Potansiyel Ekşi Hamur Starter Kültürü Weissella cibaria N9'un Dondurularak Kurutulması için Koruyucu Ajanların Optimizasyonu
Year 2021,
, 137 - 149, 01.08.2021
Latife Betül Gül
Osman Gül
Enes Dertli
Ahmet Hilmi Çon
Abstract
Bu çalışmada ekşi hamurdan izole edilmiş ve starter kültür olarak kullanılabileceği belirlenmiş Weissella cibaria N9 suşunun liyofilizasyonu için optimum kriyoprotektan formülasyonunun belirlenmesi, liyofilize kültürün karakterizasyonu ve depolama stabilitelerinin belirlenmesi amaçlanmıştır. Liyofilizasyon sonrası yüksek canlılık sağlamak için kullanılacak yağsız süt tozu (YST), laktoz ve sükroz’dan oluşan optimum formülasyon Box Behnken tasarımı kullanılarak belirlenmiştir. Optimum kriyoprotektan formülasyonu yüksek canlılık (>%99) için %5.65 YST, %20 laktoz ve %9.38 sükroz şeklinde tanımlanmıştır. Optimum kriyoprotektan formülasyonu kullanılarak elde edilen liyofilize kültürün nem içeriği, aw, camsı geçiş, partikül yüzey özellikleri ve kristal yapı bakımından kabul edilebilir fizikokimyasal özelliklere sahip olduğu gözlenmiştir. 3.37x10-3 1/gün inaktivasyon katsayısı ile en yüksek canlılık (9.11 log kob/g) 4C’de depolama sonunda elde edilmiştir. Sıcaklığa bağlı hızlandırılmış raf ömrü testi sonucu en hızlı canlılık kaybı 70C’de gözlenmiş olup kriyoprotektan kullanımı termal ölüm oranını azaltmıştır. Kriyoprotektan kullanılarak üretilen kültürün oda sıcaklığında 18 ay saklanabileceği belirlenmiştir. Sonuç olarak, optimum kriyoprotektan formülasyonu W. cibaria N9’un liyofilizasyonu ve depolama sırasında hücre canlılığını korumada etkili olduğu, toz materyaller için gerekli özellikleri taşıdığı ve uzun dönem muhafaza için canlılığın yeterli hassasiyette tahmin edilmesinde sıcaklığa bağlı hızlandırılmış raf ömrü testinin faydalı bir teknik olduğu tespit edilmiştir.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Project Number
TOVAG 117O159
Thanks
Latife Betül GÜL’ün doktora tezinin bir kısmı olan bu çalışmayı TOVAG 117O159 proje numarası ile maddi olarak destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)’a teşekkür ederiz.
References
- [1] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
- [2] Arendt, E.K., Ryan, L.A., Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165-74.
- [3] Corona, O., Alfonzo, A., Ventimiglia, G., Nasca, A., Francesca, N., Martorana, A., Moschetti, G., Settanni, L. (2016). Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiology, 59, 43-56.
- [4] Minervini, F., Di Cagno, R., Lattanzi, A., De Angelis, M., Antonielli, L., Cardinali, G., Cappelle, S., Gobbetti, M. (2012). Lactic acid bacterium and yeast microbiotas of 19 sourdoughs used for traditional/typical italian breads: interactions between ingredients and microbial species diversity. Applied and Environmental Microbiology, 78(4), 1251-64.
- [5] Pontonio, E., Nionelli, L., Curiel, J.A., Sadeghi, A., Di Cagno, R., Gobbetti, M., Rizzello, C.G. (2015). Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads. Food Microbiology, 47, 99-110.
- [6] Mantzourani, I., Plessas, S., Odatzidou, M., Alexopoulos, A., Galanis, A., Bezirtzoglou, E., Bekatorou, A. (2019). Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chemistry, 271, 259-265.
- [7] Reale, A., Di Renzo, T., Zotta, T., Preziuso, M., Boscaino, F., Ianniello, R., Storti, L.V., Tremonte, P., Coppola, R. (2016). Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT-Food Science and Technology, 73, 622-629.
- [8] Axel, C., Brosnan, B., Zannini, E., Furey, A., Coffey, A., Arendt, E.K. (2016). Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. International Journal of Food Microbiology, 239, 86-94.
- [9] Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., Bouix, M. (2014). Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. Journal of Applied Microbiology, 117(3), 729-40.
- [10] Stefanello, R.F., Nabeshima, E.H., Iamanaka, B.T., Ludwig, A., Fries, L.L.M., Bernardi, A.O., Copetti, M.V. (2019). Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Research International, 115, 90-94.
- [11] Keivani Nahr, F., Mokarram, R.R., Hejazi, M.A., Ghanbarzadeh, B., Sowti Khiyabani, M., Zoroufchi Benis, K. (2015). Optimization of the nanocellulose based cryoprotective medium to enhance the viability of freeze dried Lactobacillus plantarum using response surface methodology. LWT - Food Science and Technology, 64(1), 326-332.
- [12] Nakamura, T., Takagi, H., Shima, J. (2009). Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Cryobiology, 58(2), 170-4.
- [13] Higl, B., Kurtmann, L., Carlsen, C.U., Ratjen, J., Fo, P., Skibsted, L.H., Kulozik, U., Risbo, J. (2007). Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnology Progress, 23, 794-800.
- [14] Lu, Y., Huang, L., Yang, T., Lv, F., Lu, Z. (2017). Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology. LWT - Food Science and Technology, 80, 92-97.
- [15] Niu, X., Deng, L., Zhou, Y., Wang, W., Yao, S., Zeng, K. (2016). Optimization of a protective medium for freeze-dried Pichia membranifaciens and application of this biocontrol agent on citrus fruit. Journal of Applied Microbiology, 121(1), 234-43.
- [16] Passot, S., Cenard, S., Douania, I., Tréléa, I.C., Fonseca, F. (2012). Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria. Food Chemistry, 132(4), 1699-1705.
- [17] Peiren, J., Buyse, J., De Vos, P., Lang, E., Clermont, D., Hamon, S., Begaud, E., Bizet, C., Pascual, J., Ruvira, M.A., Macian, M.C., Arahal, D.R. (2015). Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections. Applied Microbiology and Biotechnology, 99(8), 3559-71.
- [18] Shu, G., Wang, Z., Chen, L., Wan, H., Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: Optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT - Food Science and Technology, 90, 70-76.
- [19] Khoramnia, A., Abdullah, N., Liew, S.L., Sieo, C.C., Ramasamy, K., Ho, Y.W. (2011). Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology. Animal Science Journal, 82(1), 127-135.
- [20] Yu, Y., Zhang, Z., Wang, Y., Liao, M., Li, B., Xue, L. (2017). Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda. Journal of Ocean University of China, 16(5), 831-839.
- [21] Ambros, S., Hofer, F., Kulozik, U. (2018). Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19. Journal of Applied Microbiology, 125(4), 1128-1136.
- [22] Ren, H., Zentek, J., Vahjen, W. (2019). Optimization of production parameters for probiotic lactobacillus strains as feed additive. Molecules, 24(18).
[23] Meroth, C.B., Walter, J., Hertel, C., Brandt, M.J., Hammes, W.P. (2003). Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Applied Environmental Microbiology, 69(1), 475-482.
- [24] Carvalho, A.S., Joana Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2002). Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters, 24, 1587-1591.
- [25] Yao, M., Wu, J., Li, B., Xiao, H., McClements, D.J., Li, L. (2017). Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, 72, 228-236.
- [26] Tsen, J.H., Lin, Y.P., Huang, H.Y., King, V.A. (2007). Accelerated storage testing of freeze-dried immobilized Lactobacillus acidophilus-fermented banana media. Journal of Food Processing and Preservation, 31, 688-701.
- [27] Costa, E., Usall, J., Teixido, N., Garcia, N., Vinas, I. (2000). Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. Journal of Applied Microbiology, 89, 793-800.
- [28] Schwab, C., Vogel, R., Ganzle, M.G. (2007). Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 55(2), 108-114.
- [29] Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2004). Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14(10), 835-847.
- [30] Joglekar, A.M., May, A.T. (1987). Product excellence through design of experiments. Cereal Foods World, 32(12), 857-868.
- [31] Albadran, H.A., Chatzifragkou, A., Khutoryanskiy, V.V., Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 208-216.
- [32] Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416.
- [33] Tonon, R.V., Brabet, C., Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
- [34] Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology, 92(3), 609-616.
- [35] Ananta, E., Volkert, M., Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399-409.
- [36] Chen, H., Chen, S., Li, C., Shu, G. (2015). Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Preparative Biochemistry and Biotechnology, 45(5), 463-75.
- [37] Passot, S., Gautier, J., Jamme, F., Cenard, S., Dumas, P., Fonseca, F. (2015). Understanding the cryotolerance of lactic acid bacteria using combined synchrotron infrared and fluorescence microscopies. Analyst, 140(17), 5920-5928.
- [38] Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2003). Impedimetric method for estimating the residual activity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. International Dairy Journal, 13(6), 463-468.
- [39] Botrel, D.A., de Barros Fernandes, R.V., Borges, S.V., Yoshida, M.I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344-352.
- [40] Gul, L.B., Gul, O., Yilmaz, M.T., Dertli, E., Con, A.H. (2020). Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough. Journal of Food Processing and Preservation, 44(4), e14400.
- [41] Nag, A., Das, S. (2013). Effect of trehalose and lactose as cryoprotectant during freeze-drying,in vitrogastro-intestinal transit and survival of microencapsulated freeze-dried Lactobacillus casei 431 cells. International Journal of Dairy Technology, 66(2), 162-169.
- [42] Gul, L.B., Con, A.H., Gul, O. (2020). Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation. Cryobiology, 96, 122-129.
- [43] Savedboworn, W., Teawsomboonkit, K., Surichay, S., Riansa-Ngawong, W., Rittisak, S., Charoen, R., Phattayakorn, K. (2019). Impact of protectants on the storage stability of freeze-dried probiotic Lactobacillus plantarum. Food Science and Biotechnology, 28(3), 795-805.
- [44] Gul, O., Atalar, I., Gul, L.B. (2019). Effect of different encapsulating agent combinations on viability of Lactobacillus casei Shirota during storage, in simulated gastrointestinal conditions and dairy dessert. Food Science and Technology Internetional, 25(7), 608-617.
- [45] Gul, O., Dervisoglu, M. (2020). Optimization of spray drying conditions for microencapsulation of Lactobacillus casei Shirota using response surface methodology. European Food Science and Engineering, 1(1), 1-8.
- [46] Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., Fisk, I. (2013). Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology, 31(11), 1274-1283.
- [47] Savedboworn, W., Kerdwan, N., Sakorn, A., Charoen, R., Tipkanon, S., Pattayakorn, K. (2017). Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze drying and subsequent storage. International Food Research Journal, 24(2), 787-794.
- [48] Kim, M., Nam, D.G., Kim, S.B., Im, P., Choe, J.S., Choi, A.J. (2018). Enhancement of viability, acid, and bile tolerance and accelerated stability in lyophilized Weissella cibaria JW15 with protective agents. Food Science and Nutrition, 6(7), 1904-1913.
- [49] King, V.A., Lin, H.J., Liu, C.F. (1998). Accelerated storage testing of freeze-dried and controlled low-temperature vacuum dehydrated Lactobacillus acidophilus. Journal of General and Applied Microbiology, 44, 161-165.
Optimization of Protective Agents for Freeze-Drying of Weisella cibaria N9 as a Potential Starter Culture
Year 2021,
, 137 - 149, 01.08.2021
Latife Betül Gül
Osman Gül
Enes Dertli
Ahmet Hilmi Çon
Abstract
In this study, it was aimed to determine the optimum cryoprotectant formulation for the lyophilization of Weissella cibaria N9 strain isolated from sourdough as a potential starter culture, the characterization of lyophilized culture and its storage stability. The optimum formulation of skim milk, lactose and sucrose as protective agents was determined by the Box-Behnken experimental design based on viability after lyophilization. The optimal cryoprotectant formulation was identified as 5.65% skim milk, 20% lactose and 20% sucrose for maximum cell survival (>99%). Lyophilized culture obtained by the optimum cryoprotectant formulation had acceptable physicochemical properties in terms of moisture and aw, glass transition, particle surface properties and crystal structure. The highest viability was observed at 4C (9.11 log cfu/g) with an inactivation rate of 3.37x10-3 day-1. The fastest cell reduction was observed at 70C as the result of an accelerated shelf life storage test, and protective agent effectively decreased thermal death. The culture produced by using cryoprotectant could be stored at room temperature for 18 months. Consequently, this protective agent formulation was an effective in protecting W. cibaria N9 viability during lyophilization and storage while lyophilized culture had ideal properties for powder materials, and accelerated shelf life storage test was a useful technique with certain predictability.
Project Number
TOVAG 117O159
References
- [1] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
- [2] Arendt, E.K., Ryan, L.A., Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165-74.
- [3] Corona, O., Alfonzo, A., Ventimiglia, G., Nasca, A., Francesca, N., Martorana, A., Moschetti, G., Settanni, L. (2016). Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiology, 59, 43-56.
- [4] Minervini, F., Di Cagno, R., Lattanzi, A., De Angelis, M., Antonielli, L., Cardinali, G., Cappelle, S., Gobbetti, M. (2012). Lactic acid bacterium and yeast microbiotas of 19 sourdoughs used for traditional/typical italian breads: interactions between ingredients and microbial species diversity. Applied and Environmental Microbiology, 78(4), 1251-64.
- [5] Pontonio, E., Nionelli, L., Curiel, J.A., Sadeghi, A., Di Cagno, R., Gobbetti, M., Rizzello, C.G. (2015). Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads. Food Microbiology, 47, 99-110.
- [6] Mantzourani, I., Plessas, S., Odatzidou, M., Alexopoulos, A., Galanis, A., Bezirtzoglou, E., Bekatorou, A. (2019). Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chemistry, 271, 259-265.
- [7] Reale, A., Di Renzo, T., Zotta, T., Preziuso, M., Boscaino, F., Ianniello, R., Storti, L.V., Tremonte, P., Coppola, R. (2016). Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT-Food Science and Technology, 73, 622-629.
- [8] Axel, C., Brosnan, B., Zannini, E., Furey, A., Coffey, A., Arendt, E.K. (2016). Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. International Journal of Food Microbiology, 239, 86-94.
- [9] Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., Bouix, M. (2014). Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. Journal of Applied Microbiology, 117(3), 729-40.
- [10] Stefanello, R.F., Nabeshima, E.H., Iamanaka, B.T., Ludwig, A., Fries, L.L.M., Bernardi, A.O., Copetti, M.V. (2019). Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Research International, 115, 90-94.
- [11] Keivani Nahr, F., Mokarram, R.R., Hejazi, M.A., Ghanbarzadeh, B., Sowti Khiyabani, M., Zoroufchi Benis, K. (2015). Optimization of the nanocellulose based cryoprotective medium to enhance the viability of freeze dried Lactobacillus plantarum using response surface methodology. LWT - Food Science and Technology, 64(1), 326-332.
- [12] Nakamura, T., Takagi, H., Shima, J. (2009). Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Cryobiology, 58(2), 170-4.
- [13] Higl, B., Kurtmann, L., Carlsen, C.U., Ratjen, J., Fo, P., Skibsted, L.H., Kulozik, U., Risbo, J. (2007). Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnology Progress, 23, 794-800.
- [14] Lu, Y., Huang, L., Yang, T., Lv, F., Lu, Z. (2017). Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology. LWT - Food Science and Technology, 80, 92-97.
- [15] Niu, X., Deng, L., Zhou, Y., Wang, W., Yao, S., Zeng, K. (2016). Optimization of a protective medium for freeze-dried Pichia membranifaciens and application of this biocontrol agent on citrus fruit. Journal of Applied Microbiology, 121(1), 234-43.
- [16] Passot, S., Cenard, S., Douania, I., Tréléa, I.C., Fonseca, F. (2012). Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria. Food Chemistry, 132(4), 1699-1705.
- [17] Peiren, J., Buyse, J., De Vos, P., Lang, E., Clermont, D., Hamon, S., Begaud, E., Bizet, C., Pascual, J., Ruvira, M.A., Macian, M.C., Arahal, D.R. (2015). Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections. Applied Microbiology and Biotechnology, 99(8), 3559-71.
- [18] Shu, G., Wang, Z., Chen, L., Wan, H., Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: Optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT - Food Science and Technology, 90, 70-76.
- [19] Khoramnia, A., Abdullah, N., Liew, S.L., Sieo, C.C., Ramasamy, K., Ho, Y.W. (2011). Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology. Animal Science Journal, 82(1), 127-135.
- [20] Yu, Y., Zhang, Z., Wang, Y., Liao, M., Li, B., Xue, L. (2017). Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda. Journal of Ocean University of China, 16(5), 831-839.
- [21] Ambros, S., Hofer, F., Kulozik, U. (2018). Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19. Journal of Applied Microbiology, 125(4), 1128-1136.
- [22] Ren, H., Zentek, J., Vahjen, W. (2019). Optimization of production parameters for probiotic lactobacillus strains as feed additive. Molecules, 24(18).
[23] Meroth, C.B., Walter, J., Hertel, C., Brandt, M.J., Hammes, W.P. (2003). Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Applied Environmental Microbiology, 69(1), 475-482.
- [24] Carvalho, A.S., Joana Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2002). Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters, 24, 1587-1591.
- [25] Yao, M., Wu, J., Li, B., Xiao, H., McClements, D.J., Li, L. (2017). Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, 72, 228-236.
- [26] Tsen, J.H., Lin, Y.P., Huang, H.Y., King, V.A. (2007). Accelerated storage testing of freeze-dried immobilized Lactobacillus acidophilus-fermented banana media. Journal of Food Processing and Preservation, 31, 688-701.
- [27] Costa, E., Usall, J., Teixido, N., Garcia, N., Vinas, I. (2000). Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. Journal of Applied Microbiology, 89, 793-800.
- [28] Schwab, C., Vogel, R., Ganzle, M.G. (2007). Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 55(2), 108-114.
- [29] Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2004). Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14(10), 835-847.
- [30] Joglekar, A.M., May, A.T. (1987). Product excellence through design of experiments. Cereal Foods World, 32(12), 857-868.
- [31] Albadran, H.A., Chatzifragkou, A., Khutoryanskiy, V.V., Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 208-216.
- [32] Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416.
- [33] Tonon, R.V., Brabet, C., Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
- [34] Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology, 92(3), 609-616.
- [35] Ananta, E., Volkert, M., Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399-409.
- [36] Chen, H., Chen, S., Li, C., Shu, G. (2015). Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Preparative Biochemistry and Biotechnology, 45(5), 463-75.
- [37] Passot, S., Gautier, J., Jamme, F., Cenard, S., Dumas, P., Fonseca, F. (2015). Understanding the cryotolerance of lactic acid bacteria using combined synchrotron infrared and fluorescence microscopies. Analyst, 140(17), 5920-5928.
- [38] Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P. (2003). Impedimetric method for estimating the residual activity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. International Dairy Journal, 13(6), 463-468.
- [39] Botrel, D.A., de Barros Fernandes, R.V., Borges, S.V., Yoshida, M.I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344-352.
- [40] Gul, L.B., Gul, O., Yilmaz, M.T., Dertli, E., Con, A.H. (2020). Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough. Journal of Food Processing and Preservation, 44(4), e14400.
- [41] Nag, A., Das, S. (2013). Effect of trehalose and lactose as cryoprotectant during freeze-drying,in vitrogastro-intestinal transit and survival of microencapsulated freeze-dried Lactobacillus casei 431 cells. International Journal of Dairy Technology, 66(2), 162-169.
- [42] Gul, L.B., Con, A.H., Gul, O. (2020). Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation. Cryobiology, 96, 122-129.
- [43] Savedboworn, W., Teawsomboonkit, K., Surichay, S., Riansa-Ngawong, W., Rittisak, S., Charoen, R., Phattayakorn, K. (2019). Impact of protectants on the storage stability of freeze-dried probiotic Lactobacillus plantarum. Food Science and Biotechnology, 28(3), 795-805.
- [44] Gul, O., Atalar, I., Gul, L.B. (2019). Effect of different encapsulating agent combinations on viability of Lactobacillus casei Shirota during storage, in simulated gastrointestinal conditions and dairy dessert. Food Science and Technology Internetional, 25(7), 608-617.
- [45] Gul, O., Dervisoglu, M. (2020). Optimization of spray drying conditions for microencapsulation of Lactobacillus casei Shirota using response surface methodology. European Food Science and Engineering, 1(1), 1-8.
- [46] Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., Fisk, I. (2013). Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology, 31(11), 1274-1283.
- [47] Savedboworn, W., Kerdwan, N., Sakorn, A., Charoen, R., Tipkanon, S., Pattayakorn, K. (2017). Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze drying and subsequent storage. International Food Research Journal, 24(2), 787-794.
- [48] Kim, M., Nam, D.G., Kim, S.B., Im, P., Choe, J.S., Choi, A.J. (2018). Enhancement of viability, acid, and bile tolerance and accelerated stability in lyophilized Weissella cibaria JW15 with protective agents. Food Science and Nutrition, 6(7), 1904-1913.
- [49] King, V.A., Lin, H.J., Liu, C.F. (1998). Accelerated storage testing of freeze-dried and controlled low-temperature vacuum dehydrated Lactobacillus acidophilus. Journal of General and Applied Microbiology, 44, 161-165.