Research Article
BibTex RIS Cite

Isıl İşlemin Yenilebilir Kanatlı Yumurtalarındaki Protein Fraksiyonlarına Etkisi

Year 2020, , 233 - 240, 29.10.2020
https://doi.org/10.24323/akademik-gida.818076

Abstract

İçerisinde barındırdığı esansiyel amino asitler, vitaminler, mineraller ve enzimler ile yumurta insan beslenmesinde oldukça önemli bir yere sahiptir. Tavuk, bıldırcın, hindi ve kaz gibi yenilebilir kanatlı yumurtaları besin bileşiminde bazı farklılıklara sahiptir. Tüketimden önce uygulanan çeşitli ısıl işlemler özellikle proteinler olmak üzere yumurtaların içerisinde barındırdığı besinlerde bazı bileşimsel ve yapısal değişikliklere yol açabilmektedirler. Bu çalışmanın amacı rafadan (11-16 dk.), tam haşlanmış (18-19 dk.) ve sahanda pişirilmiş (2-7 dk.) tavuk, bıldırcın, hindi ve kaz yumurtalarının protein fraksiyonlarındaki bileşim ve yapısal değişikliklerin araştırılmasıdır. Bu ısıl işlemlerin yumurta beyazı ve sarısı proteinleri üzerine etkileri elektroforez ve spektroskopi kullanarak tespit edilmiştir. Yumurta beyazında sarısına oranla daha fazla ısıl degradasyon gözlenmiştir. Beklendiği gibi ısıl maruziyet süresi uzadıkça protein degradasyonu artmıştır. Tam haşlama hemen hemen bütün kanatlı türlerinin yumurta beyazı proteinlerini denatüre etmiştir. Yumurta sarısında livetin fraksiyonları iken yumurta beyazında ovomukoid ısıl denatürasyona karşı en dayanıklı fraksiyondur. Rafadan haşlamada bütün türlerin yumurta sarılarındaki protein fraksiyonları çoğunlukla denatürasyondan korunmuştur. Protein yıkımı ile bağlantılı olarak tam haşlanmış ve sahanda yumurta örneklerinde protein ikincil yapısında dikkat çekici farklılıklar tespit edilmiştir. Bu çalışmada elde edilen önemli veriler ısıl işlemin yenilebilir yumurta proteinleri üzerine etkisini ortaya koymuştur. Bu bulguların beslenme ve insan sağlığını iyileştirme amacına yönelik olarak yumurta içeren ürünlerin üretim ve tüketim yöntemlerini geliştirmede katkı sağlayacağı beklenmektedir.

References

  • [1] Zhu, Y., Vanga, S.K., Wang, J., Raghavan, V. (2018). Impact of food processing on the structural and allergenic properties of egg white. Trends in Food Science & Technology, 78, 188-196.
  • [2] Mine, Y., Yang, M. (2008). Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. Journal of agricultural and food chemistry, 56(13), 4874-4900.
  • [3] Verhoeckx, K.C.M., Vissers, Y.M., Baumert, J.L., Faludi, R., Feys, M., Flanagen, S., Herouet-Guicheney, C., Holzhauser, T., Shimojo, R., van der Bolt, N., Wichers, H., Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240.
  • [4] Bratu, M.M. Birghila, S., Miresan, H., Pirjol, T.N. (2017). Electrophoretic Method For Edible Eggs Species Identification. Revista De Chimie, 68(9), 1983-1987.
  • [5] Abeyrathne, E.D.N.S., Lee, H.Y., Ahn, D.U. (2013). Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents-A review. Poultry Science, 92(12), 3292-3299.
  • [6] Kovacs-Nolan, J., Phillips, M., Mine, Y. (2005). Advances in the value of eggs and egg components for human health. Journal of Agricultural and Food Chemistry, 53(22), 8421-8431.
  • [7] Guha, S., Majumder, K., Mine, Y. (2018). Egg proteins. In Encyclopedia of Food Chemistry, Elsevier, pp. 74-84.
  • [8] Çopur, G., Duru, M., Şahin, A., (2004). Düşük kolesterollü yumurta üretimi yönünde yapılan çalışmalar. 4. Ulusal Zootekni Bilim Kongresi, September 1-3, Isparta, Turkey.
  • [9] Çelebi, Ş., Karaca, H. (2006). Yumurtanın besin değeri, kolesterol içeriği ve yumurtayı n-3 yağ asitleri bakımından zenginleştirmeye yönelik çalışmalar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 257-265.
  • [10] Evenepoel, P., Claus, D., Geypens, B., Hiele, M., Geboes, K., Rutgeerts, P., Ghoos, Y. (1999). Amount and fate of egg protein escaping assimilation in the small intestine of humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 277(5), G935-G943.
  • [11] Réhault-Godbert, S., Guyot, N., Nys, Y. (2019). The golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients, 11(3), 684.
  • [12] Mine, Y., Zhang, J.W. (2002). Comparative studies on antigenicity and allergenicity of native and denatured egg white proteins. Journal of Agricultural and Food Chemistry, 50(9), 2679-2683.
  • [13] Sun, C., Liu, J., Yang, N., Xu, G. (2019). Egg quality and egg albumen property of domestic chicken, duck, goose, turkey, quail, and pigeon. Poultry Science, 98(10), 4516-4521.
  • [14] Tarhan, Ö., Tarhan, E., Harsa, Ş. (2014). Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy. Journal of Dairy Research, 81, 98-106.
  • [15] Raikos, V., Hansen, R., Campbell, L., Euston, S.R. (2006). Separation and identification of hen egg protein isoforms using SDS-PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry. Food Chemistry, 99(4), 702-710.
  • [16] Laemmli, U.K. (1970). SDS-page Laemmli method. Nature, 227, 680-685.
  • [17] Chalamaiah, M., Esparza, Y., Temelli, F., Wu, J. (2017). Physicochemical and functional properties of livetins fraction from hen egg yolk. Food bioscience, 18, 38-45.
  • [18] Uysal, R.S., Acar-Soykut, E., Boyaci, I.H. (2020). Determination of yolk: white ratio of egg using SDS-PAGE. Food Science and Biotechnology, 29(2), 179-186.
  • [19] McReynolds, L.B.A.J.D.S.M.G., O'malley, B.W., Nisbet, A.D., Fothergill, J.E., Givol, D., Fields, S., Robertson, M., Brownlee, G.G. (1978). Sequence of chicken ovalbumin mRNA. Nature, 273(5665), 723-728.
  • [20] Li-Chan, E.C. (1995). The chemistry of eggs and egg products. Egg Science and Technology, 105-175.
  • [21] Kovacs-Nolan, J., Zhang, J.W., Hayakawa, S., Mine, Y. (2000). Immunochemical and structural analysis of pepsin-digested egg white ovomucoid. Journal of Agricultural and Food Chemistry, 48(12), 6261-6266.
  • [22] Kato, A. (2005). Engineering hen egg-white lysozyme. In Nutraceutical Proteins and Peptides in Health and Disease, CRC Press, 576-595p.
  • [23] Anton, M., Denmat, M.L., Gandemer, G. (2000). Thermostability of hen egg yolk granules: Contribution of native structure of granules. Journal of Food Science, 65(4), 581-584.
  • [24] Ulrichs, T., Drotleff, A.M., Ternes, W. (2015). Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chemistry, 172, 909-920.
  • [25] Anderle, G., Mendelsohn, R. (1987). Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophysical Journal, 52(1), 69-74.
  • [26] Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101.
  • [27] Jackson, M., Mantsch, H.H. (1995). The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology, 30(2), 95-120.
  • [28] Ambrose, E.J., Elliott, A. (1951). Infra-red spectroscopic studies of globular protein structure. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 208(1092), 75-90.
  • [29] Kong, J., Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549-559.

Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs

Year 2020, , 233 - 240, 29.10.2020
https://doi.org/10.24323/akademik-gida.818076

Abstract

Poultry eggs are highly important in human nutrition due to their content of essential amino acids, vitamins, minerals, and enzymes. Eggs of edible poultries such as hen, turkey, quail, and goose may have some differences in their nutritional composition. Various heat treatments applied before consumption lead to some alterations in their nutrients, especially proteins. The purpose of this study was to investigate compositional and structural changes in the protein fractions of hen, quail, turkey, and goose eggs when exposed to soft- and hard-boiling (11-16 min and 18-19 min), and frying (2-7 min). Electrophoresis and spectroscopy were used to determine the effects of these heat treatments on egg white and yolk proteins separately. It was observed that the heat degradation of proteins in egg white was higher than that in egg yolk. As expected, protein degradation was increased when heat exposure was extended. Hard-boiling treatment completely denatured egg white proteins almost in all poultry species. Ovomucoid was the most resistant fraction against heat denaturation in white proteins, while livetins in yolk. Soft-boiling under the given conditions resulted in mostly retained profiles of proteins in egg yolk of all species. Relevant to protein degradation, remarkable structural changes were detected in the protein secondary structure of hard-boiled and fried egg samples. Significant data obtained in this research revealed the influence of heat treatment on the protein content of edible eggs. Those findings are expected to help in developing the processes and consumption methods of egg products for dietary purposes and improvement of human health.

References

  • [1] Zhu, Y., Vanga, S.K., Wang, J., Raghavan, V. (2018). Impact of food processing on the structural and allergenic properties of egg white. Trends in Food Science & Technology, 78, 188-196.
  • [2] Mine, Y., Yang, M. (2008). Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. Journal of agricultural and food chemistry, 56(13), 4874-4900.
  • [3] Verhoeckx, K.C.M., Vissers, Y.M., Baumert, J.L., Faludi, R., Feys, M., Flanagen, S., Herouet-Guicheney, C., Holzhauser, T., Shimojo, R., van der Bolt, N., Wichers, H., Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240.
  • [4] Bratu, M.M. Birghila, S., Miresan, H., Pirjol, T.N. (2017). Electrophoretic Method For Edible Eggs Species Identification. Revista De Chimie, 68(9), 1983-1987.
  • [5] Abeyrathne, E.D.N.S., Lee, H.Y., Ahn, D.U. (2013). Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents-A review. Poultry Science, 92(12), 3292-3299.
  • [6] Kovacs-Nolan, J., Phillips, M., Mine, Y. (2005). Advances in the value of eggs and egg components for human health. Journal of Agricultural and Food Chemistry, 53(22), 8421-8431.
  • [7] Guha, S., Majumder, K., Mine, Y. (2018). Egg proteins. In Encyclopedia of Food Chemistry, Elsevier, pp. 74-84.
  • [8] Çopur, G., Duru, M., Şahin, A., (2004). Düşük kolesterollü yumurta üretimi yönünde yapılan çalışmalar. 4. Ulusal Zootekni Bilim Kongresi, September 1-3, Isparta, Turkey.
  • [9] Çelebi, Ş., Karaca, H. (2006). Yumurtanın besin değeri, kolesterol içeriği ve yumurtayı n-3 yağ asitleri bakımından zenginleştirmeye yönelik çalışmalar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 37(2), 257-265.
  • [10] Evenepoel, P., Claus, D., Geypens, B., Hiele, M., Geboes, K., Rutgeerts, P., Ghoos, Y. (1999). Amount and fate of egg protein escaping assimilation in the small intestine of humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 277(5), G935-G943.
  • [11] Réhault-Godbert, S., Guyot, N., Nys, Y. (2019). The golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients, 11(3), 684.
  • [12] Mine, Y., Zhang, J.W. (2002). Comparative studies on antigenicity and allergenicity of native and denatured egg white proteins. Journal of Agricultural and Food Chemistry, 50(9), 2679-2683.
  • [13] Sun, C., Liu, J., Yang, N., Xu, G. (2019). Egg quality and egg albumen property of domestic chicken, duck, goose, turkey, quail, and pigeon. Poultry Science, 98(10), 4516-4521.
  • [14] Tarhan, Ö., Tarhan, E., Harsa, Ş. (2014). Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy. Journal of Dairy Research, 81, 98-106.
  • [15] Raikos, V., Hansen, R., Campbell, L., Euston, S.R. (2006). Separation and identification of hen egg protein isoforms using SDS-PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry. Food Chemistry, 99(4), 702-710.
  • [16] Laemmli, U.K. (1970). SDS-page Laemmli method. Nature, 227, 680-685.
  • [17] Chalamaiah, M., Esparza, Y., Temelli, F., Wu, J. (2017). Physicochemical and functional properties of livetins fraction from hen egg yolk. Food bioscience, 18, 38-45.
  • [18] Uysal, R.S., Acar-Soykut, E., Boyaci, I.H. (2020). Determination of yolk: white ratio of egg using SDS-PAGE. Food Science and Biotechnology, 29(2), 179-186.
  • [19] McReynolds, L.B.A.J.D.S.M.G., O'malley, B.W., Nisbet, A.D., Fothergill, J.E., Givol, D., Fields, S., Robertson, M., Brownlee, G.G. (1978). Sequence of chicken ovalbumin mRNA. Nature, 273(5665), 723-728.
  • [20] Li-Chan, E.C. (1995). The chemistry of eggs and egg products. Egg Science and Technology, 105-175.
  • [21] Kovacs-Nolan, J., Zhang, J.W., Hayakawa, S., Mine, Y. (2000). Immunochemical and structural analysis of pepsin-digested egg white ovomucoid. Journal of Agricultural and Food Chemistry, 48(12), 6261-6266.
  • [22] Kato, A. (2005). Engineering hen egg-white lysozyme. In Nutraceutical Proteins and Peptides in Health and Disease, CRC Press, 576-595p.
  • [23] Anton, M., Denmat, M.L., Gandemer, G. (2000). Thermostability of hen egg yolk granules: Contribution of native structure of granules. Journal of Food Science, 65(4), 581-584.
  • [24] Ulrichs, T., Drotleff, A.M., Ternes, W. (2015). Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chemistry, 172, 909-920.
  • [25] Anderle, G., Mendelsohn, R. (1987). Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophysical Journal, 52(1), 69-74.
  • [26] Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101.
  • [27] Jackson, M., Mantsch, H.H. (1995). The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology, 30(2), 95-120.
  • [28] Ambrose, E.J., Elliott, A. (1951). Infra-red spectroscopic studies of globular protein structure. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 208(1092), 75-90.
  • [29] Kong, J., Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549-559.
There are 29 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Özgür Tarhan This is me 0000-0003-4406-2433

Mustafa Gözler This is me 0000-0003-2095-1877

Rahmi Can Yavuz This is me 0000-0002-4390-1146

Melike Şimşek This is me 0000-0003-1142-6034

Publication Date October 29, 2020
Submission Date August 26, 2020
Published in Issue Year 2020

Cite

APA Tarhan, Ö., Gözler, M., Yavuz, R. C., Şimşek, M. (2020). Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs. Akademik Gıda, 18(3), 233-240. https://doi.org/10.24323/akademik-gida.818076
AMA Tarhan Ö, Gözler M, Yavuz RC, Şimşek M. Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs. Akademik Gıda. October 2020;18(3):233-240. doi:10.24323/akademik-gida.818076
Chicago Tarhan, Özgür, Mustafa Gözler, Rahmi Can Yavuz, and Melike Şimşek. “Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs”. Akademik Gıda 18, no. 3 (October 2020): 233-40. https://doi.org/10.24323/akademik-gida.818076.
EndNote Tarhan Ö, Gözler M, Yavuz RC, Şimşek M (October 1, 2020) Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs. Akademik Gıda 18 3 233–240.
IEEE Ö. Tarhan, M. Gözler, R. C. Yavuz, and M. Şimşek, “Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs”, Akademik Gıda, vol. 18, no. 3, pp. 233–240, 2020, doi: 10.24323/akademik-gida.818076.
ISNAD Tarhan, Özgür et al. “Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs”. Akademik Gıda 18/3 (October 2020), 233-240. https://doi.org/10.24323/akademik-gida.818076.
JAMA Tarhan Ö, Gözler M, Yavuz RC, Şimşek M. Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs. Akademik Gıda. 2020;18:233–240.
MLA Tarhan, Özgür et al. “Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs”. Akademik Gıda, vol. 18, no. 3, 2020, pp. 233-40, doi:10.24323/akademik-gida.818076.
Vancouver Tarhan Ö, Gözler M, Yavuz RC, Şimşek M. Effect of Heat Treatment on Protein Fractions of Edible Poultry Eggs. Akademik Gıda. 2020;18(3):233-40.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).