Research Article
BibTex RIS Cite

Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues

Year 2021, , 116 - 125, 01.08.2021
https://doi.org/10.24323/akademik-gida.976929

Abstract

Collagen is a structural protein found naturally in high amounts in poultry skin and bones. Gelatin is obtained by a partial hydrolysis of collagen under controlled conditions. It is a pure protein with many functional and technological properties such as gelation, thickening, film-forming and emulsification. Besides skin and bones, mechanically deboned meat (MDM) residues are considered good sources of collagen as well. This study aimed to extract collagen and gelatin from poultry skin and MDM residues of neck, shinbone, breastbone, wingtip, shanks, upper/lower backbone and their mixture through pre-treatment (using with dilute alkali and acid), demineralization, degreasing and thermal extraction processes, and evaluate their properties comparatively. Based on Kjeldahl analysis, the protein content of poultry skin was about 15% and that of the MDM residues varied between 15-21% before the extraction process. The SDS-PAGE profiles of the extracted collagen in skin and MDM residues comprised γ, β, α, and sub-α chain protein units. Collagen solution of the upper backbone and mixed MDM residues had the highest protein content with 11.98 mg/mL and 11.33 mg/mL, respectively. The extraction yield of collagen and gelatin significantly differred (p˂0.05) within the range between 1.32 and 2.16%, and 1.03 and 1.89%, respectively. The viscosity of collagen/gelatin solutions decreased with an increase in shear rate and gelatin obtained from mix MDM residues indicated higher viscosity than that of skin. Results of this study showed successful recovery of collagen and gelatin from poultry processing by-products and residues, which could contribute to the production of high value-added alternative sources for various applications.

Thanks

The authors would like to thank Gedik Piliç A.Ş. (Uşak, Turkey) for providing poultry samples used in this study. Special thanks to Dr. Berker Nacak for his valuable help in physicochemical tests.

References

  • [1] Brinckmann, J. (2005). Collagens at a glance. In: Collagen: Primer in structure, processing and assembly. Brinckmann, J., Notbohm, H. and Müller, P.K. (eds) Springer, NY, pp. 1-6.
  • [2] Ergel, J., Bachinger, H.P. (2005). Structure, stability and folding of the collagen triple helix. In: Collagen: Primer in structure, processing and assembly. Brinckmann, J., Notbohm, H. and Müller, P.K. (eds) Springer, NY, pp. 23-24.
  • [3] Johns, P., Courts, A. (1977). Relationship between Collagen and Gelatin. In: The Science and Technology of Gelatin, Ward AG, Courts A (eds), Academic Press, USA, PP. 138-168.
  • [4] Hinterwaldner, R. (1977). Technology of Gelatin Manufacture. In: The Science and Technology of Gelatin, Ward AG, Courts A (eds), Academic Press, USA, pp. 315-361.
  • [5] Erge, A. Zorba, Ö. (2016). Jelatin ve fizikokimyasal özellikleri. Akademik Gıda, 14(4), 431-440.
  • [6] Ersus Bilek, S., Bayram, S.K. (2015). Kolajen hidrolizatının fonksiyonel bir bileşen olarak gıda endüstrisinde kullanılması. Akademik Gıda, 13(4), 327-334.
  • [7] Ledward, D.A. (2000). Handbook of hydrocolloids, Capter-4, Edited by G. O. Philips and P. A. Williams. UK. Woodhead Publishing in Food Science and Technology, 450p.
  • [8] Boran, G. (2011). Bir gıda katkısı olarak jelatin: yapısı, özellikleri, üretimi, kullanımı ve kalitesi. Gıda, 36(2), 97-104.
  • [9] Nur Hanani, Z.A., Ross, Y.H., Kerry, J.P. (2014). Use and application of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules, 71, 94-102.
  • [10] Duconseille, A., Astruc, T., Quintana, N., Meersman, F., Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43, 360-376.
  • [11] Ockerman, H.W., Hansen, C.L. (1988). Animal By-Product Processing. Ellis Horwood Ltd., Chichester England, 366p.
  • [12] Petersen, B.R., Yates, J.R. (1977). Gelatin Extraction. United States Patent No:4,064,008.
  • [13] Boran, G., Lawless, H.T., Regenstein, J.M. (2010). The effect of extraction conditions on the sensory and instrumental characteristics of fish gelatin gels. Journal of Food Science, 75(9), S469-S476.
  • [14] Boran, G., Regenstein, J.M. (2009). Optimization of gelatin extraction from silver carp skin. Journal of Food Science, 74(8), E432-E441
  • [15] Cho, S.H, Jahncke, M.L., Chin, K.B. Eun, J.B. (2006). The effect of processing conditions on the properties of gelatin from skate (Raja kenojei) skins. Food Hydrocolloids, 20, 810-816.
  • [16] Anonymous, (2016). Grand view research, Gelatin market size expected to reach 4.08 billion by 2024. retrieved from http//www.grandvewresearch.com/presss-releaseglobal -gelatin-market
  • [17] Anonim, (2018). http://insanvehayat.com/9-maddede-turkiyede-jelatin-gercegi., Erişim Tarihi, 02.04.2021
  • [18] Almeida, P.F., Lannes, S.C.D.S. (2013). Extraction and physicochemical characterization of gelatin from chicken by‐product. Journal of Food Process Engineering, 36(6), 824-833.
  • [19] Cansu, Ü., Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431.
  • [20] Arunmozhivarman, K., Abraham, R., Rao, A., Parthiban, M. (2017). Extraction and molecular characterization of collagen from poultry meat processing by-product (chicken skin). International Journal Pure Applied Biosciences, 5(5), 1085-1091.
  • [21] Munasinghe, K.A., Schwarz, J. G., Nyame, A.K. (2014). Chicken collagen from law market value by-products as an alternate source. Journal of Food Processing, Article ID 298295.
  • [22] Erge, A., Zorba, Ö. (2018). Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. LWT, 97, 205-212.
  • [23] Association of Official American Chemists International (AOAC) (2000). Official Methods of Analysis, 17th Edition, William, H. (ed) Washington, DC, USA.
  • [24] [23] Association of Official American Chemists International (AOAC) (1990). Official Methods of Analysis, 15th Edition, Washington, DC, USA.
  • [25] Bradford M.M. (1976). A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • [26] Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
  • [27] Erge, A. (2016). Tavuk Kesimhane Artıklarından Jelatin Üretim Koşullarının Araştırılması ve Optimizasyonu. Doktora Tezi. Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Bolu, 130s.
  • [28] Hou, H., Li, B., Zhao, X., Zhang, Z., Li, P. (2011). Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT-Food Science and Technology, 44(2), 421-428.
  • [29] Henry, W.E., Bratzler, L.J., Luecke, R.W., (1963). Physical and chemical relationships of pork carcasses. Journal of Animal Science, 22(3), 613-616.
  • [30] Ferraro, V., Gaillard-Martinie, B., Sayd, T., Chambon, C., Anton, M., Santé-Lhoutellier, V. (2017). Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. International Journal of Biological Macromolecules, 97, 55-66.
  • [31] Zhang, Z., Guoying, L., Bi Shi, S., (2006). Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. Journal of the Society of Leather Technologists and Chemists, 90, 23-27.
  • [32] Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768.
  • [33] Li, Y., Qiao, C., Shi, L., Jiang, Q., Li, T. (2014). Viscosity of collagen solutions: influence of concentration, temperature, adsorption, and role of intermolecular interactions. Journal of Macromolecular Science, Part B, 53(5), 893-901.
  • [34] Yang, H., Duan, L., Li, Q., Tian, Z., Li, G. (2018). Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic acid concentration. Journal of The Mechanical Behavior of Biomedical Materials, 77, 125-134.
  • [35] Sanaei, A.V., Mahmoodani, F., See, S. F., Yusop, S. M., Babji, A.S. (2013). Optimization of gelatin extraction and physico-chemical properties of catfish (Clarias gariepinus) bone gelatin. International Food Research Journal, 20(1), 423.

Kanatlı Deri ve Mekanik Olarak Eti Sıyrılmış Kemik (MKS) Artıklarından Kollajen/Jelatin Ekstraksiyonu

Year 2021, , 116 - 125, 01.08.2021
https://doi.org/10.24323/akademik-gida.976929

Abstract

Kollajen kanatlı deri ve kemiklerinde oldukça yüksek oranda bulunan yapısal bir proteindir. Kollajenin kontrollü şartlar altında kısmi hidrolizi ile jelatin elde edilir. Jelatin jelleştirme, kıvam artırma, film oluşturma ve emülsifiye etme gibi birçok fonksiyonel ve teknolojik özelliğe sahip saf bir proteindir. Tavuk derisi ve kemiklerinin yanısıra, mekanik olarak eti sıyrılmış kemik (MKS) artıkları da iyi bir kollajen kaynağı olarak kabul edilir. Bu çalışmanın amacı kanatlı deri ve boyun, incik kemiği, göğüs kemiği, kanat ucu, ayak takozu, alt/üst sırt kemiği ve bu kemiklerin karışımının MKS artıklarında, ön işlem (seyreltik alkali ve asit ile muamele), mineral ve yağdan arındırma ve ısıl ekstraksiyon işlemleriyle kollajen ve jelatin ekstrakt etmek ve karşılaştırmalı olarak bazı özelliklerini incelemektir. Khjeldahl analizine göre, örneklerin ekstaksiyon öncesi protein içerikleri tavuk derisinde yaklaşık %15 ve MKS artıklarında ise %15-21 oranları ile önemli farklılıklar (p˂0.05) göstermektedir. Deri ve MKS artıklarından ekstrakt edilen kollajenin SDS-PAGE profilleri γ, β, α, and sub-α zinciri protein unitelerini içermektedir. Sırt kemiği ve kemik karışımı MKS artıklarından elde edilen kollajen solüsyonu en yüksek protein içeriğine sahiptir. Kollajen ve jelatin extraksiyon verimi sırasıyla %1.32 ila 2.16 ve %1.03 ila 1.89 arasında değişmektedir. Kollajen/jelatin viskozitesi artan kayma oranı ile azalmıştır ve karışım MKS artıklarından elde edilen jelatin deriden elde edilen jelatinden daha yüksek viskoziteye sahiptir. Bu çalışmanın sonuçları çeşitli uygulamalar için yüksek katma değerli alternatif kaynakların üretimine katkı sağlayabilecek, kanatlı işleme yan ürünleri ve artıklarından kollajen ve jelatinin başarılı şekilde geri kazanımını göstermiştir.

References

  • [1] Brinckmann, J. (2005). Collagens at a glance. In: Collagen: Primer in structure, processing and assembly. Brinckmann, J., Notbohm, H. and Müller, P.K. (eds) Springer, NY, pp. 1-6.
  • [2] Ergel, J., Bachinger, H.P. (2005). Structure, stability and folding of the collagen triple helix. In: Collagen: Primer in structure, processing and assembly. Brinckmann, J., Notbohm, H. and Müller, P.K. (eds) Springer, NY, pp. 23-24.
  • [3] Johns, P., Courts, A. (1977). Relationship between Collagen and Gelatin. In: The Science and Technology of Gelatin, Ward AG, Courts A (eds), Academic Press, USA, PP. 138-168.
  • [4] Hinterwaldner, R. (1977). Technology of Gelatin Manufacture. In: The Science and Technology of Gelatin, Ward AG, Courts A (eds), Academic Press, USA, pp. 315-361.
  • [5] Erge, A. Zorba, Ö. (2016). Jelatin ve fizikokimyasal özellikleri. Akademik Gıda, 14(4), 431-440.
  • [6] Ersus Bilek, S., Bayram, S.K. (2015). Kolajen hidrolizatının fonksiyonel bir bileşen olarak gıda endüstrisinde kullanılması. Akademik Gıda, 13(4), 327-334.
  • [7] Ledward, D.A. (2000). Handbook of hydrocolloids, Capter-4, Edited by G. O. Philips and P. A. Williams. UK. Woodhead Publishing in Food Science and Technology, 450p.
  • [8] Boran, G. (2011). Bir gıda katkısı olarak jelatin: yapısı, özellikleri, üretimi, kullanımı ve kalitesi. Gıda, 36(2), 97-104.
  • [9] Nur Hanani, Z.A., Ross, Y.H., Kerry, J.P. (2014). Use and application of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules, 71, 94-102.
  • [10] Duconseille, A., Astruc, T., Quintana, N., Meersman, F., Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43, 360-376.
  • [11] Ockerman, H.W., Hansen, C.L. (1988). Animal By-Product Processing. Ellis Horwood Ltd., Chichester England, 366p.
  • [12] Petersen, B.R., Yates, J.R. (1977). Gelatin Extraction. United States Patent No:4,064,008.
  • [13] Boran, G., Lawless, H.T., Regenstein, J.M. (2010). The effect of extraction conditions on the sensory and instrumental characteristics of fish gelatin gels. Journal of Food Science, 75(9), S469-S476.
  • [14] Boran, G., Regenstein, J.M. (2009). Optimization of gelatin extraction from silver carp skin. Journal of Food Science, 74(8), E432-E441
  • [15] Cho, S.H, Jahncke, M.L., Chin, K.B. Eun, J.B. (2006). The effect of processing conditions on the properties of gelatin from skate (Raja kenojei) skins. Food Hydrocolloids, 20, 810-816.
  • [16] Anonymous, (2016). Grand view research, Gelatin market size expected to reach 4.08 billion by 2024. retrieved from http//www.grandvewresearch.com/presss-releaseglobal -gelatin-market
  • [17] Anonim, (2018). http://insanvehayat.com/9-maddede-turkiyede-jelatin-gercegi., Erişim Tarihi, 02.04.2021
  • [18] Almeida, P.F., Lannes, S.C.D.S. (2013). Extraction and physicochemical characterization of gelatin from chicken by‐product. Journal of Food Process Engineering, 36(6), 824-833.
  • [19] Cansu, Ü., Boran, G. (2015). Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean Journal for Food Science of Animal Resources, 35(4), 431.
  • [20] Arunmozhivarman, K., Abraham, R., Rao, A., Parthiban, M. (2017). Extraction and molecular characterization of collagen from poultry meat processing by-product (chicken skin). International Journal Pure Applied Biosciences, 5(5), 1085-1091.
  • [21] Munasinghe, K.A., Schwarz, J. G., Nyame, A.K. (2014). Chicken collagen from law market value by-products as an alternate source. Journal of Food Processing, Article ID 298295.
  • [22] Erge, A., Zorba, Ö. (2018). Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment. LWT, 97, 205-212.
  • [23] Association of Official American Chemists International (AOAC) (2000). Official Methods of Analysis, 17th Edition, William, H. (ed) Washington, DC, USA.
  • [24] [23] Association of Official American Chemists International (AOAC) (1990). Official Methods of Analysis, 15th Edition, Washington, DC, USA.
  • [25] Bradford M.M. (1976). A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • [26] Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
  • [27] Erge, A. (2016). Tavuk Kesimhane Artıklarından Jelatin Üretim Koşullarının Araştırılması ve Optimizasyonu. Doktora Tezi. Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Bolu, 130s.
  • [28] Hou, H., Li, B., Zhao, X., Zhang, Z., Li, P. (2011). Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT-Food Science and Technology, 44(2), 421-428.
  • [29] Henry, W.E., Bratzler, L.J., Luecke, R.W., (1963). Physical and chemical relationships of pork carcasses. Journal of Animal Science, 22(3), 613-616.
  • [30] Ferraro, V., Gaillard-Martinie, B., Sayd, T., Chambon, C., Anton, M., Santé-Lhoutellier, V. (2017). Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. International Journal of Biological Macromolecules, 97, 55-66.
  • [31] Zhang, Z., Guoying, L., Bi Shi, S., (2006). Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. Journal of the Society of Leather Technologists and Chemists, 90, 23-27.
  • [32] Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768.
  • [33] Li, Y., Qiao, C., Shi, L., Jiang, Q., Li, T. (2014). Viscosity of collagen solutions: influence of concentration, temperature, adsorption, and role of intermolecular interactions. Journal of Macromolecular Science, Part B, 53(5), 893-901.
  • [34] Yang, H., Duan, L., Li, Q., Tian, Z., Li, G. (2018). Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic acid concentration. Journal of The Mechanical Behavior of Biomedical Materials, 77, 125-134.
  • [35] Sanaei, A.V., Mahmoodani, F., See, S. F., Yusop, S. M., Babji, A.S. (2013). Optimization of gelatin extraction and physico-chemical properties of catfish (Clarias gariepinus) bone gelatin. International Food Research Journal, 20(1), 423.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Ayşegül Gündem This is me 0000-0001-7084-6253

Özgür Tarhan This is me 0000-0003-4406-2433

Publication Date August 1, 2021
Submission Date May 28, 2021
Published in Issue Year 2021

Cite

APA Gündem, A., & Tarhan, Ö. (2021). Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues. Akademik Gıda, 19(2), 116-125. https://doi.org/10.24323/akademik-gida.976929
AMA Gündem A, Tarhan Ö. Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues. Akademik Gıda. August 2021;19(2):116-125. doi:10.24323/akademik-gida.976929
Chicago Gündem, Ayşegül, and Özgür Tarhan. “Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues”. Akademik Gıda 19, no. 2 (August 2021): 116-25. https://doi.org/10.24323/akademik-gida.976929.
EndNote Gündem A, Tarhan Ö (August 1, 2021) Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues. Akademik Gıda 19 2 116–125.
IEEE A. Gündem and Ö. Tarhan, “Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues”, Akademik Gıda, vol. 19, no. 2, pp. 116–125, 2021, doi: 10.24323/akademik-gida.976929.
ISNAD Gündem, Ayşegül - Tarhan, Özgür. “Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues”. Akademik Gıda 19/2 (August 2021), 116-125. https://doi.org/10.24323/akademik-gida.976929.
JAMA Gündem A, Tarhan Ö. Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues. Akademik Gıda. 2021;19:116–125.
MLA Gündem, Ayşegül and Özgür Tarhan. “Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues”. Akademik Gıda, vol. 19, no. 2, 2021, pp. 116-25, doi:10.24323/akademik-gida.976929.
Vancouver Gündem A, Tarhan Ö. Collagen/Gelatin Extraction from Poultry Skin and Mechanically Deboned Meat (MDM) Residues. Akademik Gıda. 2021;19(2):116-25.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).