Research Article
BibTex RIS Cite

Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi

Year 2020, , 264 - 269, 29.10.2020
https://doi.org/10.24323/akademik-gida.818111

Abstract

Bu çalışmada, Vitreoscilla hemoglobini eksprese eden E.coli TS3 ve TS4 suşlarının şeker pancarı melası hidrolizatı ile hazırlanan besiyerleri (MB2-MB5) kullanılarak biyoetanol üretimleri incelenmiştir. Kullanılan farklı şeker konsantrasyonlu besiyerleri içerisinde en fazla etanol üretimi MB2 besiyeri ortamında (yaklaşık %4 şeker içeren) gerçekleştirilmiştir. MB2 besiyerinde, küçük ölçekten büyük ölçeğe doğru biyoetanol üretiminin %10-17 oranında arttığı saptanmıştır. En fazla biyoetanol üretim miktarları en büyük hacimdeki fermentasyon ortamında TS3 ve TS4 suşları ile sırasıyla %2.49 ve %2.62 (v/v) olarak belirlenmiştir. Yapılan bu çalışmada ölçek büyütmenin VHb ekspresyonu yapan bakterilerle şeker pancarı melasından etanol üretimini olumlu etkilediği belirlenmiştir.

Supporting Institution

Gebze Teknik Üniversitesi

Project Number

2013-A02, 2016-A-13 ve 2017-A102-19

Thanks

Bu çalışma, Gebze Teknik Üniversitesi (2013-A02, 2016-A-13 ve 2017-A102-19) tarafından desteklenmiştir.

References

  • [1] Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33(1), 1-18.
  • [2] U.S Department of Energy (US DOE). (2016). Global Ethanol Production by Country/Region, Renewable Fuels Association, Washington, USA.
  • [3] RFA. (2019). Renewable Fuels Association, Washington, USA.
  • [4] Regassa, T.H., Wortmann, C.S. (2014). Sweet sorghum as a bioenergy crop: literature review. Biomass and Bioenergy, 64, 348-355.
  • [5] Arimi, M.M., Zhang, Y., Götz, G., Kiriamiti, K., Geißen, S.U. (2014). Antimicrobial colorants in molasses distillery wastewater and their removal technologies. International Biodeterioration & Biodegradation, 87, 34-43.
  • [6] Broughton, N.W., Dalton, C.C., Jones, G.C., Williams, E.L. (1995). Adding value to sugar beet pulp. International Sugar Journal (United Kingdom).
  • [7] Kühnel, S., Schols, H.A., Gruppen, H. (2011). Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnology for Biofuels, 4(1), 1-14.
  • [8] Fukuda, H., Kondo, A., Tamalampudi, S. (2009). Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 44(1), 2-12.
  • [9] Ozdingis, A.G.B., Kocar, G. (2018). Current and future aspects of bioethanol production and utilization in Turkey. Renewable and Sustainable Energy Reviews, 81, 2196-2203.
  • [10] Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie van Leeuwenhoek, 1-16.
  • [11] Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G. (2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373-377.
  • [12] Suksawang, S., Cheirsilp, B., Yeesang, J. (2016). Production of kefiran from molasses and spent yeast cells by Lactobacillus kefiranofaciens JCM 6985. Asia-Pacific Journal of Science and Technology, 21(2), 59-67.
  • [13] Akbas, M.Y., Sar, T., Ozcelik, B. (2014). Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli. Bioscience Biotechnology Biochemistry, 78(4), 687-694.
  • [14] Taskin, M., Ortucu, S., Aydogan, M.N., Arslan, N.P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable energy, 99, 198-204.
  • [15] Urbaniec, K., Grabarczyk, R. (2014). Hydrogen production from sugar beet molasses–a techno-economic study. Journal of Cleaner Production, 65, 324-329.
  • [16] Oehmen, A., Pinto, F.V., Silva, V., Albuquerque, M.G., Reis, M.A. (2014). The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Engineering in Life Sciences, 14(2), 143-152.
  • [17] Jung, M.Y., Jung, H.M., Lee, J., Oh, M.K. (2015). Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2, 3-butanediol production. Biotechnology for Biofuels, 8(1), 106.
  • [18] Xu, K., Xu, P. (2014). Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, 153, 23-29.
  • [19] Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., Preston, J.F. (1987). Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology, 53(10), 2420-2425.
  • [20] Ingram, L.O., Conway, T. (1988). Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Applied and Environmental Microbiology, 54, 397-404.
  • [21] Dien, B.S., Nichols, N.N., O'bryan, P.J., Bothast, R.J. (2000). Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 84-86, 181-196.
  • [22] Khosla, C., Bailey, J.E. (1988). Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331(6157), 633.
  • [23] Frey, A.D., Kallio, P.T. (2003). Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiology Reviews, 27(4), 525-545.
  • [24] Sanny, T., Arnaldos, M., Kunkel, S.A., Pagilla, K.R., Stark, B.C. (2010). Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Applied Microbiology and Biotechnology, 88(5), 1103-1112.
  • [25] Abanoz, K., Stark, B.C., Akbas, M.Y. (2012). Enhancement of ethanol production from potato‐processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters Applied Microbiology, 55(6), 436-443.
  • [26] Arnaldos, M., Kunkel, S.A., Wang, J., Pagilla, K.R., Stark, B.C. (2012). Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. Biomass Bioenergy, 37, 1-8.
  • [27] Sumer, F., Stark, B.C., Akbas, M.Y. (2015). Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environmental Technology, 36(18), 2319-2327.
  • [28] Sar, T., Stark, B.C., Akbas, M.Y. (2017). Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered, 8(2), 171-181.
  • [29] Sar, T., Seker, G., Erman, A.G., Stark, B.C., Akbas, M.Y. (2017). Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use. Bioengineered, 8(5), 651-660.
  • [30] Sar, T., Stark, B.C., Akbas, M.Y. (2019). Bioethanol production from whey powder by immobilized E. coli expressing Vitreoscilla hemoglobin: optimization of sugar concentration and inoculum size. Biofuels, 1-6.
  • [31] Sar, T., Akbas, M.Y. (2019). Investigation of effective immobilization method for ethanol producing E. coli strain. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 217-220.
  • [32] Şar, T., Akbaş, M.Y. (2016). Biyoetanol üretimi için gıda işleme atıklarının asit hidrolizi. Akademik Gıda, 14(1), 15-20.
  • [33] Jayus, Nurhayati, Mayzuhroh, A., Arindhani, S., Caroenchai, C. (2016). Studies on bioethanol production of commercial baker's and alcohol yeast under aerated culture using sugarcane molasses as the media. Agriculture and Agricultural Science Procedia, 9, 493-499.
  • [34] Silva, G.P.D, Araújo, E.F.D, Silva, D.O., Guimarães, W.V. (2005). Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2. Brazilian Journal of Microbiology, 36(4), 395-404.
  • [35] Anand, A., Duk, B.T., Singh. S., Akbas, M.Y., Webster, D.A., Stark B.C., Dikshit, K.L. (2010). Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemical Journal, 426(3), 271-280.
  • [36] Akbas, M.Y., Doruk, T., Ozdemir, S., Stark, B.C. (2011). Further investigation of the mechanism of Vitreoscilla hemoglobin (VHb) protection from oxidative stress in Escherichia coli. Biologia, 66(5), 735-740.

Effect of Scaling up on Bioetanol Production from Sugar Beet Molasses by Vitreoscilla Hemoglobin Expressing Escherichia coli Strains

Year 2020, , 264 - 269, 29.10.2020
https://doi.org/10.24323/akademik-gida.818111

Abstract

In the present work, bioethanol production through VHb expressing Escherichia coli TS3 and TS4 strains from sugar-beet molasses hydrolysate containing media was investigated. The highest growth and ethanol production were obtained in MB2 (contains about 4% sugar) medium. In MB2 medium, bioethanol production was enhanced by E. coli TS3 and TS4 strains from small scale to big scale fermentation. The highest ethanol productions by TS3 and TS4 strains were determined as 2.49% and 2.62% (v/v) respectively, with the largest volume of fermentation medium. It was shown that scaling up process had positive effect on bioethanol production from sugar beet molasses through VHb expressing strains.

Project Number

2013-A02, 2016-A-13 ve 2017-A102-19

References

  • [1] Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33(1), 1-18.
  • [2] U.S Department of Energy (US DOE). (2016). Global Ethanol Production by Country/Region, Renewable Fuels Association, Washington, USA.
  • [3] RFA. (2019). Renewable Fuels Association, Washington, USA.
  • [4] Regassa, T.H., Wortmann, C.S. (2014). Sweet sorghum as a bioenergy crop: literature review. Biomass and Bioenergy, 64, 348-355.
  • [5] Arimi, M.M., Zhang, Y., Götz, G., Kiriamiti, K., Geißen, S.U. (2014). Antimicrobial colorants in molasses distillery wastewater and their removal technologies. International Biodeterioration & Biodegradation, 87, 34-43.
  • [6] Broughton, N.W., Dalton, C.C., Jones, G.C., Williams, E.L. (1995). Adding value to sugar beet pulp. International Sugar Journal (United Kingdom).
  • [7] Kühnel, S., Schols, H.A., Gruppen, H. (2011). Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnology for Biofuels, 4(1), 1-14.
  • [8] Fukuda, H., Kondo, A., Tamalampudi, S. (2009). Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 44(1), 2-12.
  • [9] Ozdingis, A.G.B., Kocar, G. (2018). Current and future aspects of bioethanol production and utilization in Turkey. Renewable and Sustainable Energy Reviews, 81, 2196-2203.
  • [10] Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie van Leeuwenhoek, 1-16.
  • [11] Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G. (2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373-377.
  • [12] Suksawang, S., Cheirsilp, B., Yeesang, J. (2016). Production of kefiran from molasses and spent yeast cells by Lactobacillus kefiranofaciens JCM 6985. Asia-Pacific Journal of Science and Technology, 21(2), 59-67.
  • [13] Akbas, M.Y., Sar, T., Ozcelik, B. (2014). Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli. Bioscience Biotechnology Biochemistry, 78(4), 687-694.
  • [14] Taskin, M., Ortucu, S., Aydogan, M.N., Arslan, N.P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable energy, 99, 198-204.
  • [15] Urbaniec, K., Grabarczyk, R. (2014). Hydrogen production from sugar beet molasses–a techno-economic study. Journal of Cleaner Production, 65, 324-329.
  • [16] Oehmen, A., Pinto, F.V., Silva, V., Albuquerque, M.G., Reis, M.A. (2014). The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Engineering in Life Sciences, 14(2), 143-152.
  • [17] Jung, M.Y., Jung, H.M., Lee, J., Oh, M.K. (2015). Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2, 3-butanediol production. Biotechnology for Biofuels, 8(1), 106.
  • [18] Xu, K., Xu, P. (2014). Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, 153, 23-29.
  • [19] Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., Preston, J.F. (1987). Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology, 53(10), 2420-2425.
  • [20] Ingram, L.O., Conway, T. (1988). Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Applied and Environmental Microbiology, 54, 397-404.
  • [21] Dien, B.S., Nichols, N.N., O'bryan, P.J., Bothast, R.J. (2000). Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 84-86, 181-196.
  • [22] Khosla, C., Bailey, J.E. (1988). Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331(6157), 633.
  • [23] Frey, A.D., Kallio, P.T. (2003). Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiology Reviews, 27(4), 525-545.
  • [24] Sanny, T., Arnaldos, M., Kunkel, S.A., Pagilla, K.R., Stark, B.C. (2010). Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Applied Microbiology and Biotechnology, 88(5), 1103-1112.
  • [25] Abanoz, K., Stark, B.C., Akbas, M.Y. (2012). Enhancement of ethanol production from potato‐processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Letters Applied Microbiology, 55(6), 436-443.
  • [26] Arnaldos, M., Kunkel, S.A., Wang, J., Pagilla, K.R., Stark, B.C. (2012). Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. Biomass Bioenergy, 37, 1-8.
  • [27] Sumer, F., Stark, B.C., Akbas, M.Y. (2015). Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environmental Technology, 36(18), 2319-2327.
  • [28] Sar, T., Stark, B.C., Akbas, M.Y. (2017). Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered, 8(2), 171-181.
  • [29] Sar, T., Seker, G., Erman, A.G., Stark, B.C., Akbas, M.Y. (2017). Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use. Bioengineered, 8(5), 651-660.
  • [30] Sar, T., Stark, B.C., Akbas, M.Y. (2019). Bioethanol production from whey powder by immobilized E. coli expressing Vitreoscilla hemoglobin: optimization of sugar concentration and inoculum size. Biofuels, 1-6.
  • [31] Sar, T., Akbas, M.Y. (2019). Investigation of effective immobilization method for ethanol producing E. coli strain. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 217-220.
  • [32] Şar, T., Akbaş, M.Y. (2016). Biyoetanol üretimi için gıda işleme atıklarının asit hidrolizi. Akademik Gıda, 14(1), 15-20.
  • [33] Jayus, Nurhayati, Mayzuhroh, A., Arindhani, S., Caroenchai, C. (2016). Studies on bioethanol production of commercial baker's and alcohol yeast under aerated culture using sugarcane molasses as the media. Agriculture and Agricultural Science Procedia, 9, 493-499.
  • [34] Silva, G.P.D, Araújo, E.F.D, Silva, D.O., Guimarães, W.V. (2005). Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2. Brazilian Journal of Microbiology, 36(4), 395-404.
  • [35] Anand, A., Duk, B.T., Singh. S., Akbas, M.Y., Webster, D.A., Stark B.C., Dikshit, K.L. (2010). Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemical Journal, 426(3), 271-280.
  • [36] Akbas, M.Y., Doruk, T., Ozdemir, S., Stark, B.C. (2011). Further investigation of the mechanism of Vitreoscilla hemoglobin (VHb) protection from oxidative stress in Escherichia coli. Biologia, 66(5), 735-740.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Taner Şar This is me 0000-0003-2369-9638

Meltem Yeşilçimen Akbaş This is me 0000-0002-0021-9235

Project Number 2013-A02, 2016-A-13 ve 2017-A102-19
Publication Date October 29, 2020
Submission Date April 22, 2019
Published in Issue Year 2020

Cite

APA Şar, T., & Yeşilçimen Akbaş, M. (2020). Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi. Akademik Gıda, 18(3), 264-269. https://doi.org/10.24323/akademik-gida.818111
AMA Şar T, Yeşilçimen Akbaş M. Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi. Akademik Gıda. October 2020;18(3):264-269. doi:10.24323/akademik-gida.818111
Chicago Şar, Taner, and Meltem Yeşilçimen Akbaş. “Vitreoscilla Hemoglobini Eksprese Eden Escherichia Coli Suşları Ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi”. Akademik Gıda 18, no. 3 (October 2020): 264-69. https://doi.org/10.24323/akademik-gida.818111.
EndNote Şar T, Yeşilçimen Akbaş M (October 1, 2020) Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi. Akademik Gıda 18 3 264–269.
IEEE T. Şar and M. Yeşilçimen Akbaş, “Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi”, Akademik Gıda, vol. 18, no. 3, pp. 264–269, 2020, doi: 10.24323/akademik-gida.818111.
ISNAD Şar, Taner - Yeşilçimen Akbaş, Meltem. “Vitreoscilla Hemoglobini Eksprese Eden Escherichia Coli Suşları Ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi”. Akademik Gıda 18/3 (October 2020), 264-269. https://doi.org/10.24323/akademik-gida.818111.
JAMA Şar T, Yeşilçimen Akbaş M. Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi. Akademik Gıda. 2020;18:264–269.
MLA Şar, Taner and Meltem Yeşilçimen Akbaş. “Vitreoscilla Hemoglobini Eksprese Eden Escherichia Coli Suşları Ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi”. Akademik Gıda, vol. 18, no. 3, 2020, pp. 264-9, doi:10.24323/akademik-gida.818111.
Vancouver Şar T, Yeşilçimen Akbaş M. Vitreoscilla Hemoglobini Eksprese Eden Escherichia coli Suşları ile Şeker Pancarı Melasından Biyoetanol Üretiminde Ölçek Büyütmenin Etkisi. Akademik Gıda. 2020;18(3):264-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).