Research Article
BibTex RIS Cite

Effect of Ultrasonication on Some Techno-functional Properties of Camelina sativa Proteins

Year 2024, , 59 - 66, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460994

Abstract

In this study, it was aimed to determine the effect of ultrasonication at different powers on the techno-functional properties of Camelina sativa proteins. Five different ultrasonication (20 kHz) powers (0, 50, 100, 150, and 200 W) were applied to the proteins of Camelina sativa (Camelina sativa (L.) Crantz), that were obtained by alkaline extraction (pH 12.0) and isoelectric point precipitation (pH 4.5) methods, and the changes in water holding, oil holding, foaming and emulsification properties of proteins were determined. It was determined that the ultrasonication process caused a decrease in the water binding capacity of Camelina sativa proteins between 251.07-500.03%, and an increase in the oil binding capacity between 14.10-21.21%. Moreover, the highest foaming capacity (53.59%) and foaming stability values (42.20% for the 15 min and 40.71% for the 30 min) were determined in the protein sample produced with 200 W ultrasonication. According to the results, it was determined that ultrasonication could be potentially used to improve some techno-functional properties of Camelina sativa proteins.

References

  • [1] Juodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., Stankevičienė, D. (2022). Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals, 12, 295.
  • [2] Sarv, V., Trass, O., Diosady, L.L. (2017). Preparation and characterization of Camelina sativa protein isolates and mucilage. Journal of the American Oil Chemists' Society, 94, 1279-1285.
  • [3] Ngo, N.T.T., Shahidi, F. (2021). Functional properties of protein isolates from camelina (Camelina sativa (L.) Crantz) and flixweed (sophia, Descurainis sophia L.) seed meals. Food Production, Processing and Nutrition, 3(31), 1-10.
  • [4] Mondor, M., Hernández‐Álvarez, A.J. (2022). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124(3), 2100035.
  • [5] Mozafarpour, R., Koocheki, A., Nicolai, T. (2022). Modification of grass pea protein isolate (Lathyrus sativus L.) using high intensity ultrasound treatment: Structure and functional properties. Food Research International, 158, 111520.
  • [6] Malik, M.A., Sharma, H.K., Saini, C.S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511-519.
  • [7] Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B.K., Dabbour, M., Jiang, H., He, R., Ma, H. (2020). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69, 105240.
  • [8] Kamani, M.H., Semwal, J., Meera, M.S. (2021). Functional modification of protein extracted from black gram by-product: Effect of ultrasonication and micronization techniques. LWT, 144, 111193.
  • [9] Gharibzahedi, S.M.T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107-116.
  • [10] Biswas, B., Sit, N. (2020). Effect of ultrasonication on functional properties of tamarind seed protein isolates. Journal of Food Science and Technology, 57, 2070-2078.
  • [11] AACC (2000). Approved methods of American Association of Cereal Chemists 10th ed. American Association of Cereal Chemists Inc., Minnesota, USA.
  • [12] Jambrak, A.R., Lelas, V., Mason, T.J., Krešić, G., Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386-393.
  • [13] Ampofo, J., Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955.
  • [14] Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., Li, S. (2019). Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry, 283, 539–548.
  • [15] Resendiz-Vazquez, J.A., Ulloa, J.A., Urías-Silvas, J.E., Bautista-Rosales, P.U., Ramírez-Ramírez, J.C., Rosas-Ulloa, P., González-Torres, L. (2017). Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrasonics Sonochemistry, 37, 436–444.
  • [16] Hu, H., Fan, X., Zhou, Z., Xu, X., Fan, G., Wang, L., Huang, X., Siyi, P., Zhu, L. (2013). Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 20(1), 187–195.
  • [17] Chandi, G.K., Sogi, D.S. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592–597.
  • [18] Rahman, M.M., Lamsal, B.P. (2021). Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480.
  • [19] Dabbour, M., He, R., Ma, H., Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), 12799.
  • [20] Higuera-Barraza, O.A., Del Toro-Sanchez, C.L., Ruiz-Cruz, S., Márquez-Ríos, E. (2016). Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 31, 558–562.
  • [21] Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267.
  • [22] Morales, R., Martínez, K.D., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. (2015). Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 26, 48–55.
  • [23] Nazari, B., Mohammadifar, M.A., Shojaee-Aliabadi, S., Feizollahi, E., Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388.
  • [24] Zhang, H., Claver, I.P., Zhu, K.X., Zhou, H. (2011). The effect of ultrasound on the functional properties of wheat gluten. Molecules, 16(5), 4231–4240.
  • [25] Yavuz, M., Özçelik, B. (2016). Bitkisel protein izolatlarının fonksiyonel özellikleri. Akademik Gıda, 14(4), 424-430.
  • [26] Hu, H., Cheung, I. W. Y., Pan, S., Li-Chan, E.C.Y. (2015). Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 45, 102–110.
  • [27] Téllez-Morales, J.A., Hernández-Santo, B., Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787.
  • [28] Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., Decker, E.A., McClements, D.J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853–861.

Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi

Year 2024, , 59 - 66, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460994

Abstract

Bu araştırmada, farklı güçlerdeki ultrasonikasyon uygulamasının ketencik (Camelina sativa (L.) Crantz) proteinlerinin tekno-fonksiyonel özelliklerine etkisinin belirlenmesi amaçlanmıştır. Alkali ekstraksiyon (pH 12) ve izoelektrik noktada çöktürme (pH 4.5) yöntemi kullanılarak elde edilen ketencik proteinlerine beş farklı ultrasonikasyon (20 kHz) gücünde (0, 50, 100, 150 ve 200 W) işlem uygulanmış ve proteinlerin su bağlama, yağ bağlama, köpürme ve emülsiyon özelliklerindeki değişimler incelenmiştir. Uygulanan ultrasonikasyon işlemlerinin ketencik proteinlerinin su bağlama kapasitelerinde %251.07-500.03 aralığında gerçekleşen bir azalışa, yağ bağlama kapasitelerinde ise %14.10-21.21 aralığında gerçekleşen bir artışa neden olduğu belirlenmiştir. Ayrıca en yüksek köpürme kapasitesi (%53.59) ve köpürme stabilitesi değerleri (15. ve 30. dakikalar için sırasıyla %42.20 ve %40.71) 200 W gücünde ultrasonikasyon işlemi ile üretilen protein örneğinde tespit edilmiştir. Elde edilen sonuçlara göre ketencik proteinlerinin bazı tekno-fonksiyonel özelliklerinin geliştirilmesinde ultrasonikasyon işleminin kullanım potansiyeli ortaya koyulmuştur.

References

  • [1] Juodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., Stankevičienė, D. (2022). Camelina (Camelina sativa (L.) Crantz) as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals, 12, 295.
  • [2] Sarv, V., Trass, O., Diosady, L.L. (2017). Preparation and characterization of Camelina sativa protein isolates and mucilage. Journal of the American Oil Chemists' Society, 94, 1279-1285.
  • [3] Ngo, N.T.T., Shahidi, F. (2021). Functional properties of protein isolates from camelina (Camelina sativa (L.) Crantz) and flixweed (sophia, Descurainis sophia L.) seed meals. Food Production, Processing and Nutrition, 3(31), 1-10.
  • [4] Mondor, M., Hernández‐Álvarez, A.J. (2022). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124(3), 2100035.
  • [5] Mozafarpour, R., Koocheki, A., Nicolai, T. (2022). Modification of grass pea protein isolate (Lathyrus sativus L.) using high intensity ultrasound treatment: Structure and functional properties. Food Research International, 158, 111520.
  • [6] Malik, M.A., Sharma, H.K., Saini, C.S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511-519.
  • [7] Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B.K., Dabbour, M., Jiang, H., He, R., Ma, H. (2020). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69, 105240.
  • [8] Kamani, M.H., Semwal, J., Meera, M.S. (2021). Functional modification of protein extracted from black gram by-product: Effect of ultrasonication and micronization techniques. LWT, 144, 111193.
  • [9] Gharibzahedi, S.M.T., Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science & Technology, 98, 107-116.
  • [10] Biswas, B., Sit, N. (2020). Effect of ultrasonication on functional properties of tamarind seed protein isolates. Journal of Food Science and Technology, 57, 2070-2078.
  • [11] AACC (2000). Approved methods of American Association of Cereal Chemists 10th ed. American Association of Cereal Chemists Inc., Minnesota, USA.
  • [12] Jambrak, A.R., Lelas, V., Mason, T.J., Krešić, G., Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386-393.
  • [13] Ampofo, J., Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955.
  • [14] Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., Li, S. (2019). Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry, 283, 539–548.
  • [15] Resendiz-Vazquez, J.A., Ulloa, J.A., Urías-Silvas, J.E., Bautista-Rosales, P.U., Ramírez-Ramírez, J.C., Rosas-Ulloa, P., González-Torres, L. (2017). Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrasonics Sonochemistry, 37, 436–444.
  • [16] Hu, H., Fan, X., Zhou, Z., Xu, X., Fan, G., Wang, L., Huang, X., Siyi, P., Zhu, L. (2013). Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 20(1), 187–195.
  • [17] Chandi, G.K., Sogi, D.S. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592–597.
  • [18] Rahman, M.M., Lamsal, B.P. (2021). Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480.
  • [19] Dabbour, M., He, R., Ma, H., Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), 12799.
  • [20] Higuera-Barraza, O.A., Del Toro-Sanchez, C.L., Ruiz-Cruz, S., Márquez-Ríos, E. (2016). Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 31, 558–562.
  • [21] Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267.
  • [22] Morales, R., Martínez, K.D., Pizones Ruiz-Henestrosa, V.M., Pilosof, A.M.R. (2015). Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 26, 48–55.
  • [23] Nazari, B., Mohammadifar, M.A., Shojaee-Aliabadi, S., Feizollahi, E., Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388.
  • [24] Zhang, H., Claver, I.P., Zhu, K.X., Zhou, H. (2011). The effect of ultrasound on the functional properties of wheat gluten. Molecules, 16(5), 4231–4240.
  • [25] Yavuz, M., Özçelik, B. (2016). Bitkisel protein izolatlarının fonksiyonel özellikleri. Akademik Gıda, 14(4), 424-430.
  • [26] Hu, H., Cheung, I. W. Y., Pan, S., Li-Chan, E.C.Y. (2015). Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 45, 102–110.
  • [27] Téllez-Morales, J.A., Hernández-Santo, B., Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787.
  • [28] Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., Decker, E.A., McClements, D.J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853–861.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Fatma Korkmaz 0000-0002-6834-4833

Ceren Mutlu 0000-0003-4943-2798

Publication Date March 29, 2024
Submission Date February 14, 2024
Acceptance Date March 23, 2024
Published in Issue Year 2024

Cite

APA Korkmaz, F., & Mutlu, C. (2024). Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi. Akademik Gıda, 22(1), 59-66. https://doi.org/10.24323/akademik-gida.1460994
AMA Korkmaz F, Mutlu C. Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi. Akademik Gıda. March 2024;22(1):59-66. doi:10.24323/akademik-gida.1460994
Chicago Korkmaz, Fatma, and Ceren Mutlu. “Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi”. Akademik Gıda 22, no. 1 (March 2024): 59-66. https://doi.org/10.24323/akademik-gida.1460994.
EndNote Korkmaz F, Mutlu C (March 1, 2024) Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi. Akademik Gıda 22 1 59–66.
IEEE F. Korkmaz and C. Mutlu, “Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi”, Akademik Gıda, vol. 22, no. 1, pp. 59–66, 2024, doi: 10.24323/akademik-gida.1460994.
ISNAD Korkmaz, Fatma - Mutlu, Ceren. “Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi”. Akademik Gıda 22/1 (March 2024), 59-66. https://doi.org/10.24323/akademik-gida.1460994.
JAMA Korkmaz F, Mutlu C. Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi. Akademik Gıda. 2024;22:59–66.
MLA Korkmaz, Fatma and Ceren Mutlu. “Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi”. Akademik Gıda, vol. 22, no. 1, 2024, pp. 59-66, doi:10.24323/akademik-gida.1460994.
Vancouver Korkmaz F, Mutlu C. Ketencik Proteinlerinin Bazı Tekno-Fonksiyonel Özellikleri Üzerine Ultrasonikasyon Uygulamasının Etkisi. Akademik Gıda. 2024;22(1):59-66.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).