Research Article
BibTex RIS Cite

Mathematical Description for Fipronil Electrochemical Detection Assisted by Cobalt (III) Oxyhydroxide

Year 2017, , 322 - 326, 24.12.2017
https://doi.org/10.24323/akademik-gida.370098

Abstract

The possibility of fipronil pesticide electrochemical determination
assisted by cobalt (III) oxyhydroxide was determined in this study. The redox
pair CoO(OH)/CoO2 was used in this process. The correspondent
mathematical model was developed and analyzed by means of linear stability
theory and bifurcation analysis. It was shown that the oxyhydroxide may be
applied as an efficient electrode modifier in the detection of fipronil in
neutral and lightly alkaline media. Electrochemical response was clear and easy
to interpret. The possibility of oscillatory and monotonic instabilities was
also verified.

References

  • [1] https://pubchem.ncbi.nlm.nih.gov/compound/fipronil, accessed at the 9th of August 2017.
  • [2] https://www.drugs.com/dict/fipronil.html, accessed at the 9th of August 2017.
  • [3] Bobe, A., Colste, C.M., Cooper, J.F., 1997. Factors influencing the adsorption of fipronil on soils. Journal of Agricultural and Food Chemistry 45(12): 4861- 4865.
  • [4] http://npic.orst.edu/factsheets/fipronil.pdf, accessed at the 9th of August 2017.
  • [5] Tingle, C.C., Rother, J.A., Dewhurst, C.F., Lauer, S., King, W.J., 2003. Fipronil: environmental fate, ecotoxicology, and human health concerns. Reviews of Environmental Contamination and Toxicology 176: 1–66.
  • [6] http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/Report__2000.pdf, accessed at the 9th of August 2017.
  • [7] https://apvma.gov.au/sites/default/files/publication/15191-fipronil-prf-vol2-animal-safety literature_0.pdf, accessed at the 9th of August 2017.
  • [8] Hainzl, D., Casida, J.E., 1993. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 93(23): 12764–12767.
  • [9] Ramesh, A., Balasubramanian, B., 1999. Kinetics and hydrolysis of fenamiphos, fipronil, and trifluralin in aqueous buffer solutions. Journal of Agricultural and Food Chemistry 47(8): 3367-3371.
  • [10] Hainzl, D., Cole, L.M., Casida, J.E., 1998. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chemical Research in Toxicology 11(12): 1529-1535.
  • [11] https://www.casqa.org/sites/default/files/library/technical-reports/casqa_review_of_pyrethroid_fipronil_and_toxicity_monitoring_data_-_july_2013.pdf, accessed at the 9th of August 2017.
  • [12] https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+7051, accessed at the 9th of August 2017.
  • [13] http://www.livingwithbugs.com/PDFiles/fipronil.pdf , accessed at the 9th of August 2017.
  • [14] Hafeez, A., Tawab, I.A., Iqbal, S., 2016. Development and validation of an HPLC method for the simultaneous determination of fipronil, chlorfenapyr, and pyriproxyfen in insecticide formulations. Journal of AOAC International 9(5): 1185-1190.
  • [15] http://www.ingenieria-analitica.com/downloads/dl/file/id/1039/product/91/fipronil_analysis_from_a_variety_of_matrices_by_gc_xsd_following_post_extraction_gel_permeation_chromatography_cleanup.pdf, accessed at the 9th of August 2017.
  • [16] Cid, Y.P., Ferreira, T.P., Medeiros, D., Oliveira, R.M., Silva, N.C.C., Magalhães, V.S., Scott, F.B., 2012. Determination of fipronil in bovine plasma by solid phase extraction and liquid chromatography with ultraviolet detection. Química Nova 35(10): 2063–2066.
  • [17] Montes, R.H.O., Dornellas, R.M., Silva, L.A.J., Squissato, A.L., Richter, E.M., Munoz, R.A.A., 2016. Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes. Journal of Solid State Electrochemistry 20(9): 2454–2459.
  • [18] Okumura, F., Amaral, R.B., Orestes, E., Silvab, A.B.F., Mazo, L.H., 2015. Electrochemical and Quantum Chemical Investigations of the Insecticide Fipronil. Journal of the Brazilian Chemical Society 27(5): 925-932.
  • [19] Stadnik, A.A., Caldas, E.M., Galli, A., Anaissi, F.J., 2015. Eletrodo modificado com [CoO(OH)] coloidal aplicado na detecção de ácido oxálico, orbital. Electronic Journal of Chemistry 7(2): 122–130.
  • [20] Bonini, J.S., Mariani, F.Q., Guimarães Castro, E., Galli, A., Marangoni, R., Anaissi, F.A., 2015. Partículas de COO(OH) dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos. Electronic Journal of Chemistry 7(4): 318–326.
  • [21] Stadnik O. Synthesis, Electrochemical and Photoelectrochemical Properties of the Oxide-hydroxide Compounds of Cobalt, Diss. Kand. Chim. N.–Kyiv.–2011.
  • [22] McQuade, T., Pullen, A., Swager, T.M., 2015. Conjugated polymer-based chemical sensors. Chemical Reviews 100(7): 2537–2574.
  • [23] Das, I., Agrawal, N.R., Ansari, S.A., Gupta, S.K., 2008. Pattern formation and oscillatory electropolymerization of thiophene. Indian Journal of Chemistry 47A 1798-1803.
  • [24] Tkach, V.V., Ivanushko, Y.G., Lukanova, S.M., Romaniv, L.V., de Oliveira, S.C., Ojani, R., Yagodynets, P.I., 2017. The theoretical evaluation for the possibility of the CoO(OH)-assisted electrochemical detection in water. Applied Journal of Environmental Engineering Science 3(2): 90–95.
  • [25] Tkach, V.V., de Oliveira, S.C., Anaissi, F.J., Ojani, R., Neves, V.S., Galeano Espínola, M.O., Yagodynets´, P.I., 2016. The possibility of the Use of CoO(OH) as an electrode modifier for hydrazine detection and its mathematical evaluation. Analytical & Bioanalytical Electrochemistry 8(5): 557–565.
  • [26] Tkach, V.V., Ivanushko, Y., de Oliveira, S.C., da Silva, G.R., Ojani, R., Yagodynets´, P.I., 2016. The theoretical evalution of the posiibility of of CoO(OH)-assisted omeprazole electrochemical detection. Analytical & Bioanalytical Electrochemistry 8(6): 749–760.
  • [27] Tkach, V.V., de Oliveira, S.C., Anaissi, F.J., Ojani, R., Páramo-García, U., Yelenich, O., Yagodynets´, P.I., 2016. The mechanism of electroanalytical function of CoO(OH) in the oxalic acid electrochemical determination and its mathematical representation. Analytical & Bioanalytical Electrochemistry 8(1): 1–11.
  • [28] Tkach, V.V., de Oliveira, S.C., Maia, G., Anaissi, F.J., Ojani, R., Páramo-García, U., Yelenich, O., Yagodynets, P.I., 2016. The mathematical investigation for the mechanism of the electrochemical oxidation of phenolic Compounds over CoO(OH) in alkaline media. Moroccan Journal of Chemistry 4(1): 157–163.

Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama

Year 2017, , 322 - 326, 24.12.2017
https://doi.org/10.24323/akademik-gida.370098

Abstract

Bu çalışmada, kobalt (III) oksihidroksit kullanılarak fipronil
pestisidinin elektrokimyasal tespit olasılığı belirlenmiştir. Bu işlemde redoks
çifti CoO(OH)/CoO
2 kullanılmıştır. Karşılık gelen matematiksel
model, doğrusal kararlılık teorisi ve bifurkasyon analizi vasıtasıyla
geliştirilmiş ve analiz edilmiştir. Oksihidroksidin, nötr ve hafif alkali
ortamda fipronilin saptanmasında etkili bir elektrot değiştirici olarak
uygulanabileceği gösterilmiştir. Elektrokimyasal cevabın açık ve kolay
anlaşılır olduğu belirlenmiştir. Titreşimli ve monotonik istikrarsızlık
olasılığı da çalışmada doğrulanmıştır.

References

  • [1] https://pubchem.ncbi.nlm.nih.gov/compound/fipronil, accessed at the 9th of August 2017.
  • [2] https://www.drugs.com/dict/fipronil.html, accessed at the 9th of August 2017.
  • [3] Bobe, A., Colste, C.M., Cooper, J.F., 1997. Factors influencing the adsorption of fipronil on soils. Journal of Agricultural and Food Chemistry 45(12): 4861- 4865.
  • [4] http://npic.orst.edu/factsheets/fipronil.pdf, accessed at the 9th of August 2017.
  • [5] Tingle, C.C., Rother, J.A., Dewhurst, C.F., Lauer, S., King, W.J., 2003. Fipronil: environmental fate, ecotoxicology, and human health concerns. Reviews of Environmental Contamination and Toxicology 176: 1–66.
  • [6] http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/Report__2000.pdf, accessed at the 9th of August 2017.
  • [7] https://apvma.gov.au/sites/default/files/publication/15191-fipronil-prf-vol2-animal-safety literature_0.pdf, accessed at the 9th of August 2017.
  • [8] Hainzl, D., Casida, J.E., 1993. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America 93(23): 12764–12767.
  • [9] Ramesh, A., Balasubramanian, B., 1999. Kinetics and hydrolysis of fenamiphos, fipronil, and trifluralin in aqueous buffer solutions. Journal of Agricultural and Food Chemistry 47(8): 3367-3371.
  • [10] Hainzl, D., Cole, L.M., Casida, J.E., 1998. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chemical Research in Toxicology 11(12): 1529-1535.
  • [11] https://www.casqa.org/sites/default/files/library/technical-reports/casqa_review_of_pyrethroid_fipronil_and_toxicity_monitoring_data_-_july_2013.pdf, accessed at the 9th of August 2017.
  • [12] https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+7051, accessed at the 9th of August 2017.
  • [13] http://www.livingwithbugs.com/PDFiles/fipronil.pdf , accessed at the 9th of August 2017.
  • [14] Hafeez, A., Tawab, I.A., Iqbal, S., 2016. Development and validation of an HPLC method for the simultaneous determination of fipronil, chlorfenapyr, and pyriproxyfen in insecticide formulations. Journal of AOAC International 9(5): 1185-1190.
  • [15] http://www.ingenieria-analitica.com/downloads/dl/file/id/1039/product/91/fipronil_analysis_from_a_variety_of_matrices_by_gc_xsd_following_post_extraction_gel_permeation_chromatography_cleanup.pdf, accessed at the 9th of August 2017.
  • [16] Cid, Y.P., Ferreira, T.P., Medeiros, D., Oliveira, R.M., Silva, N.C.C., Magalhães, V.S., Scott, F.B., 2012. Determination of fipronil in bovine plasma by solid phase extraction and liquid chromatography with ultraviolet detection. Química Nova 35(10): 2063–2066.
  • [17] Montes, R.H.O., Dornellas, R.M., Silva, L.A.J., Squissato, A.L., Richter, E.M., Munoz, R.A.A., 2016. Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes. Journal of Solid State Electrochemistry 20(9): 2454–2459.
  • [18] Okumura, F., Amaral, R.B., Orestes, E., Silvab, A.B.F., Mazo, L.H., 2015. Electrochemical and Quantum Chemical Investigations of the Insecticide Fipronil. Journal of the Brazilian Chemical Society 27(5): 925-932.
  • [19] Stadnik, A.A., Caldas, E.M., Galli, A., Anaissi, F.J., 2015. Eletrodo modificado com [CoO(OH)] coloidal aplicado na detecção de ácido oxálico, orbital. Electronic Journal of Chemistry 7(2): 122–130.
  • [20] Bonini, J.S., Mariani, F.Q., Guimarães Castro, E., Galli, A., Marangoni, R., Anaissi, F.A., 2015. Partículas de COO(OH) dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos. Electronic Journal of Chemistry 7(4): 318–326.
  • [21] Stadnik O. Synthesis, Electrochemical and Photoelectrochemical Properties of the Oxide-hydroxide Compounds of Cobalt, Diss. Kand. Chim. N.–Kyiv.–2011.
  • [22] McQuade, T., Pullen, A., Swager, T.M., 2015. Conjugated polymer-based chemical sensors. Chemical Reviews 100(7): 2537–2574.
  • [23] Das, I., Agrawal, N.R., Ansari, S.A., Gupta, S.K., 2008. Pattern formation and oscillatory electropolymerization of thiophene. Indian Journal of Chemistry 47A 1798-1803.
  • [24] Tkach, V.V., Ivanushko, Y.G., Lukanova, S.M., Romaniv, L.V., de Oliveira, S.C., Ojani, R., Yagodynets, P.I., 2017. The theoretical evaluation for the possibility of the CoO(OH)-assisted electrochemical detection in water. Applied Journal of Environmental Engineering Science 3(2): 90–95.
  • [25] Tkach, V.V., de Oliveira, S.C., Anaissi, F.J., Ojani, R., Neves, V.S., Galeano Espínola, M.O., Yagodynets´, P.I., 2016. The possibility of the Use of CoO(OH) as an electrode modifier for hydrazine detection and its mathematical evaluation. Analytical & Bioanalytical Electrochemistry 8(5): 557–565.
  • [26] Tkach, V.V., Ivanushko, Y., de Oliveira, S.C., da Silva, G.R., Ojani, R., Yagodynets´, P.I., 2016. The theoretical evalution of the posiibility of of CoO(OH)-assisted omeprazole electrochemical detection. Analytical & Bioanalytical Electrochemistry 8(6): 749–760.
  • [27] Tkach, V.V., de Oliveira, S.C., Anaissi, F.J., Ojani, R., Páramo-García, U., Yelenich, O., Yagodynets´, P.I., 2016. The mechanism of electroanalytical function of CoO(OH) in the oxalic acid electrochemical determination and its mathematical representation. Analytical & Bioanalytical Electrochemistry 8(1): 1–11.
  • [28] Tkach, V.V., de Oliveira, S.C., Maia, G., Anaissi, F.J., Ojani, R., Páramo-García, U., Yelenich, O., Yagodynets, P.I., 2016. The mathematical investigation for the mechanism of the electrochemical oxidation of phenolic Compounds over CoO(OH) in alkaline media. Moroccan Journal of Chemistry 4(1): 157–163.
There are 28 citations in total.

Details

Subjects Food Engineering
Journal Section Research Papers
Authors

Volodymyr Valentynovych Tkach 0000-0001-7696-0954

Yana G. Ivanushko This is me 0000-0001-8086-5351

Svitlana M. Lukanova This is me

Sílvio C. De Oliveira This is me 0000-0002-2820-932X

Genílson R. Da Silva This is me

Fauze J. Anaissi This is me 0000-0002-5454-472X

Petro İ. Yagodynets This is me

Publication Date December 24, 2017
Submission Date August 16, 2017
Published in Issue Year 2017

Cite

APA Tkach, V. V., Ivanushko, Y. G., Lukanova, S. M., De Oliveira, S. C., et al. (2017). Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama. Akademik Gıda, 15(4), 322-326. https://doi.org/10.24323/akademik-gida.370098
AMA Tkach VV, Ivanushko YG, Lukanova SM, De Oliveira SC, Da Silva GR, Anaissi FJ, Yagodynets Pİ. Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama. Akademik Gıda. December 2017;15(4):322-326. doi:10.24323/akademik-gida.370098
Chicago Tkach, Volodymyr Valentynovych, Yana G. Ivanushko, Svitlana M. Lukanova, Sílvio C. De Oliveira, Genílson R. Da Silva, Fauze J. Anaissi, and Petro İ. Yagodynets. “Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama”. Akademik Gıda 15, no. 4 (December 2017): 322-26. https://doi.org/10.24323/akademik-gida.370098.
EndNote Tkach VV, Ivanushko YG, Lukanova SM, De Oliveira SC, Da Silva GR, Anaissi FJ, Yagodynets Pİ (December 1, 2017) Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama. Akademik Gıda 15 4 322–326.
IEEE V. V. Tkach, Y. G. Ivanushko, S. M. Lukanova, S. C. De Oliveira, G. R. Da Silva, F. J. Anaissi, and P. İ. Yagodynets, “Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama”, Akademik Gıda, vol. 15, no. 4, pp. 322–326, 2017, doi: 10.24323/akademik-gida.370098.
ISNAD Tkach, Volodymyr Valentynovych et al. “Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama”. Akademik Gıda 15/4 (December 2017), 322-326. https://doi.org/10.24323/akademik-gida.370098.
JAMA Tkach VV, Ivanushko YG, Lukanova SM, De Oliveira SC, Da Silva GR, Anaissi FJ, Yagodynets Pİ. Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama. Akademik Gıda. 2017;15:322–326.
MLA Tkach, Volodymyr Valentynovych et al. “Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama”. Akademik Gıda, vol. 15, no. 4, 2017, pp. 322-6, doi:10.24323/akademik-gida.370098.
Vancouver Tkach VV, Ivanushko YG, Lukanova SM, De Oliveira SC, Da Silva GR, Anaissi FJ, Yagodynets Pİ. Kobalt (III) Oksihidroksit Yardımıyla Fipronilin Elektrokimyasal Tespiti İçin Matematiksel Açıklama. Akademik Gıda. 2017;15(4):322-6.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).