Review
BibTex RIS Cite

Mung Bean (Vigna radiata L.) and Its Potential Use in Gluten-free Foods

Year 2019, , 546 - 552, 31.12.2019
https://doi.org/10.24323/akademik-gida.667273

Abstract

Supporting and enriching the diets of celiac individuals with basic nutrients and creating new food alternatives are important for improving their quality of life. Due to the functional properties and potential to improve the nutritional profile of gluten-free products, the use of legume flour or its components in gluten-free product formulations is recommended. In this study, physical, chemical and functional properties of mung beans are reviewed. With its high nutritional content, superior functional properties (foaming, water and oil absorption, gelling), antioxidant capacity and good digestibility properties, it has been shown that mung bean pose a high potential to be used in gluten-free foods for celiac individuals.

References

  • [1] Fasano, A., Catassi, C. (2012). Celiac disease. New England Journal of Medicine, 367(25), 2419–2426.
  • [2] Niewinski, M.M. (2008). Advances in celiac disease and gluten-free diet. Journal of the American Dietetic Association, 108(4), 661–672.
  • [3] Rodrigo, L. (2006). Celiac disease. World Journal of Gastroenterol, 12(41), 6585–6593.
  • [4] T.C. Sağlık Bakanlığı. (2019). Erişkin Bazı Metabolizma Hastalıkları (Tiroid, Osteoporoz, Gut) ve Çölyak Hastalığı Kontrol Programı, 2019-2023, Ankara.
  • [5] Kang, J.Y., Kang, A.H.Y., Green, A., Gwee, K.A., Ho, K.Y. (2013). Systematic review: Worldwide variation in the frequency of coeliac disease and changes over time. Alimentary Pharmacology and Therapeutics, 38(3), 226–245.
  • [6] Catassi, C., Fasano, A. (2008). Celiac Disease. In: Gluten-Free Cereal Products and Beverages, Edited by E.K. Arendt, F.D. Bello, Academic Press Inc. (London) Limited, London,1–27 p.
  • [7] Türksoy, S. (2006). Gluten ve çölyak hastalığı. Türkiye 9. Gıda Kongresi, Bolu, 807-810p.
  • [8] İşleroğlu, H., Dirim, S.N., Ertekin, F.K. (2009). Gluten içermeyen, hububat esaslı alternati̇f ürün formülasyonları ve üretim teknolojileri. Gıda, 34(1), 29–36.
  • [9] FAO (2008). Standard for foods for special dietary use for persons intolerant to gluten. Codex Standard 118-1979. Adopted in 1979. Revision: 2008. Codex Alimentarius, International Food Standards. 118–1979.
  • [10] Anonim (2012). Türk Gıda Kodeksi Yönetmeliği “Gluten İntoleransı Olan Bireylere Uygun Gıdalar Tebliği”. Tebliğ No: 2012/4, RG: 28163.
  • [11] Pellegrini, N., Agostoni, C. (2015). Nutritional aspects of gluten-free products. Journal of the Science of Food and Agriculture, 95(12), 2380–2385.
  • [12] Bouasla, A., Wójtowicz, A., Zidoune, M.N. (2017). Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT - Food Science and Technology, 75, 569–577.
  • [13] Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In: Gluten-Free Cereal Products and Beverages, Edited by E.K. Arendt, F.D. Bello, Academic Press Inc. (London) Limited, 149–190 p.
  • [14] Alvarez-Jubete, L., Arendt, E.K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21(2), 106–113.
  • [15] Foschia, M., Horstmann, S.W., Arendt, E.K., Zannini, E. (2017). Legumes as functional ingredients in gluten-free bakery and pasta products. Annual Review of Food Science and Technology, 8(1), 75–96.
  • [16] Gularte, M.A., Gómez, M., Rosell, C.M. (2012). Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food and Bioprocess Technology, 5(8), 3142–3150.
  • [17] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik baklagillerin besleyici değerleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(2), 110–120.
  • [18] Sarıoğlu, G., Velioğlu, Y.S. (2018). Baklagillerin Bileşimi. Akademik Gıda, 16(4), 483–496.
  • [19] Bazzano, L.A., Thompson, A.M., Tees, M.T., Nguyen, C.H., Winham, D.M. (2011). Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(2), 94–103.
  • [20] Hu, F.B. (2003). Plant-based foods and prevention of cardiovascular disease: An overview. American Journal of Clinical Nutrition, 78 (3 SUPPL.), 544–551.
  • [21] Tharanathan, R.N., Mahadevamma, S. (2003). Grain legumes - A boon to human nutrition. Trends in Food Science and Technology, 14(12), 507–518.
  • [22] Herranz, B., Canet, W., Jiménez, M.J., Fuentes, R., Alvarez, M.D. (2016). Characterisation of chickpea flour-based gluten-free batters and muffins with added biopolymers: Rheological, physical and sensory properties. International Journal of Food Science and Technology, 51(5), 1087–1098.
  • [23] Rocchetti, G., Lucini, L., Rodriguez, J.M.L., Barba, F.J., Giuberti, G. (2019). Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chemistry, 271, 157–164.
  • [24] Boukid, F., Vittadini, E., Lusuardi, F., Ganino, T., Carini, E., Morreale, F., Pellegrini, N. (2019). Does cell wall integrity in legumes flours modulate physiochemical quality and in vitro starch hydrolysis of gluten-free bread? Journal of Functional Foods, 59, 110–118.
  • [25] Ruan, Z., Zhang, C., Sun-Waterhouse, D., Li, B., Li, D. (2019). Chiffon cakes made using wheat flour with/without substitution by highland barley powder or mung bean flour: Correlations among ingredient heat absorption enthalpy, batter rheology, and cake porosity. Food and Bioprocess Technology, 12(7), 1232–1243.
  • [26] Imran, S., Kalsoom, S., Nagra, S.A. (2016). The impact of formulated gluten free flour on the dietary pattern of celiac pakistani patients. Pakistan Journal of Zoology, 48(2), 415–422.
  • [27] Kittipongpatana, O.S., Sirithunyalug, J., Laenger, R. (2006). Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydrate Polymers, 63(1), 105–112.
  • [28] Tian, Q., Zhang, W., Li, Q., Van, T., Li, N., Dai, S., Pu, Y., Ding, H. (2017). Research progress of quality characteristics and comprehensive utilization of mung beans. Agricultural Science &Technology, 18, 127–133.
  • [29] Canci, H., Toker, C. (2014). Yield components in mung bean [Vigna radiata (L.) Wilczek]. Turkish Journal of Field Crops, 19(2), 258–261.
  • [30] Pekşen, E., Toker, C., Ceylan, F.Ö., Aziz, T., Farooq, M. (2015). Determination of promising high yielded mungbean (Vigna radiata (L.) Wilczek) genotypes under Middle Black Sea Region of Turkey. Anadolu Journal of Agricultural Sciences, 30(2), 169-175.
  • [31] Toker, C., Çancı, H., Haq, M.A., Çağırgan, M.İ. (2002). Evaluation for agronomic, morphologic and phenologic characters of mung bean [Vigna Radiata (L.) Wilczek] genotypes in the Lowland of the West Mediter. Turkish Journal of Field Crops, 7(2), 78–83.
  • [32] Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A.J.S., Khetarpaul, N., Grewal, R.B., Nout, M.J.R. (2015). Mung bean: Technological and nutritional potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688.
  • [33] Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313.
  • [34] Nair, R.M., Yang, R.Y., Easdown, W.J., Thavarajah, D., Thavarajah, P., Hughes, Keatinge, J.D.H. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 93(8), 1805–1813.
  • [35] Shi, Z., Yao, Y., Zhu, Y., Ren, G. (2016). Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop Journal, 4(5), 398–406.
  • [36] Yi-Shen, Z., Shuai, S., Fitzgerald, R. (2018). Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food and Nutrition Research, 62, 1–12.
  • [37] Seczyk, L., Swieca, M., Gawlik-Dziki, U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chemistry, 194, 637–642.
  • [38] Sciarini, L.S., Ribotta, P.D., León, A.E., Pérez, G.T. (2010). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3(4), 577–585.
  • [39] Ryan, K.J., Homco-Ryan, C.L., Jenson, J., Robbins, K.L., Prestat, C., Brewer, M.S. (2002). Lipid extraction process on texturized soy flour and wheat gluten protein-protein interactions in a dough matrix. Cereal Chemistry, 79(3), 434–438.
  • [40] Hoover, R., Li, Y.X., Hynes, G., Senanayake, N. (1997). Physicochemical characterization of mung bean starch. Food Hydrocolloids, 11(4), 401–408.
  • [41] Kaur, M., Sandhu, K.S., Singh, N., Lim, S.T. (2011). Amylose content, molecular structure, physicochemical properties and in vitro digestibility of starches from different mung bean (Vigna radiata L.) cultivars. Starch/Staerke, 63(11), 709–716.
  • [42] Liu, W., Shen, Q. (2007). Studies on the physicochemical properties of mung bean starch from sour liquid processing and centrifugation. Journal of Food Engineering, 79(1), 358–363.
  • [43] Sharma, C., Singh, B., Hussain, S.Z., Sharma, S. (2017). Investigation of process and product parameters for physicochemical properties of rice and mung bean (Vigna radiata) flour based extruded snacks. Journal of Food Science and Technology, 54(6), 1711–1720.
  • [44] Wu, F., Meng, Y., Yang, N., Tao, H., Xu, X. (2015). Effects of mung bean starch on quality of rice noodles made by direct dry flour extrusion. LWT - Food Science and Technology, 63(2), 1199–1205.
  • [45] Nakorn, K.N., Tongdang, T., Sirivongpaisal, P. (2009). Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Staerke, 61(2), 101–108.
  • [46] Chinnaswamy, R., Hanna, M.A. (1990). Macromolecular and functional properties of native and extrusion-cooked corn starch. Cereal Chemistry, 67(5), 490–499.
  • [47] Thompson, T., Dennis, M., Higgins, L.A., Lee, A.R., Sharrett, M.K. (2005). Gluten-free diet survey: are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? Journal of Human Nutrition and Dietetics, 18(3), 163–169.
  • [48] Anwar, F., Latif, S., Przybylski, R., Sultana, B., Ashraf, M. (2007). Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science, 72(7), 503–510.
  • [49] Fasano, A., Catassi, C. (2001). Current approaches to diagnosis and treatment of celiac disease: An evolving spectrum. Gastroenterology, 120(3), 636–651.
  • [50] Sabanis, D., Lebesi, D., Tzia, C. (2009). Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT - Food Science and Technology, 42(8), 1380–1389.
  • [51] Kritchevsky, D., Bonfield, C., Walker, A.R.P. (1997). Dietary fiber in health and disease. 1997,Springer, US.
  • [52] Ramsden, L. (2004). Grains other than cereals nonstrach polyshacarides. In: Encyclopedia of Grain Science, Edited by C. Colin Wrigley, Harold Corke, E.Walker, Australia,55–61 p.
  • [53] Chandrasiri, S.D., Liyanage, R., Vidanarachchi, J.K., Weththasinghe, P., Jayawardana, B.C. (2016). Does processing have a considerable effect on the nutritional and functional properties of mung bean (Vigna radiata)? Procedia Food Science, 6, 352–355.
  • [54] Zhang, X., Shang, P., Qin, F., Zhou, Q., Gao, B., Huang, H., Yang, H., Shi, H., Yu, L. (2013). Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT - Food Science and Technology, 54(1), 171–178.
  • [55] Kim, J.K., Kim, E.H., Lee, O.K., Park, S.Y., Lee, B., Kim, S.H., Park, I., Chung, I. (2013). Variation and correlation analysis of phenolic compounds in mungbean (Vigna radiata L.) varieties. Food Chemistry, 141(3), 2988–2997.
  • [56] Gan, R.Y., Lui, W.Y., Chan, C.L., Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of Food Processing and Preservation, 41(1), 1-8.
  • [57] Luo, J., Cai, W., Wu, T., Xu, B. (2016). Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry, 201, 350–360.
  • [58] Sandhu, K.S., Lim, S.T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71(2), 245–252.
  • [59] Nair, R.M., Thavarajah, D., Thavarajah, P., Giri, R.R., Ledesma, D., Yang, R.Y., Hanson, P., Easdown, W., Hughes, J., Keatinge, J.D.H. (2015). Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. Journal of Food Composition and Analysis, 39, 23–32.
  • [60] Lee, J.H., Jeon, J.K., Kim, S.G., Kim, S.H., Chun, T., Imm, J.Y. (2011). Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. International Journal of Food Science and Technology, 46(12), 2513–2519.
  • [61] Onwurafor, E.U., Onweluzo, J.C., Ezeoke, A.M. (2014). Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Nigerian Food Journal, 32(1), 89–96.
  • [62] Liu, H., Liu, H., Yan, L., Cheng, X., Kang, Y. (2015). Functional properties of 8S globulin fractions from 15 mung bean (Vigna radiata (L.) Wilczek) cultivars. International Journal of Food Science and Technolog, 50(5), 1206–1214.
  • [63] Chandra, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8(38), 4849–4852.
  • [64] Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of mung bean protein. Food Hydrocolloids, 76, 131–140.

Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli

Year 2019, , 546 - 552, 31.12.2019
https://doi.org/10.24323/akademik-gida.667273

Abstract

Çölyaklı (gluten enteropatisi) bireylerin diyetlerinin temel besin öğelerince desteklenmesi, zenginleştirilmesi ve yeni formdaki gıda alternatiflerinin yaratılması yaşam kalitelerinin artırılması açısından önem arz etmektedir. Fonksiyonel özellikleri ve glutensiz ürünlerin besinsel profilini iyileştirme potansiyelleri nedeniyle baklagil, un ve bileşenlerinin glutensiz ürün formulasyonlarında kullanımı önerilmektedir. Bu çalışmada maş fasulyesinin fiziksel, kimyasal ve fonksiyonel özellikleri derlenmiştir. Yüksek besinsel içeriği, üstün fonksiyonel özellikleri (köpüklenme, su ve yağ absorblama, jelleşme), antioksidan kapasitesi ve iyi sindirilebilirlik gibi nitelikleri açısından maş fasulyesinin çölyaklı bireyler için glutensiz gıdalarda kullanım potansiyelinin yüksek olduğu ortaya konmuştur.

References

  • [1] Fasano, A., Catassi, C. (2012). Celiac disease. New England Journal of Medicine, 367(25), 2419–2426.
  • [2] Niewinski, M.M. (2008). Advances in celiac disease and gluten-free diet. Journal of the American Dietetic Association, 108(4), 661–672.
  • [3] Rodrigo, L. (2006). Celiac disease. World Journal of Gastroenterol, 12(41), 6585–6593.
  • [4] T.C. Sağlık Bakanlığı. (2019). Erişkin Bazı Metabolizma Hastalıkları (Tiroid, Osteoporoz, Gut) ve Çölyak Hastalığı Kontrol Programı, 2019-2023, Ankara.
  • [5] Kang, J.Y., Kang, A.H.Y., Green, A., Gwee, K.A., Ho, K.Y. (2013). Systematic review: Worldwide variation in the frequency of coeliac disease and changes over time. Alimentary Pharmacology and Therapeutics, 38(3), 226–245.
  • [6] Catassi, C., Fasano, A. (2008). Celiac Disease. In: Gluten-Free Cereal Products and Beverages, Edited by E.K. Arendt, F.D. Bello, Academic Press Inc. (London) Limited, London,1–27 p.
  • [7] Türksoy, S. (2006). Gluten ve çölyak hastalığı. Türkiye 9. Gıda Kongresi, Bolu, 807-810p.
  • [8] İşleroğlu, H., Dirim, S.N., Ertekin, F.K. (2009). Gluten içermeyen, hububat esaslı alternati̇f ürün formülasyonları ve üretim teknolojileri. Gıda, 34(1), 29–36.
  • [9] FAO (2008). Standard for foods for special dietary use for persons intolerant to gluten. Codex Standard 118-1979. Adopted in 1979. Revision: 2008. Codex Alimentarius, International Food Standards. 118–1979.
  • [10] Anonim (2012). Türk Gıda Kodeksi Yönetmeliği “Gluten İntoleransı Olan Bireylere Uygun Gıdalar Tebliği”. Tebliğ No: 2012/4, RG: 28163.
  • [11] Pellegrini, N., Agostoni, C. (2015). Nutritional aspects of gluten-free products. Journal of the Science of Food and Agriculture, 95(12), 2380–2385.
  • [12] Bouasla, A., Wójtowicz, A., Zidoune, M.N. (2017). Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT - Food Science and Technology, 75, 569–577.
  • [13] Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. In: Gluten-Free Cereal Products and Beverages, Edited by E.K. Arendt, F.D. Bello, Academic Press Inc. (London) Limited, 149–190 p.
  • [14] Alvarez-Jubete, L., Arendt, E.K., Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21(2), 106–113.
  • [15] Foschia, M., Horstmann, S.W., Arendt, E.K., Zannini, E. (2017). Legumes as functional ingredients in gluten-free bakery and pasta products. Annual Review of Food Science and Technology, 8(1), 75–96.
  • [16] Gularte, M.A., Gómez, M., Rosell, C.M. (2012). Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food and Bioprocess Technology, 5(8), 3142–3150.
  • [17] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik baklagillerin besleyici değerleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(2), 110–120.
  • [18] Sarıoğlu, G., Velioğlu, Y.S. (2018). Baklagillerin Bileşimi. Akademik Gıda, 16(4), 483–496.
  • [19] Bazzano, L.A., Thompson, A.M., Tees, M.T., Nguyen, C.H., Winham, D.M. (2011). Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(2), 94–103.
  • [20] Hu, F.B. (2003). Plant-based foods and prevention of cardiovascular disease: An overview. American Journal of Clinical Nutrition, 78 (3 SUPPL.), 544–551.
  • [21] Tharanathan, R.N., Mahadevamma, S. (2003). Grain legumes - A boon to human nutrition. Trends in Food Science and Technology, 14(12), 507–518.
  • [22] Herranz, B., Canet, W., Jiménez, M.J., Fuentes, R., Alvarez, M.D. (2016). Characterisation of chickpea flour-based gluten-free batters and muffins with added biopolymers: Rheological, physical and sensory properties. International Journal of Food Science and Technology, 51(5), 1087–1098.
  • [23] Rocchetti, G., Lucini, L., Rodriguez, J.M.L., Barba, F.J., Giuberti, G. (2019). Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chemistry, 271, 157–164.
  • [24] Boukid, F., Vittadini, E., Lusuardi, F., Ganino, T., Carini, E., Morreale, F., Pellegrini, N. (2019). Does cell wall integrity in legumes flours modulate physiochemical quality and in vitro starch hydrolysis of gluten-free bread? Journal of Functional Foods, 59, 110–118.
  • [25] Ruan, Z., Zhang, C., Sun-Waterhouse, D., Li, B., Li, D. (2019). Chiffon cakes made using wheat flour with/without substitution by highland barley powder or mung bean flour: Correlations among ingredient heat absorption enthalpy, batter rheology, and cake porosity. Food and Bioprocess Technology, 12(7), 1232–1243.
  • [26] Imran, S., Kalsoom, S., Nagra, S.A. (2016). The impact of formulated gluten free flour on the dietary pattern of celiac pakistani patients. Pakistan Journal of Zoology, 48(2), 415–422.
  • [27] Kittipongpatana, O.S., Sirithunyalug, J., Laenger, R. (2006). Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydrate Polymers, 63(1), 105–112.
  • [28] Tian, Q., Zhang, W., Li, Q., Van, T., Li, N., Dai, S., Pu, Y., Ding, H. (2017). Research progress of quality characteristics and comprehensive utilization of mung beans. Agricultural Science &Technology, 18, 127–133.
  • [29] Canci, H., Toker, C. (2014). Yield components in mung bean [Vigna radiata (L.) Wilczek]. Turkish Journal of Field Crops, 19(2), 258–261.
  • [30] Pekşen, E., Toker, C., Ceylan, F.Ö., Aziz, T., Farooq, M. (2015). Determination of promising high yielded mungbean (Vigna radiata (L.) Wilczek) genotypes under Middle Black Sea Region of Turkey. Anadolu Journal of Agricultural Sciences, 30(2), 169-175.
  • [31] Toker, C., Çancı, H., Haq, M.A., Çağırgan, M.İ. (2002). Evaluation for agronomic, morphologic and phenologic characters of mung bean [Vigna Radiata (L.) Wilczek] genotypes in the Lowland of the West Mediter. Turkish Journal of Field Crops, 7(2), 78–83.
  • [32] Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A.J.S., Khetarpaul, N., Grewal, R.B., Nout, M.J.R. (2015). Mung bean: Technological and nutritional potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688.
  • [33] Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313.
  • [34] Nair, R.M., Yang, R.Y., Easdown, W.J., Thavarajah, D., Thavarajah, P., Hughes, Keatinge, J.D.H. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 93(8), 1805–1813.
  • [35] Shi, Z., Yao, Y., Zhu, Y., Ren, G. (2016). Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop Journal, 4(5), 398–406.
  • [36] Yi-Shen, Z., Shuai, S., Fitzgerald, R. (2018). Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food and Nutrition Research, 62, 1–12.
  • [37] Seczyk, L., Swieca, M., Gawlik-Dziki, U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chemistry, 194, 637–642.
  • [38] Sciarini, L.S., Ribotta, P.D., León, A.E., Pérez, G.T. (2010). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3(4), 577–585.
  • [39] Ryan, K.J., Homco-Ryan, C.L., Jenson, J., Robbins, K.L., Prestat, C., Brewer, M.S. (2002). Lipid extraction process on texturized soy flour and wheat gluten protein-protein interactions in a dough matrix. Cereal Chemistry, 79(3), 434–438.
  • [40] Hoover, R., Li, Y.X., Hynes, G., Senanayake, N. (1997). Physicochemical characterization of mung bean starch. Food Hydrocolloids, 11(4), 401–408.
  • [41] Kaur, M., Sandhu, K.S., Singh, N., Lim, S.T. (2011). Amylose content, molecular structure, physicochemical properties and in vitro digestibility of starches from different mung bean (Vigna radiata L.) cultivars. Starch/Staerke, 63(11), 709–716.
  • [42] Liu, W., Shen, Q. (2007). Studies on the physicochemical properties of mung bean starch from sour liquid processing and centrifugation. Journal of Food Engineering, 79(1), 358–363.
  • [43] Sharma, C., Singh, B., Hussain, S.Z., Sharma, S. (2017). Investigation of process and product parameters for physicochemical properties of rice and mung bean (Vigna radiata) flour based extruded snacks. Journal of Food Science and Technology, 54(6), 1711–1720.
  • [44] Wu, F., Meng, Y., Yang, N., Tao, H., Xu, X. (2015). Effects of mung bean starch on quality of rice noodles made by direct dry flour extrusion. LWT - Food Science and Technology, 63(2), 1199–1205.
  • [45] Nakorn, K.N., Tongdang, T., Sirivongpaisal, P. (2009). Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Staerke, 61(2), 101–108.
  • [46] Chinnaswamy, R., Hanna, M.A. (1990). Macromolecular and functional properties of native and extrusion-cooked corn starch. Cereal Chemistry, 67(5), 490–499.
  • [47] Thompson, T., Dennis, M., Higgins, L.A., Lee, A.R., Sharrett, M.K. (2005). Gluten-free diet survey: are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? Journal of Human Nutrition and Dietetics, 18(3), 163–169.
  • [48] Anwar, F., Latif, S., Przybylski, R., Sultana, B., Ashraf, M. (2007). Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science, 72(7), 503–510.
  • [49] Fasano, A., Catassi, C. (2001). Current approaches to diagnosis and treatment of celiac disease: An evolving spectrum. Gastroenterology, 120(3), 636–651.
  • [50] Sabanis, D., Lebesi, D., Tzia, C. (2009). Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT - Food Science and Technology, 42(8), 1380–1389.
  • [51] Kritchevsky, D., Bonfield, C., Walker, A.R.P. (1997). Dietary fiber in health and disease. 1997,Springer, US.
  • [52] Ramsden, L. (2004). Grains other than cereals nonstrach polyshacarides. In: Encyclopedia of Grain Science, Edited by C. Colin Wrigley, Harold Corke, E.Walker, Australia,55–61 p.
  • [53] Chandrasiri, S.D., Liyanage, R., Vidanarachchi, J.K., Weththasinghe, P., Jayawardana, B.C. (2016). Does processing have a considerable effect on the nutritional and functional properties of mung bean (Vigna radiata)? Procedia Food Science, 6, 352–355.
  • [54] Zhang, X., Shang, P., Qin, F., Zhou, Q., Gao, B., Huang, H., Yang, H., Shi, H., Yu, L. (2013). Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT - Food Science and Technology, 54(1), 171–178.
  • [55] Kim, J.K., Kim, E.H., Lee, O.K., Park, S.Y., Lee, B., Kim, S.H., Park, I., Chung, I. (2013). Variation and correlation analysis of phenolic compounds in mungbean (Vigna radiata L.) varieties. Food Chemistry, 141(3), 2988–2997.
  • [56] Gan, R.Y., Lui, W.Y., Chan, C.L., Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of Food Processing and Preservation, 41(1), 1-8.
  • [57] Luo, J., Cai, W., Wu, T., Xu, B. (2016). Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry, 201, 350–360.
  • [58] Sandhu, K.S., Lim, S.T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71(2), 245–252.
  • [59] Nair, R.M., Thavarajah, D., Thavarajah, P., Giri, R.R., Ledesma, D., Yang, R.Y., Hanson, P., Easdown, W., Hughes, J., Keatinge, J.D.H. (2015). Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. Journal of Food Composition and Analysis, 39, 23–32.
  • [60] Lee, J.H., Jeon, J.K., Kim, S.G., Kim, S.H., Chun, T., Imm, J.Y. (2011). Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. International Journal of Food Science and Technology, 46(12), 2513–2519.
  • [61] Onwurafor, E.U., Onweluzo, J.C., Ezeoke, A.M. (2014). Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Nigerian Food Journal, 32(1), 89–96.
  • [62] Liu, H., Liu, H., Yan, L., Cheng, X., Kang, Y. (2015). Functional properties of 8S globulin fractions from 15 mung bean (Vigna radiata (L.) Wilczek) cultivars. International Journal of Food Science and Technolog, 50(5), 1206–1214.
  • [63] Chandra, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8(38), 4849–4852.
  • [64] Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of mung bean protein. Food Hydrocolloids, 76, 131–140.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Bilge Taşkın This is me 0000-0002-5209-8682

Publication Date December 31, 2019
Submission Date September 5, 2019
Published in Issue Year 2019

Cite

APA Taşkın, B. (2019). Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda, 17(4), 546-552. https://doi.org/10.24323/akademik-gida.667273
AMA Taşkın B. Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda. December 2019;17(4):546-552. doi:10.24323/akademik-gida.667273
Chicago Taşkın, Bilge. “Maş Fasulyesi (Vigna Radiata L.) Ve Glutensiz Gıdalarda Kullanım Potansiyeli”. Akademik Gıda 17, no. 4 (December 2019): 546-52. https://doi.org/10.24323/akademik-gida.667273.
EndNote Taşkın B (December 1, 2019) Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda 17 4 546–552.
IEEE B. Taşkın, “Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli”, Akademik Gıda, vol. 17, no. 4, pp. 546–552, 2019, doi: 10.24323/akademik-gida.667273.
ISNAD Taşkın, Bilge. “Maş Fasulyesi (Vigna Radiata L.) Ve Glutensiz Gıdalarda Kullanım Potansiyeli”. Akademik Gıda 17/4 (December 2019), 546-552. https://doi.org/10.24323/akademik-gida.667273.
JAMA Taşkın B. Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda. 2019;17:546–552.
MLA Taşkın, Bilge. “Maş Fasulyesi (Vigna Radiata L.) Ve Glutensiz Gıdalarda Kullanım Potansiyeli”. Akademik Gıda, vol. 17, no. 4, 2019, pp. 546-52, doi:10.24323/akademik-gida.667273.
Vancouver Taşkın B. Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda. 2019;17(4):546-52.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).