitee on Antimicrobial Susceptibilty Testing. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf
  • [15] Şahin, E. (2006). Bitkisel kaynaklı antimikrobiyallerin gıda kaynaklı bazı patojen mikroorganizmalar üzerinde etkileri. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [16] By Aamer, A.A., Abdul-Hafeez, M.M., Sayed, S.M. (2015). Minimum inhibitory and bactericidal concentrations (MIC & MBC) of honey and bee propolis against multidrug resistant (mdr) staphylococcus spp. isolated from bovine clinical mastitis. GJSFR D Agriculture Veterinary 15(2), Version 1.0.
  • [17] Chikezie, I.O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Africa Journal of Microbiology Research, 11(23), 977-980.
  • [18] Sümerkan, B., Gökahmetoğlu, S. (1998). MIC ve MBC Testleri, rutindeki önemi ve uygulamaları. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 3(2), 91-95.
  • [19] Bauer, A.W., Perry, D.M., Kirby, W.M.M. (1959). Single disc antibiotic sensitivity testing of Staphylococci. Archive of International Medicine, 104, 208-216.
  • [20] Dhiman, A., Nanda, A., Ahmad, S., Narasimhan, B. (2011). In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. Journal of Pharmacy an Bioallied Science, 3(2), 226-229.
  • [21] Anonymous, (2015). SPSS Version 23 for Windows SPSS Inc. Chicago IL, USA.
  • [22] Kirbaslar, S.¸ Boz, I., Kirbaslar, F.G. (2006). Composition of Turkish lemon and grapefruit peel oils. Journal of Essential Oil Research, 18(5): 525–543.
  • [23] Kirbaslar, F.G., Tavman, A., Dülger, B., Türker, G. (2009). Antimicrobial activity of Turkish citrus peel oils. Pakistan Journal of Botany, 41(6): 3207–3212.
  • [24] Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., Sebei, H. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123(4): 1098–1104.
  • [25] Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined. Food Control, 22(6): 896-902.
  • [26] Ozogul, Y., Ozogul, F., Kulawik, P. (2021). The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. LWT- Food Science and Technology, 136, 110362.
  • [27] Haiyan, L., Chongxin, X., Xiao, Z., Ying, L., Xianjin, L. (2016). Antibacterial effect of limonene on food-borne pathogen. Journal of Zhejiang University (Agriculture and Life Science), 42(3), 306-312.
  • [28] Yashaswini, P., Arvind. (2018). Antimicrobial properties of orange (Citrus reticulata var. kinnow) peel extracts against pathogenic bacteria. International Journal of Current Microbiology and Applied Sciences, 7(3), 737-746.
  • [29] Dorman, H.J.D., Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316.
  • [30] Mandalari, G., Bennett, R.N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C.B., Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, 103(6), 2056-2064.
  • [31] Du, W.X., Olsen, C.W., Avena‐Bustillos, R.J., Friedman, M., Mc.Hugh, T.H. (2011). Physical and antibacterial properties of edible films formulated with apple skin polyphenols. Journal of Food Science, 76(2), 149-155.
  • [32] Cushnie, T.P., Lamb, A.J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343-356.
  • [33] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods: a review. International Journal of Food Microbiology, 94, 223-253.
  • [34] Kalemba, D.A.A.K., Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10), 813-829.
  • [35] Hojiati, M., Barzegar, H. (2017). Chemical composition and biological activities of lemon (Citrus limon) leaf essential oil. Nutrition and Food Sciences Research, 4(4), 15-24.
  • [36] Filip, S., Durovic, S., Blagojevic, S., Tomic, A., Ratinovic, A., Gasic, U., Tesic, Z., Zekovi, Z. (2021). Chemical composition and antimicrobial activity of Osage orange (Maclura pomifera) leaf extracts. Archiv der Pharmazie, 354: e2000195 1-9.
  • [37] Lawal, O.A., Ogunwande, I.A., Owolabi, M.S., Giva, A.O., Kasali, A.A., Abudu, F.A., Sanni, A.A., Opoku, A.R. (2014). Comparative analysis of essential oils of Citrus aurantifolia swingle and Citrus reticulata Blanco, from two different localities of Lagos State, Nigeria. American Journal of Essential Oils and Natural Products, 2(2), 08-12.
  • [38] Huang, Y., Pu, Z., Chen, Q. (2000). The chemical composition of the leaf essential oils from 110 citrus species, cultivars, hybrids and varieties of Chinese origin. Perfumer and Flavorist, 25(1), 53-66.
  • [39] Waikedre, J., Dugay, A., Barrachina, I., Herrenknecht, C., Cabalion, P., Fournet, A. (2010). Chemical composition and antimicrobial activity of the essential oils from new Caledonian Citrus macroptera and Citrus hystrix. Chemistry and Biodiversity, 7(4), 871-877.
  • [40] Abdel-Gaber, A.M., Hijazi, K.M., Younes, G.O., Nsouli, B. (2017). Comparative study of the inhibitive action between the bitter orange leaf extract and its chemical constituent linalool on the mild steel corrosion in HCl solution. Quim Nova, 40(4), 395-401.
  • [41] Paoli, M., de Rocca Serraa, D., Tomia, F., Lurob, F., Bighellia, A. (2016). Chemical composition of the leaf essential oil of grapefruits (Citrus paradisi Macf.) in relation with the genetic origin. Journal of Essential Oil Research, 28(4), 265-271.
  • [42] Nwaogu, L.A., Alisi, C.S., Ibegbulem, C.O., Igwe, C.U. (2007). Phytochemical and antimicrobial activity of ethanolic extract of Landolphia owariensis leaf. African Journal of Biotechnology, 6(7), 890-893.
  • [43] Park, S.N., Lim, Y.K., Freire, M.O., Cho, E., Jin, D., Kook, J.K. (2012). Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe, 18(3), 369-372.
  • [44] Ouedrhiri, W., Balouiri, M., Bouhdid, S., Mja, S., Chahdi, F.O., Taleb, M., Greche, H. (2016). Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Industrial Crops and Products, 89, 1-9.
  • [45] Ben Salah, H., Bouaziz, H., Allouche, N. (2019). Chemical composition of essential oil from Rhanterium suaveolens desf. and its antimicrobial activity against foodborne spoilage pathogens and mycotoxigenic fungi. Journal of Essential Oil-Bearing Plants, 22(3), 592-603.
  • [46] Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141, 103980.
  • [47] Shetty, S.B., Mahin-Syed-Ismail, P., Varghese, S., Thomas-George, B., Kandathil-Thajuraj, P., Baby, D., Haleem, S., Sreedhar, S., Devang-Divakar, D. (2015). Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. Journal of Clinical and Experimental Dentistry, 8(1), 71-77.
  • [48] Chanthaphon, S., Chanthachum, S., Hongpattarakere, T. (2008). Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin Journal of Science and Technology, 30(1), 125-131.
  • [49] Swarnamoni, D., Bora, M., Ahmed, S. (2013). Antibacterial activity of the ethanolic extract of leaves of Citrus maxima (burm.) merr. on Escherichia coli and Pseudomonas aeruginosa. Asian Journal of Pharmaceutical and Clinical Research,6(4), 136-139.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Gökhan Akarca This is me 0000-0002-5055-2722

Fatma Baytal This is me 0000-0003-3897-7717

Publication Date December 30, 2021
Submission Date May 4, 2021
Published in Issue Year 2021

Cite

APA Akarca, G., & Baytal, F. (2021). Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi. Akademik Gıda, 19(4), 424-432. https://doi.org/10.24323/akademik-gida.1050775
AMA Akarca G, Baytal F. Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi. Akademik Gıda. December 2021;19(4):424-432. doi:10.24323/akademik-gida.1050775
Chicago Akarca, Gökhan, and Fatma Baytal. “Turunçgil Kabuk Ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi”. Akademik Gıda 19, no. 4 (December 2021): 424-32. https://doi.org/10.24323/akademik-gida.1050775.
EndNote Akarca G, Baytal F (December 1, 2021) Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi. Akademik Gıda 19 4 424–432.
IEEE G. Akarca and F. Baytal, “Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi”, Akademik Gıda, vol. 19, no. 4, pp. 424–432, 2021, doi: 10.24323/akademik-gida.1050775.
ISNAD Akarca, Gökhan - Baytal, Fatma. “Turunçgil Kabuk Ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi”. Akademik Gıda 19/4 (December 2021), 424-432. https://doi.org/10.24323/akademik-gida.1050775.
JAMA Akarca G, Baytal F. Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi. Akademik Gıda. 2021;19:424–432.
MLA Akarca, Gökhan and Fatma Baytal. “Turunçgil Kabuk Ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi”. Akademik Gıda, vol. 19, no. 4, 2021, pp. 424-32, doi:10.24323/akademik-gida.1050775.
Vancouver Akarca G, Baytal F. Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi. Akademik Gıda. 2021;19(4):424-32.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).