Review
BibTex RIS Cite

İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması

Year 2019, , 111 - 120, 26.03.2019
https://doi.org/10.24323/akademik-gida.544844

Abstract

Geleneksel ısıtma yöntemlerinin enerji verimliliklerinin
düşük olması ve gıdanın kalite özelliklerindeki bazı istenmeyen değişimlere
sebep olmaları nedeniyle güncel ısıtma teknolojileri ile ilgili arayışlar son
yıllarda giderek artmıştır. Tüketicilerinin minimal işlem gören ve yüksek
kalitede ürün talebini karşılayan ve yüksek enerji verimliliğine sahip üretime
olanak tanıyan güncel yöntemler, geleneksel yöntemlere alternatif olabilmektedir.
Bu derleme çalışmasında güncel elektriksel ısıtma yöntemlerinden olan
indüksiyon ısıtma ve ohmik ısıtma işlemleri tanıtılarak, uygulama alanları ve
çalışma prensipleri arasındaki farklılıklar tartışılmıştır. Her iki ısıtma yöntemi
için tasarlanan sürekli sistem boru hattı ve pişirme uygulamaları konusunda
yapılan çalışmalar incelenmiştir. Benzer amaçlarla oluşturulan gıda işleme
sistemleri baz alınarak, iki farklı ısıtma yönteminin gıdalara
uygulanabilirliği karşılaştırılmış ve potansiyel uygulama alanları konusunda
öneriler oluşturulmuştur.

References

  • [1] Pereira, R.N., Vicente, A.A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936-1943.
  • [2] Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203-235.
  • [3] Rawson, A., Patras, A., Tiwari, B.K., Noci, F., Koutchma, T., Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International, 44(7), 1875-1887.
  • [4] Evrendilek, G.A., Baysal, T., Icier, F., Yildiz, H., Demirdoven, A., Bozkurt, H. (2012). Processing of fruits and fruit juices by novel electrotechnologies. Food Engineering Reviews, 4(1), 68-87.
  • [5] Aguilar-Rosas, S.F., Ballinas-Casarrubias, M.L., Nevarez-Moorillon, G.V., Martin-Belloso, O., Ortega-Rivas, E. (2007). Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. Journal of Food Engineering, 83(1), 41-46.
  • [6] Nikdel, S., Chen, C.S., Parish, M.E., MacKellar, D.G., Friedrich, L.M. (1993). Pasteurization of citrus juice with microwave energy in a continuous-flow unit. Journal of Agricultural and Food Chemistry, 41(11), 2116-2119.
  • [7] Vikram, V.B., Ramesh, M.N., Prapulla, S.G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31-40.
  • [8] Yildiz, H., Bozkurt, H., Icier, F. (2009). Ohmic and conventional heating of pomegranate juice: effects on rheology, color, and total phenolics. Revista de Agaroquimica y Tecnologia de Alimentos, 15(5), 503-512.
  • [9] Hartyáni, P., Dalmadi, I., Cserhalmi, Z., Kántor, D.B., Tóth-Markus, M., Sass-Kiss, Á. (2011). Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies, 12(3), 255-260.
  • [10] Bozkır, H., Baysal, T., Ergün, A. R. (2014). Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri. Academic Food Journal/Akademik GIDA, 12(3).
  • [11] Çokgezme, Ö. F., & İçier, F. (2016). Dondurulmuş Gıdaların Çözündürülmesinde Alternatif Bir Yöntem: Ohmik Çözündürme. Academic Food Journal/Akademik Gida, 14(2).
  • [12] Dereci, S. (2010). İndüksiyonla Isıtma Sistemlerinin İncelenmesi ve Bir Uygulama Devresinin Gerçekleştirilmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul
  • [13] Öncü, S. (2005). Bir Fazlı Yüksek Verimli Ev Tipi Bir İndüksiyon Isıtma Sistemi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli
  • [14] Anonymous, “Opinions on Induction heating”, http://www.writeopinions.com/induction-heating (Erişim Tarihi, 11.12.2017)
  • [15] Tokgöz, S. (2011). Elektromanyetik İndüksiyona Karşı Katı Cisimlerin Davranışı ve Sıcaklık Kontrolü, Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta
  • [16] Lucía, O., Maussion, P., Dede, E.J., Burdío, J.M. (2014). Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics, 61(5), 2509-2520.
  • [17] Sadhu, P.K., Pal, N., Bandyopadhyay, A., Sinha, D. (2010). Review of induction cooking-a health hazards free tool to improve energy efficiency as compared to microwave oven. The 2nd International Conference on Computer and Automation Engineering (ICCAE), February 26-28, 2010, Singapore, Book of Proceedings, 5, 650-654p.
  • [18] Gisslen, W. (2007). Professional cooking. John Wiley & Sons,Inc., New Jersey, USA.
  • [19] Ito, A., Shinkai, M., Honda, H., Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1-11.
  • [20] Mohring, J.U., Wrona E. (2011). Development of Customized Solutions - an Interesting Challenge of Modern Induction Heating. Advances in Induction and Microwave Heating of Mineral and Organic Materials, Edited by S. Grundas, InTech, Rijeka, Croatia, 125p.
  • [21] Baysal, T., İçier, F., Baysal, H.A. (2011). Güncel Elektriksel Isıtma Yöntemleri. Sidas Medya Yayınları, Çankaya, İzmir.
  • [22] Sharma, S., “Ohmic heating”, http://foodpathshala.ning.com/profiles/blogs/ohmic-heating (Erişim Tarihi, 11.12.2017)
  • [23] Varghese, K.S., Pandey, M.C., Radhakrishna, K., Bawa, A.S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of Food Science and Technology, 51(10), 2304-2317.
  • [24] Icier, F., Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International, 38(10), 1135-1142.
  • [25] Icıer, F., Ilıcalı, C. (2004). Electrical conductivity of apple and sourcherry juice concentrates during ohmic heating. Journal of Food Process Engineering, 27(3), 159-180.
  • [26] Kaur, N., Singh, A.K. (2016). Ohmic Heating: Concept and Applications - A Review. Critical Reviews in Food Science and Nutrition, 56(14), 2338-2351. [27] FDA. (2001). Kinetics of Microbial Inactivation for Alternative Food Processing Technologies: Ohmic and Inductive Heating.
  • [28] Curran, J.S., Featherstone, A.M. (1988). Electric-induction fluid heaters. Power Engineering Journal, 2(3), 157-160.
  • [29] Kaneda, M., Hishikawa, S., Tamaka, T., Guo, B., Nakaoka, M. (1999). Innovative electromagnetic induction eddy current-based dual packs heater using voltage-fed high-frequency PWM resonant inverter for continuous fluid processing in pipeline. The 25th Annual Conference of the IEEE Industrial Electronics Society, 29 November - 3 December, 1999, California, USA, Book of Proceedings, 2, 797-802p.
  • [30] Yıldız, M.N., İrfan, A. (2006). 2, 2kW’lık indüksiyonlu sıvı ısıtıcı tasarımı ve denenmesi. Makine Teknolojileri Elektronik Dergisi, 3, 11-23.
  • [31] Kwon, S.K., Mun, S.P. (2008). Development of induction heater hot water system using new active clamping quasi resonant ZVS PWM inverter. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 22(11), 23-29.
  • [32] Sadakata, H., Nakaoka, M., Yamashita, H., Omori, H., Terai, H. (2002). Development of induction heated hot water producer using soft switching PWM high frequency inverter. Power Conversion Conference, April 2-5, 2002, Osaka, Japan, Book of Proceedings, 2, 452-455p.
  • [33] Altıntaş, A., Yıldız, M.N., Kızılkaya, İ. (2012). İndüksiyon Isıtma prensibi ile çalışan mikrokontrol denetimli bir sıvı ısıtıcısı tasarımı. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29, 45-52.
  • [34] Sastry, S.K. (1992). A model for heating of liquid‐particle mixtures in a continuous flow ohmic heater. Journal of Food Process Engineering, 15(4), 263-278.
  • [35] Zhang, L., Fryer, P.J. (1993). Models for the electrical heating of solid-liquid food mixtures. Chemical Engineering Science, 48(4), 633-642.
  • [36] Zhang, L., Fryer, P.J. (1994). Food sterilization by electrical heating: sensitivity to process parameters. AIChE journal, 40(5), 888-898.
  • [37] Quarini, G.L. (1995). Thermalhydraulic aspects of the ohmic heating process. Journal of Food Engineering, 24(4), 561-574.
  • [38] Stirling, R. (1987). Ohmic heating-a new process for the food industry. Power Engineering Journal, 1(6), 365-371.
  • [39] Qihua, T., Jindal, V.K., Van Winden, J. (1993). Design and performance evaluation of an ohmic heating unit for liquid foods. Computers and Electronics in Agriculture, 9(3), 243-253.
  • [40] Pataro, G., Donsì, G., Ferrari, G. (2011). Aseptic processing of apricots in syrup by means of a continuous pilot scale ohmic unit. LWT-Food Science and Technology, 44(6), 1546-1554.
  • [41] Kim, N.H., Ryang, J.H., Lee, B.S., Kim, C.T., Rhee, M.S. (2017). Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology, 246, 80-84.
  • [42] Lee, S.Y., Sagong, H.G., Ryu, S., Kang, D.H. (2012). Effect of continuous ohmic heating to inactivate Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Journal of Applied Microbiology, 112(4), 723-731.
  • [43] Leizerson, S., Shimoni, E. (2005). Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. Journal of Agricultural and Food Chemistry, 53(9), 3519-3524.
  • [44] Ayadi, M.A., Leuliet, J.C., Chopard, F., Berthou, M., Lebouche, M. (2004). Continuous ohmic heating unit under whey protein fouling. Innovative Food Science & Emerging Technologies, 5(4), 465-473.
  • [45] Ayadi, M.A., Leuliet, J.C., Chopard, F., Berthou, M., Lebouché, M. (2005). Experimental study of hydrodynamics in a flat ohmic cell—impact on fouling by dairy products. Journal of Food Engineering, 70(4), 489-498.
  • [46] Bansal, B., Chen, X.D. (2006). Effect of temperature and power frequency on milk fouling in an ohmic heater. Food and Bioproducts Processing, 84(4), 286-291.
  • [47] Stancl, J., Zitny, R. (2010). Milk fouling at direct ohmic heating. Journal of Food Engineering, 99(4), 437-444.
  • [48] Cernela, J., Heyd, B., Broyart, B. 2014. Evaluation of heating performances and associated variability of domestic cooking appliances (oven-baking and pan-frying). Applied Thermal Engineering 62(2): 758-765.
  • [49] Karunanithy, C., Shafer, K. (2016). Heat transfer characteristics and cooking efficiency of different sauce pans on various cooktops. Applied Thermal Engineering, 93, 1202-1215.
  • [50] Newborough, M., Probert, S.D., Newman, M., (1990). Thermal performances of induction, halogen and conventional electric catering hobs. Applied Energy, 37(1), 37-71.
  • [51] Sweeney, M., Dols, J., Fortenbery, B., Sharp, F., (2014). Induction cooking technology design and assessment. Small, 5, 800.
  • [52] Nunn, M.D., Giraud, D.W., Parkhurst, A.M., Hamouz, F.L., Driskell, J.A. (2006). Effects of cooking methods on sensory qualities and carotenoid retention in selected vegetables. Journal of food quality, 29(5), 445-457.
  • [53] Rajagopal, L., Giraud, D.W., Hamouz, F.L., Driskell, J.A. (2007). Carotenoid retention and sensory characteristics of selected vegetables prepared by induction stir‐frying. Journal of Food Quality, 30(5), 703-717.
  • [54] Bozkurt, H., Icier, F. (2010). Ohmic cooking of ground beef: Effects on quality. Journal of Food Engineering, 96(4), 481-490.
  • [55] Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J. (2009). Ohmic cooking of whole beef muscle–Optimisation of meat preparation. Meat Science, 81(4), 693-698.
  • [56] Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J. (2010). Ohmic cooking of whole beef muscle—evaluation of the impact of a novel rapid ohmic cooking method on product quality. Meat Science, 86(2), 258-263.
  • [57] De Halleux, D., Piette, G., Buteau, M.L., Dostie, M. (2005). Ohmic cooking of processed meats: Energy evaluation and food safety considerations. Canadian Biosystems Engineering, 47(3), 41-47.
  • [58] Icier, F., Sengun, I.Y., Turp, G.Y., Arserim, E.H. (2014). Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system. Meat Science, 96(3), 1345-1354.
  • [59] Sengun, I.Y., Turp, G.Y., Icier, F., Kendirci, P., Kor, G. (2014). Effects of ohmic heating for pre-cooking of meatballs on some quality and safety attributes. LWT-Food Science and Technology, 55(1), 232-239.
  • [60] Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10.
  • [61] Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies, 42, 16-24.
  • [62] Gally, T., Rouaud, O., Jury, V., Havet, M., Ogé, A., Le-Bail, A. (2017). Proofing of bread dough assisted by ohmic heating. Innovative Food Science & Emerging Technologies, 39, 55-62.
  • [63] Icier, F. (2010). Ohmic blanching effects on drying of vegetable byproduct. Journal of Food Process Engineering, 33(4), 661-683.
  • [64] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1-9.
  • [65] Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O.F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241-246.
  • [66] Sabanci, S., Icier, F. (2017). Applicability of ohmic heating assisted vacuum evaporation for concentration of sour cherry juice. Journal of Food Engineering, 212, 262-270.
  • [67] Gavahian, M., Farahnaky, A., Sastry, S. (2016). Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. Food and Bioproducts Processing, 98, 44-49.
  • [68] Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H.A., Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161.
  • [69] Bozkurt, H., Icier, F. (2012). Ohmic thawing of frozen beef cuts. Journal of Food Process Engineering, 35(1), 16-36.
  • [70] Park, J.W., Reed, Z.H. (2014). Effect of Ohmic Heating on Fish Proteins and Other Biopolymers. In Ohmic Heating in Food Processing, Edited by H.S. Ramaswamy, M. Marcotte, S. Sastry, K. Abdelrahim, CRC Press, Boca Raton, USA
  • [71] Mohammed, M. (2002). Method and apparatus of cooking food. U.S. Patent No. 20,040,197,451.
  • [72] Miyahara, K. (1990). Method of proparing foods by utilizing electric heating. U.S. Patent No. 4,971,819.

Comparison of the Applicability of Induction and Ohmic Heating Processes to Foods

Year 2019, , 111 - 120, 26.03.2019
https://doi.org/10.24323/akademik-gida.544844

Abstract

Interest on novel thermal technologies has been
steadily increased in recent years because of the some undesirable changes in
the quality characteristics of foods and the low energy efficiency during
conventional heating. Novel methods that meet customer expectations for
minimally processed and high-quality products and enable high energy efficiency
production can be alternative to conventional methods. In this review,
induction heating and ohmic heating processes, which are novel electrical heating
methods, are explained, and working principles and the differences between
their application areas are discussed. The studies on the continuous system
pipe line and cooking applications designed for both heating methods are presented.
Based on the food processing systems established for similar purposes, the
applicability of both heating methods to foods is compared, and their potential
application areas are suggested.

References

  • [1] Pereira, R.N., Vicente, A.A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936-1943.
  • [2] Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203-235.
  • [3] Rawson, A., Patras, A., Tiwari, B.K., Noci, F., Koutchma, T., Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International, 44(7), 1875-1887.
  • [4] Evrendilek, G.A., Baysal, T., Icier, F., Yildiz, H., Demirdoven, A., Bozkurt, H. (2012). Processing of fruits and fruit juices by novel electrotechnologies. Food Engineering Reviews, 4(1), 68-87.
  • [5] Aguilar-Rosas, S.F., Ballinas-Casarrubias, M.L., Nevarez-Moorillon, G.V., Martin-Belloso, O., Ortega-Rivas, E. (2007). Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. Journal of Food Engineering, 83(1), 41-46.
  • [6] Nikdel, S., Chen, C.S., Parish, M.E., MacKellar, D.G., Friedrich, L.M. (1993). Pasteurization of citrus juice with microwave energy in a continuous-flow unit. Journal of Agricultural and Food Chemistry, 41(11), 2116-2119.
  • [7] Vikram, V.B., Ramesh, M.N., Prapulla, S.G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31-40.
  • [8] Yildiz, H., Bozkurt, H., Icier, F. (2009). Ohmic and conventional heating of pomegranate juice: effects on rheology, color, and total phenolics. Revista de Agaroquimica y Tecnologia de Alimentos, 15(5), 503-512.
  • [9] Hartyáni, P., Dalmadi, I., Cserhalmi, Z., Kántor, D.B., Tóth-Markus, M., Sass-Kiss, Á. (2011). Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies, 12(3), 255-260.
  • [10] Bozkır, H., Baysal, T., Ergün, A. R. (2014). Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri. Academic Food Journal/Akademik GIDA, 12(3).
  • [11] Çokgezme, Ö. F., & İçier, F. (2016). Dondurulmuş Gıdaların Çözündürülmesinde Alternatif Bir Yöntem: Ohmik Çözündürme. Academic Food Journal/Akademik Gida, 14(2).
  • [12] Dereci, S. (2010). İndüksiyonla Isıtma Sistemlerinin İncelenmesi ve Bir Uygulama Devresinin Gerçekleştirilmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul
  • [13] Öncü, S. (2005). Bir Fazlı Yüksek Verimli Ev Tipi Bir İndüksiyon Isıtma Sistemi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli
  • [14] Anonymous, “Opinions on Induction heating”, http://www.writeopinions.com/induction-heating (Erişim Tarihi, 11.12.2017)
  • [15] Tokgöz, S. (2011). Elektromanyetik İndüksiyona Karşı Katı Cisimlerin Davranışı ve Sıcaklık Kontrolü, Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta
  • [16] Lucía, O., Maussion, P., Dede, E.J., Burdío, J.M. (2014). Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics, 61(5), 2509-2520.
  • [17] Sadhu, P.K., Pal, N., Bandyopadhyay, A., Sinha, D. (2010). Review of induction cooking-a health hazards free tool to improve energy efficiency as compared to microwave oven. The 2nd International Conference on Computer and Automation Engineering (ICCAE), February 26-28, 2010, Singapore, Book of Proceedings, 5, 650-654p.
  • [18] Gisslen, W. (2007). Professional cooking. John Wiley & Sons,Inc., New Jersey, USA.
  • [19] Ito, A., Shinkai, M., Honda, H., Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1-11.
  • [20] Mohring, J.U., Wrona E. (2011). Development of Customized Solutions - an Interesting Challenge of Modern Induction Heating. Advances in Induction and Microwave Heating of Mineral and Organic Materials, Edited by S. Grundas, InTech, Rijeka, Croatia, 125p.
  • [21] Baysal, T., İçier, F., Baysal, H.A. (2011). Güncel Elektriksel Isıtma Yöntemleri. Sidas Medya Yayınları, Çankaya, İzmir.
  • [22] Sharma, S., “Ohmic heating”, http://foodpathshala.ning.com/profiles/blogs/ohmic-heating (Erişim Tarihi, 11.12.2017)
  • [23] Varghese, K.S., Pandey, M.C., Radhakrishna, K., Bawa, A.S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of Food Science and Technology, 51(10), 2304-2317.
  • [24] Icier, F., Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International, 38(10), 1135-1142.
  • [25] Icıer, F., Ilıcalı, C. (2004). Electrical conductivity of apple and sourcherry juice concentrates during ohmic heating. Journal of Food Process Engineering, 27(3), 159-180.
  • [26] Kaur, N., Singh, A.K. (2016). Ohmic Heating: Concept and Applications - A Review. Critical Reviews in Food Science and Nutrition, 56(14), 2338-2351. [27] FDA. (2001). Kinetics of Microbial Inactivation for Alternative Food Processing Technologies: Ohmic and Inductive Heating.
  • [28] Curran, J.S., Featherstone, A.M. (1988). Electric-induction fluid heaters. Power Engineering Journal, 2(3), 157-160.
  • [29] Kaneda, M., Hishikawa, S., Tamaka, T., Guo, B., Nakaoka, M. (1999). Innovative electromagnetic induction eddy current-based dual packs heater using voltage-fed high-frequency PWM resonant inverter for continuous fluid processing in pipeline. The 25th Annual Conference of the IEEE Industrial Electronics Society, 29 November - 3 December, 1999, California, USA, Book of Proceedings, 2, 797-802p.
  • [30] Yıldız, M.N., İrfan, A. (2006). 2, 2kW’lık indüksiyonlu sıvı ısıtıcı tasarımı ve denenmesi. Makine Teknolojileri Elektronik Dergisi, 3, 11-23.
  • [31] Kwon, S.K., Mun, S.P. (2008). Development of induction heater hot water system using new active clamping quasi resonant ZVS PWM inverter. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 22(11), 23-29.
  • [32] Sadakata, H., Nakaoka, M., Yamashita, H., Omori, H., Terai, H. (2002). Development of induction heated hot water producer using soft switching PWM high frequency inverter. Power Conversion Conference, April 2-5, 2002, Osaka, Japan, Book of Proceedings, 2, 452-455p.
  • [33] Altıntaş, A., Yıldız, M.N., Kızılkaya, İ. (2012). İndüksiyon Isıtma prensibi ile çalışan mikrokontrol denetimli bir sıvı ısıtıcısı tasarımı. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29, 45-52.
  • [34] Sastry, S.K. (1992). A model for heating of liquid‐particle mixtures in a continuous flow ohmic heater. Journal of Food Process Engineering, 15(4), 263-278.
  • [35] Zhang, L., Fryer, P.J. (1993). Models for the electrical heating of solid-liquid food mixtures. Chemical Engineering Science, 48(4), 633-642.
  • [36] Zhang, L., Fryer, P.J. (1994). Food sterilization by electrical heating: sensitivity to process parameters. AIChE journal, 40(5), 888-898.
  • [37] Quarini, G.L. (1995). Thermalhydraulic aspects of the ohmic heating process. Journal of Food Engineering, 24(4), 561-574.
  • [38] Stirling, R. (1987). Ohmic heating-a new process for the food industry. Power Engineering Journal, 1(6), 365-371.
  • [39] Qihua, T., Jindal, V.K., Van Winden, J. (1993). Design and performance evaluation of an ohmic heating unit for liquid foods. Computers and Electronics in Agriculture, 9(3), 243-253.
  • [40] Pataro, G., Donsì, G., Ferrari, G. (2011). Aseptic processing of apricots in syrup by means of a continuous pilot scale ohmic unit. LWT-Food Science and Technology, 44(6), 1546-1554.
  • [41] Kim, N.H., Ryang, J.H., Lee, B.S., Kim, C.T., Rhee, M.S. (2017). Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology, 246, 80-84.
  • [42] Lee, S.Y., Sagong, H.G., Ryu, S., Kang, D.H. (2012). Effect of continuous ohmic heating to inactivate Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Journal of Applied Microbiology, 112(4), 723-731.
  • [43] Leizerson, S., Shimoni, E. (2005). Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. Journal of Agricultural and Food Chemistry, 53(9), 3519-3524.
  • [44] Ayadi, M.A., Leuliet, J.C., Chopard, F., Berthou, M., Lebouche, M. (2004). Continuous ohmic heating unit under whey protein fouling. Innovative Food Science & Emerging Technologies, 5(4), 465-473.
  • [45] Ayadi, M.A., Leuliet, J.C., Chopard, F., Berthou, M., Lebouché, M. (2005). Experimental study of hydrodynamics in a flat ohmic cell—impact on fouling by dairy products. Journal of Food Engineering, 70(4), 489-498.
  • [46] Bansal, B., Chen, X.D. (2006). Effect of temperature and power frequency on milk fouling in an ohmic heater. Food and Bioproducts Processing, 84(4), 286-291.
  • [47] Stancl, J., Zitny, R. (2010). Milk fouling at direct ohmic heating. Journal of Food Engineering, 99(4), 437-444.
  • [48] Cernela, J., Heyd, B., Broyart, B. 2014. Evaluation of heating performances and associated variability of domestic cooking appliances (oven-baking and pan-frying). Applied Thermal Engineering 62(2): 758-765.
  • [49] Karunanithy, C., Shafer, K. (2016). Heat transfer characteristics and cooking efficiency of different sauce pans on various cooktops. Applied Thermal Engineering, 93, 1202-1215.
  • [50] Newborough, M., Probert, S.D., Newman, M., (1990). Thermal performances of induction, halogen and conventional electric catering hobs. Applied Energy, 37(1), 37-71.
  • [51] Sweeney, M., Dols, J., Fortenbery, B., Sharp, F., (2014). Induction cooking technology design and assessment. Small, 5, 800.
  • [52] Nunn, M.D., Giraud, D.W., Parkhurst, A.M., Hamouz, F.L., Driskell, J.A. (2006). Effects of cooking methods on sensory qualities and carotenoid retention in selected vegetables. Journal of food quality, 29(5), 445-457.
  • [53] Rajagopal, L., Giraud, D.W., Hamouz, F.L., Driskell, J.A. (2007). Carotenoid retention and sensory characteristics of selected vegetables prepared by induction stir‐frying. Journal of Food Quality, 30(5), 703-717.
  • [54] Bozkurt, H., Icier, F. (2010). Ohmic cooking of ground beef: Effects on quality. Journal of Food Engineering, 96(4), 481-490.
  • [55] Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J. (2009). Ohmic cooking of whole beef muscle–Optimisation of meat preparation. Meat Science, 81(4), 693-698.
  • [56] Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J. (2010). Ohmic cooking of whole beef muscle—evaluation of the impact of a novel rapid ohmic cooking method on product quality. Meat Science, 86(2), 258-263.
  • [57] De Halleux, D., Piette, G., Buteau, M.L., Dostie, M. (2005). Ohmic cooking of processed meats: Energy evaluation and food safety considerations. Canadian Biosystems Engineering, 47(3), 41-47.
  • [58] Icier, F., Sengun, I.Y., Turp, G.Y., Arserim, E.H. (2014). Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system. Meat Science, 96(3), 1345-1354.
  • [59] Sengun, I.Y., Turp, G.Y., Icier, F., Kendirci, P., Kor, G. (2014). Effects of ohmic heating for pre-cooking of meatballs on some quality and safety attributes. LWT-Food Science and Technology, 55(1), 232-239.
  • [60] Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10.
  • [61] Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies, 42, 16-24.
  • [62] Gally, T., Rouaud, O., Jury, V., Havet, M., Ogé, A., Le-Bail, A. (2017). Proofing of bread dough assisted by ohmic heating. Innovative Food Science & Emerging Technologies, 39, 55-62.
  • [63] Icier, F. (2010). Ohmic blanching effects on drying of vegetable byproduct. Journal of Food Process Engineering, 33(4), 661-683.
  • [64] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1-9.
  • [65] Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O.F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241-246.
  • [66] Sabanci, S., Icier, F. (2017). Applicability of ohmic heating assisted vacuum evaporation for concentration of sour cherry juice. Journal of Food Engineering, 212, 262-270.
  • [67] Gavahian, M., Farahnaky, A., Sastry, S. (2016). Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. Food and Bioproducts Processing, 98, 44-49.
  • [68] Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H.A., Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161.
  • [69] Bozkurt, H., Icier, F. (2012). Ohmic thawing of frozen beef cuts. Journal of Food Process Engineering, 35(1), 16-36.
  • [70] Park, J.W., Reed, Z.H. (2014). Effect of Ohmic Heating on Fish Proteins and Other Biopolymers. In Ohmic Heating in Food Processing, Edited by H.S. Ramaswamy, M. Marcotte, S. Sastry, K. Abdelrahim, CRC Press, Boca Raton, USA
  • [71] Mohammed, M. (2002). Method and apparatus of cooking food. U.S. Patent No. 20,040,197,451.
  • [72] Miyahara, K. (1990). Method of proparing foods by utilizing electric heating. U.S. Patent No. 4,971,819.
There are 71 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Orhan Kaya This is me 0000-0001-7602-4736

Filiz İçier 0000-0002-9555-3390

Publication Date March 26, 2019
Submission Date December 12, 2017
Published in Issue Year 2019

Cite

APA Kaya, O., & İçier, F. (2019). İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması. Akademik Gıda, 17(1), 111-120. https://doi.org/10.24323/akademik-gida.544844
AMA Kaya O, İçier F. İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması. Akademik Gıda. March 2019;17(1):111-120. doi:10.24323/akademik-gida.544844
Chicago Kaya, Orhan, and Filiz İçier. “İndüksiyon Ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması”. Akademik Gıda 17, no. 1 (March 2019): 111-20. https://doi.org/10.24323/akademik-gida.544844.
EndNote Kaya O, İçier F (March 1, 2019) İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması. Akademik Gıda 17 1 111–120.
IEEE O. Kaya and F. İçier, “İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması”, Akademik Gıda, vol. 17, no. 1, pp. 111–120, 2019, doi: 10.24323/akademik-gida.544844.
ISNAD Kaya, Orhan - İçier, Filiz. “İndüksiyon Ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması”. Akademik Gıda 17/1 (March 2019), 111-120. https://doi.org/10.24323/akademik-gida.544844.
JAMA Kaya O, İçier F. İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması. Akademik Gıda. 2019;17:111–120.
MLA Kaya, Orhan and Filiz İçier. “İndüksiyon Ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması”. Akademik Gıda, vol. 17, no. 1, 2019, pp. 111-20, doi:10.24323/akademik-gida.544844.
Vancouver Kaya O, İçier F. İndüksiyon ve Ohmik Isıtma İşlemlerinin Gıdalara Uygulanabilirliğinin Karşılaştırılması. Akademik Gıda. 2019;17(1):111-20.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).