Review
BibTex RIS Cite

Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi

Year 2021, , 185 - 197, 01.08.2021
https://doi.org/10.24323/akademik-gida.977297

Abstract

Son yıllarda gıdaların yapısında bulunan yağ, esansiyel yağ, renk maddesi, polifenol, protein ve pektin gibi değerli bileşenlerin eldesinde kullanılan ekstraksiyon yöntemlerinin bazı olumsuz yönlerinin olduğu bazı olumsuz yönlerinin iyileştirilmesi amacıyla güncel alternatif yöntemleri üzerine yapılan çalışmalar artmaktadır. Ekstraksiyon işlemi ile gıdaların yapısındaki değerli bileşenleri yüksek verim ve kalitede elde edebilmek amaçlanmaktadır. Güncel yöntemler arasında yer alan düşük frekansta elektrik işlem ile desteklenmiş ekstraksiyon yöntemleri, geleneksel yöntemlere kıyasla yüksek ekstraksiyon ve enerji verimliliği, daha az solvent tüketimi ve daha kısa işlem süresi gibi bazı avantajlar sağlamaktadır. Bu çalışmada, ohmik ısıtma, ılımlı elektrik alan ve vurgulu elektrik alan gibi düşük frekansta uygulanan elektriksel işlemlerin ekstraksiyon mekanizması üzerine etkileri, etki eden işlem parametreleri (sıcaklık, frekans, dalga tipi, voltaj gradyanı ve elektriksel iletkenlik) ve gıda endüstrisindeki uygulama alanları derlenmiştir.

Supporting Institution

Ege Üniversitesi BAP

Project Number

FYL-2019-21153

Thanks

Bu derleme çalışması, Ege Üniversitesi BAP FYL-2019-21153 nolu proje kapsamında maddi olarak desteklenen “Kırmızı Pancardan Renk Maddesi Ekstraksiyonunda Ohmik Isıtma Desteğinin Kullanımı” başlıklı Yüksek Lisans Tezi kapsamında hazırlanmıştır.

References

  • [1] Dincer, I., Rosen, M.A. (2013). Exergy and energy analyses. In Exergy, Elsevier, London, 21-30.
  • [2] Apaiah, R.K., Linnemann, A.R., van der Kooi, H.J. (2006). Exergy analysis: A tool to study the sustainability of food supply chains. Food Research International, 39(1), 1-11.
  • [3] Gavahian, M., Chu, Y.H., Sastry, S. (2018). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040-1052.
  • [4] Baysal, T., İçier, F., Baysal, A.H. (2011). Güncel Elektriksel Isıtma Yöntemleri. Sidas Yayıncılık (1. Baskı), İzmir.
  • [5] Sumnu, S.G., Ozkoc, S.O. (2010). Infrared baking and roasting. In Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu. CRC Press, Florida, USA, 203-223p.
  • [6] Sevda, S., Singh, A. (2020). Mathematical and statistical applications in food engineering: Mathematical Modelling for Predicting the Temperatures During Microwave Heating of Solid Foods, Edited by Ilicali, C., Icier, F., Cokgezme, Ö.F., CRC press, Florida, USA.
  • [7] Ştefănoiu, G.A., Tănase, E.E., Miteluţ, A.C., Popa, M. E. (2016). Unconventional treatments of food: microwave vs. radiofrequency. Agriculture and Agricultural Science Procedia, 10, 503-510.
  • [8] Gavahian, M., Chu, Y.H. (2018). Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science and Emerging Technologies, 50, 34-41.
  • [9] Manouchehri, R., Saharkhiz, M.J., Karami, A., Niakousari, M. (2018). Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chemistry and Pharmacy, 8, 76-81.
  • [10] Aamir, M., Jittanit, W. (2017). Ohmic heating treatment for Gac aril oil extraction: Effects on extraction efficiency, physical properties and some bioactive compounds. Innovative Food Science and Emerging Technologies, 41, 224-234.
  • [11] Jaeschke, D.P., Menegol, T., Rech, R., Mercali, G.D., Marczak, L.D.F. (2016). Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process Biochemistry, 51(10), 1636-1643.
  • [12] De Oliveira, C.F., Giordani, D., Gurak, P.D., Cladera-Olivera, F., Marczak, L.D.F. (2015). Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innovative Food Science and Emerging Technologies, 29, 201-208.
  • [13] Yildiz, H., Bozkurt, H., Icier, F. (2009). Ohmic and conventional heating of pomegranate juice: effects on rheology, color, and total phenolics. Food Science and Technology International, 15(5), 503-512.
  • [14] Kulshrestha, S., Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies, 4(2), 189-194.
  • [15] Nair, G.R., Divya, V.R., Prasannan, L., Habeeba, V., Prince, M.V., Raghavan, G.V. (2014). Ohmic heating as a pre-treatment in solvent extraction of rice bran. Journal of Food Science and Technology, 51(10), 2692-2698.
  • [16] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Farahnaky, A. (2015). Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 29, 161-169.
  • [17] Pereira, R.N., Rodrigues, R.M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., Vicente, A.A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. Food, Science and Technology, 74, 493-503.
  • [18] Loypimai, P., Moongngarm, A., Chottanom, P., Moontree, T. (2015). Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innovative Food Science and Emerging Technologies, 27, 102-110.
  • [19] Sensoy, I., Sastry, S.K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27, 1-15.
  • [20] Loginova, K.V., Lebovka, N.I., Vorobiev, E. (2011). Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering, 106(2), 127-133.
  • [21] López, N., Puértolas, E., Condón, S., Raso, J., Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60-66.
  • [22] Bellebna, Y., Bermmaki, H., Semmak, A., Tilmatine, A. (2016). Experimental design for enhancement of betanin in beet juice using pulsed electric field. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering, Series II, 9(2), 71.
  • [23] Parniakov, O., Barba, F.J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., Vorobiev, E. (2015). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128-134.
  • [24] Termrittikul, P., Jittanit, W., Sirisansaneeyakul, S. (2018). The application of ohmic heating for inulin extraction from the wet-milled and dry-milled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Innovative Food Science and Emerging Technologies, 48, 99-110.
  • [25] Khuenpet, K., Fukuoka, M., Jittanit, W., Sirisansaneeyakul, S. (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering, 194, 67-78.
  • [26] Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H.A., Barzegar, M. (2017a). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161.
  • [27] Saberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., Banakar, A., Barzegar, M. (2017b). The potential of ohmic heating for pectin extraction from orange waste. Journal of Food Processing and Preservation, 42(2), e13458.
  • [28] Lam, G.P., Postma, P.R., Fernandes, D.A., Timmermans, R.A.H., Vermuë, M.H., Barbosa, M.J., Eppink, M.H. M., Wijffels, R.H., Olivieri, G. (2017). Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Research, 24, 181-187.
  • [29] İçier, F. (2003). Gıdaların ohmik ısıtılmasının deneysel ve kuramsal olarak incelenmesi. Doktora tezi, Ege Üniversitesi, İzmir.
  • [30] Sastry, S.K., Palaniappan, S. (1992). Mathematical modeling and experimental studies on ohmic heating of liquid‐particle mixtures in a static heater. Journal of Food Process Engineering, 15(4), 241-261.
  • [31] Skudder, P., Biss, C. (1987). Aseptic processing of food products using ohmic heating. Chemical Engineer (London), (433), 26-28.
  • [32] Kutlu, N., Yeşilören, G., İşci, A., Şakıyan, Ö. (2017). Konvansiyonel ekstraksiyona alternatif: yeşil teknolojiler. Gıda, 42(5), 514-526.
  • [33] Anonim (2000). Kinetics of microbial inactivation for alternative food processing technologies: ohmic and inductive heating. (http://www.cfsan.fda.gov/wcomm/ift-ohm.html). (Erişim Tarihi: 20.02.2020)
  • [34] Sastry, S.K. (2009). Ohmic heating. Food Engineering-Volume III, 37.
  • [35] Gavahian, M., Farahnaky, A., Javidnia, K., Majzoobi, M. (2012). Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science and Emerging Technologies, 14, 85-91.
  • [36] Cevik, M., Icier, F. (2018). Effects of voltage gradient and fat content on changes of electrical conductivity of frozen minced beef meat during ohmic thawing. Journal of Food Process Engineering, 41(4), e12675.
  • [37] Roberts, J.S., Balaban, M.O., Zimmerman, R., Luzuriaga, D. (1998). Design and testing of a prototype ohmic thawing unit. Computers and Electronics in Agriculture, 19(2), 211-222.
  • [38] Loghavi, L., Sastry, S.K., Yousef, A.E. (2007). Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 98(4), 872-881.
  • [39] Kulshrestha, S.A., Sastry, S.K. (2010). Changes in permeability of moderate electric field (MEF) treated vegetable tissue over time. Innovative Food Science and Emerging Technologies, 11(1), 78–83.
  • [40] Napotnik, T.B., Miklavčič, D. (2018). In vitro electroporation detection methods–An overview. Bioelectrochemistry, 120, 166-182.
  • [41] Cho, H.Y., Yousef, A.E., Sastry, S.K. (1999). Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating. Biotechnology and Bioengineering, 62(3), 368-372.
  • [42] Sastry, S.K. (2005). Advances in ohmic heating and moderate electric field (MEF) processing. In Novel Food Processing Technologies (pp. 491-500). CRC Press, Boca Raton, FL, USA.
  • [43] Zhong, T., Lima, M. (2003). The effect of ohmic heating on vacuum drying rate of sweet potato tissue. Bioresource Technology, 87(3), 215-220.
  • [44] Loghavi, L., Sastry, S.K., Yousef, A.E. (2008). Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnology Progress, 24(1), 148-153.
  • [45] Samaranayake, C.P., Sastry, S.K. (2016). Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature. Journal of Food Engineering, 186, 17-26.
  • [46] Samaranayake, C.P., Sastry, S.K. (2018). In-situ activity of α-amylase in the presence of controlled-frequency moderate electric fields. Food Science and Technology, 90, 448-454.
  • [47] Machado, L.F., Pereira, R.N., Martins, R.C., Teixeira, J.A., Vicente, A.A. (2010). Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 96(4), 520-527.
  • [48] Syed, Q.A., Ishaq, A., Rahman, U.U., Aslam, S., Shukat, R. (2017). Pulsed electric field technology in food preservation: A review. Journal of Nutritional Health and Food Engineering, 6(6), 168-172.
  • [49] Rocha, C.M., Genisheva, Z., Ferreira-Santos, P., Rodrigues, R., Vicente, A.A., Teixeira, J.A., Pereira, R.N. (2018). Electric field-based technologies for valorization of bioresources. Bioresource Technology, 254, 325-339.
  • [50] Gavahian, M., Farahnaky, A., Sastry, S. (2016). Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. Food and Bioproducts Processing, 100, 85-91.
  • [51] Pare, A., Nema, A., Singh, V.K., Mandhyan, B.L. (2014). Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery. Journal of Food Science and Technology, 51(8), 1606-1611.
  • [52] Lakkakula, N.R., Lima, M., Walker, T. (2004). Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresource Technology, 92(2), 157-161.
  • [53] Wang, W.C., Sastry, S.K. (2002). Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technology, 3, 371-377.
  • [54] Yodsuwan, N., Kamonpatana, P., Chisti, Y., Sirisansaneeyakul, S. (2018). Ohmic heating pretreatment of algal slurry for production of biodiesel. Journal of Biotechnology, 267, 71-78.
  • [55] Cabas, B. M., Azazi, I., Doner, D., Bayana, D., Cokgezme, O. F., Icier, F. (2019). Comperative performance analysis of ohmic thawing and conventional thawing of spinach puree. 4th International Conference on Food and Biosystems Engineering, May 30- June 2, 2019, Create Island, Greece, Book of Proceedings, 77-85.
  • [56] Donsì, F., Ferrari, G., Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109-130.
  • [57] Porras-Parral, G., Miri, T., Bakalis, S., Fryer, P.J. (2012). The effect of electrical processing on mass transfer in beetroot and model gels. Journal of Food Engineering, 112(3), 208-217.
  • [58] Zimmermann, U., (1986). Electrical breakdown, electropermeabilization and electrofusion. Review of Physiology, Biochemistry and Pharmacology, 105, 175–255.
  • [59] Maran, J.P., Priya, B. (2015). Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate Polymers, 115, 732-738.
  • [60] Yang, Z., Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science and Emerging Technologies, 11(3), 470-476.
  • [61] Salengke, S., Waris, S.A., Mochtar, A.H. (2016). Design and optimization of pilot scale ohmic-based carrageenan extraction technology. Journal of Nutrition and Food Sciences, 6(6), 67.
  • [62] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Golmakani, M.T., Farahnaky, A. (2017). Effects of electrolyte concentration and ultrasound pretreatment on ohmic-assisted hydrodistillation of essential oils from Mentha piperita L. International Journal of Food Engineering, 13(10).
  • [63] Lebovka, N.I., Shynkaryk, M., Vorobiev, E. (2007). Moderate electric field treatment of sugarbeet tissues. Biosystems Engineering, 96(1), 47-56.
  • [64] Imai, T., Uemura, K., Ishida, N., Yoshizaki, S., Noguchi, A. (1995). Ohmic heating of Japanese white radish Rhaphanus sativus L. International Journal of Food Science and Technology, 30(4), 461-472.
  • [65] Sastry, S.K., Barach, J.T. (2000). Ohmic and inductive heating. Journal of Food Science, 65, 42-46.
  • [66] Kim, J., Pyun, Y. (1995). Extraction of soy milk using ohmic heating. 9 th Congress of Food Science Technology, July 31–August 4, 1995, Budapest, Hungary, Book of Proceedings, 102-120.
  • [67] Knirsch, M.C., Dos Santos, C.A., de Oliveira Soares, A.A.M., Penna, T.C.V. (2010). Ohmic heating–a review. Trends in Food Science and Technology, 21(9), 436-441.
  • [68] Praporscic, I., Lebovka, N.I., Ghnimi, S., Vorobiev, E. (2006). Ohmically heated, enhanced expression of juice from apple and potato tissues. Biosystems Engineering, 93(2), 199-204.
  • [69] Coelho, M.I., Pereira, R.N.C., Teixeira, J.A., Pintado, M.E. (2017). Valorization of tomato by-products: Influence of ohmic heating process on polyphenols extraction. 1th World Congress on Polyphenols Applications, June 20–21, 2017, Vienna, 87p., Retrieved from https://hdl.handle.net/1822/47502
  • [70] Al-Hilphy, A. R., AlRikabi, A. K., & Al-Salim, A. M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43, 21-28.
  • [71] Halden, K., de Alwis, A.A.P., Fryer, P.J. (1990). Changes in the electrical conductivity of foods during ohmic heating. International Journal of Food Science and Technology, 25, 9-25.
  • [72] Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O.F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science and Emerging Technologies, 39, 241-246.
  • [73] Goullieux, A., Pain, J.P. (2005). Emerging technologies for food processing: Ohmic heating, Elsevier Academic Press, Inc, San Diego, CA, 476-479.
  • [74] Lima, M., Sastry, S.K. (1999). The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of Food Engineering, 41(2), 115-119.
  • [75] Onwuka, U.N., Ejikeme, C. (2005). Influence of voltage and electrode type on the yield and quality of fruit juice extracted by ohmic heating. Fruits, 60(5), 341-349.
  • [76] Lima, M., Heskitt, B.F., Sastry, S.K. (2001). Diffusion of beet dye during electrical and conventional heating at steady‐state temperature. Journal of Food Process Engineering, 24(5), 331-340.
  • [77] Hashemi, S.M.B., Nikmaram, N., Esteghlal, S., Khaneghah, A.M., Niakousari, M., Barba, F.J., Roohinejad, S., Koubaa, M. (2017). Efficiency of ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innovative Food Science and Emerging Technologies, 41, 172-178.
  • [78] Damyeh, M.S., Niakousari, M. (2017). Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil. Industrial Crops and Products, 98, 100-107.
  • [79] Gavahian, M., Lee, Y.T., Chu, Y. H. (2018). Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science and Emerging Technologies, 48, 33-41.
  • [80] Kandušer, M., Miklavčič, D., (2009). Electroporation in biological cell and tissue: an overview. In electrotechnologies for extraction from food plants and biomaterials. Springer, New York, 1-37.
  • [81] Luengo, E., Condón-Abanto, S., Álvarez, I., Raso, J. (2014). Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. The Journal of Membrane Biology, 247(12), 1269-1277.
  • [82] Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N.I., Vorobiev, E. (2014). Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresource Technology, 153, 254-259.
  • [83] El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R. (2013). Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology, 6(5), 1281-1289.
  • [84] Boussetta, N., Lanoisellé, J.L., Bedel-Cloutour, C., Vorobiev, E. (2009). Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. Journal of Food Engineering, 95(1), 192-198.
  • [85] Zderic, A., Zondervan, E. (2016). Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design, 109, 586-592.
  • [86] Darvishi, H., Hosainpour, A., Nargesi, F., Fadavi, A. (2015). Exergy and energy analyses of liquid food in an Ohmic heating process: A case study of tomato production. Innovative Food Science and Emerging Technologies, 31, 73-82.
  • [87] Tunç, M.T., Koca, İ. (2021). Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. Journal of Food Process Engineering, 44(3), e13635.
  • [88] Gahruie, H.H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., Mohsenpour, Z. (2020). Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants, 19, 100264.

Extraction of Valuable Constituents from Foods by using Low Frequency Electrical Process Assisted Extraction Methods

Year 2021, , 185 - 197, 01.08.2021
https://doi.org/10.24323/akademik-gida.977297

Abstract

In recent years, studies on novel extraction methods have been increasing to eliminate some disadvantages of conventional extraction methods to extract valuable components as oil, essential oil, color compounds, polyphenol, protein, pectin etc. from foodstuff. The aim of the extraction process is to obtain valuable components from food materials with high product yield and quality. The low-frequency electrical process assisted extraction methods, which are the novel extraction methods, provide advantages such as high extraction efficiency, less solvent consumption, short processing time and high energy efficiency compared to conventional methods. In this study, the effects of low-frequency electrical assisted extraction methods such as ohmic heating, moderate electric field and pulsed electric field on extraction mechanism, the effective process parameters (temperature, frequency, wave type, voltage gradient, electrical conductivity), and application areas in the food industry were reviewed.

Project Number

FYL-2019-21153

References

  • [1] Dincer, I., Rosen, M.A. (2013). Exergy and energy analyses. In Exergy, Elsevier, London, 21-30.
  • [2] Apaiah, R.K., Linnemann, A.R., van der Kooi, H.J. (2006). Exergy analysis: A tool to study the sustainability of food supply chains. Food Research International, 39(1), 1-11.
  • [3] Gavahian, M., Chu, Y.H., Sastry, S. (2018). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040-1052.
  • [4] Baysal, T., İçier, F., Baysal, A.H. (2011). Güncel Elektriksel Isıtma Yöntemleri. Sidas Yayıncılık (1. Baskı), İzmir.
  • [5] Sumnu, S.G., Ozkoc, S.O. (2010). Infrared baking and roasting. In Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu. CRC Press, Florida, USA, 203-223p.
  • [6] Sevda, S., Singh, A. (2020). Mathematical and statistical applications in food engineering: Mathematical Modelling for Predicting the Temperatures During Microwave Heating of Solid Foods, Edited by Ilicali, C., Icier, F., Cokgezme, Ö.F., CRC press, Florida, USA.
  • [7] Ştefănoiu, G.A., Tănase, E.E., Miteluţ, A.C., Popa, M. E. (2016). Unconventional treatments of food: microwave vs. radiofrequency. Agriculture and Agricultural Science Procedia, 10, 503-510.
  • [8] Gavahian, M., Chu, Y.H. (2018). Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science and Emerging Technologies, 50, 34-41.
  • [9] Manouchehri, R., Saharkhiz, M.J., Karami, A., Niakousari, M. (2018). Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chemistry and Pharmacy, 8, 76-81.
  • [10] Aamir, M., Jittanit, W. (2017). Ohmic heating treatment for Gac aril oil extraction: Effects on extraction efficiency, physical properties and some bioactive compounds. Innovative Food Science and Emerging Technologies, 41, 224-234.
  • [11] Jaeschke, D.P., Menegol, T., Rech, R., Mercali, G.D., Marczak, L.D.F. (2016). Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process Biochemistry, 51(10), 1636-1643.
  • [12] De Oliveira, C.F., Giordani, D., Gurak, P.D., Cladera-Olivera, F., Marczak, L.D.F. (2015). Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innovative Food Science and Emerging Technologies, 29, 201-208.
  • [13] Yildiz, H., Bozkurt, H., Icier, F. (2009). Ohmic and conventional heating of pomegranate juice: effects on rheology, color, and total phenolics. Food Science and Technology International, 15(5), 503-512.
  • [14] Kulshrestha, S., Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies, 4(2), 189-194.
  • [15] Nair, G.R., Divya, V.R., Prasannan, L., Habeeba, V., Prince, M.V., Raghavan, G.V. (2014). Ohmic heating as a pre-treatment in solvent extraction of rice bran. Journal of Food Science and Technology, 51(10), 2692-2698.
  • [16] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Farahnaky, A. (2015). Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 29, 161-169.
  • [17] Pereira, R.N., Rodrigues, R.M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., Vicente, A.A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. Food, Science and Technology, 74, 493-503.
  • [18] Loypimai, P., Moongngarm, A., Chottanom, P., Moontree, T. (2015). Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innovative Food Science and Emerging Technologies, 27, 102-110.
  • [19] Sensoy, I., Sastry, S.K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27, 1-15.
  • [20] Loginova, K.V., Lebovka, N.I., Vorobiev, E. (2011). Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering, 106(2), 127-133.
  • [21] López, N., Puértolas, E., Condón, S., Raso, J., Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60-66.
  • [22] Bellebna, Y., Bermmaki, H., Semmak, A., Tilmatine, A. (2016). Experimental design for enhancement of betanin in beet juice using pulsed electric field. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering, Series II, 9(2), 71.
  • [23] Parniakov, O., Barba, F.J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., Vorobiev, E. (2015). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128-134.
  • [24] Termrittikul, P., Jittanit, W., Sirisansaneeyakul, S. (2018). The application of ohmic heating for inulin extraction from the wet-milled and dry-milled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Innovative Food Science and Emerging Technologies, 48, 99-110.
  • [25] Khuenpet, K., Fukuoka, M., Jittanit, W., Sirisansaneeyakul, S. (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering, 194, 67-78.
  • [26] Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H.A., Barzegar, M. (2017a). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161.
  • [27] Saberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., Banakar, A., Barzegar, M. (2017b). The potential of ohmic heating for pectin extraction from orange waste. Journal of Food Processing and Preservation, 42(2), e13458.
  • [28] Lam, G.P., Postma, P.R., Fernandes, D.A., Timmermans, R.A.H., Vermuë, M.H., Barbosa, M.J., Eppink, M.H. M., Wijffels, R.H., Olivieri, G. (2017). Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Research, 24, 181-187.
  • [29] İçier, F. (2003). Gıdaların ohmik ısıtılmasının deneysel ve kuramsal olarak incelenmesi. Doktora tezi, Ege Üniversitesi, İzmir.
  • [30] Sastry, S.K., Palaniappan, S. (1992). Mathematical modeling and experimental studies on ohmic heating of liquid‐particle mixtures in a static heater. Journal of Food Process Engineering, 15(4), 241-261.
  • [31] Skudder, P., Biss, C. (1987). Aseptic processing of food products using ohmic heating. Chemical Engineer (London), (433), 26-28.
  • [32] Kutlu, N., Yeşilören, G., İşci, A., Şakıyan, Ö. (2017). Konvansiyonel ekstraksiyona alternatif: yeşil teknolojiler. Gıda, 42(5), 514-526.
  • [33] Anonim (2000). Kinetics of microbial inactivation for alternative food processing technologies: ohmic and inductive heating. (http://www.cfsan.fda.gov/wcomm/ift-ohm.html). (Erişim Tarihi: 20.02.2020)
  • [34] Sastry, S.K. (2009). Ohmic heating. Food Engineering-Volume III, 37.
  • [35] Gavahian, M., Farahnaky, A., Javidnia, K., Majzoobi, M. (2012). Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science and Emerging Technologies, 14, 85-91.
  • [36] Cevik, M., Icier, F. (2018). Effects of voltage gradient and fat content on changes of electrical conductivity of frozen minced beef meat during ohmic thawing. Journal of Food Process Engineering, 41(4), e12675.
  • [37] Roberts, J.S., Balaban, M.O., Zimmerman, R., Luzuriaga, D. (1998). Design and testing of a prototype ohmic thawing unit. Computers and Electronics in Agriculture, 19(2), 211-222.
  • [38] Loghavi, L., Sastry, S.K., Yousef, A.E. (2007). Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 98(4), 872-881.
  • [39] Kulshrestha, S.A., Sastry, S.K. (2010). Changes in permeability of moderate electric field (MEF) treated vegetable tissue over time. Innovative Food Science and Emerging Technologies, 11(1), 78–83.
  • [40] Napotnik, T.B., Miklavčič, D. (2018). In vitro electroporation detection methods–An overview. Bioelectrochemistry, 120, 166-182.
  • [41] Cho, H.Y., Yousef, A.E., Sastry, S.K. (1999). Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating. Biotechnology and Bioengineering, 62(3), 368-372.
  • [42] Sastry, S.K. (2005). Advances in ohmic heating and moderate electric field (MEF) processing. In Novel Food Processing Technologies (pp. 491-500). CRC Press, Boca Raton, FL, USA.
  • [43] Zhong, T., Lima, M. (2003). The effect of ohmic heating on vacuum drying rate of sweet potato tissue. Bioresource Technology, 87(3), 215-220.
  • [44] Loghavi, L., Sastry, S.K., Yousef, A.E. (2008). Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnology Progress, 24(1), 148-153.
  • [45] Samaranayake, C.P., Sastry, S.K. (2016). Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature. Journal of Food Engineering, 186, 17-26.
  • [46] Samaranayake, C.P., Sastry, S.K. (2018). In-situ activity of α-amylase in the presence of controlled-frequency moderate electric fields. Food Science and Technology, 90, 448-454.
  • [47] Machado, L.F., Pereira, R.N., Martins, R.C., Teixeira, J.A., Vicente, A.A. (2010). Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 96(4), 520-527.
  • [48] Syed, Q.A., Ishaq, A., Rahman, U.U., Aslam, S., Shukat, R. (2017). Pulsed electric field technology in food preservation: A review. Journal of Nutritional Health and Food Engineering, 6(6), 168-172.
  • [49] Rocha, C.M., Genisheva, Z., Ferreira-Santos, P., Rodrigues, R., Vicente, A.A., Teixeira, J.A., Pereira, R.N. (2018). Electric field-based technologies for valorization of bioresources. Bioresource Technology, 254, 325-339.
  • [50] Gavahian, M., Farahnaky, A., Sastry, S. (2016). Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. Food and Bioproducts Processing, 100, 85-91.
  • [51] Pare, A., Nema, A., Singh, V.K., Mandhyan, B.L. (2014). Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery. Journal of Food Science and Technology, 51(8), 1606-1611.
  • [52] Lakkakula, N.R., Lima, M., Walker, T. (2004). Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresource Technology, 92(2), 157-161.
  • [53] Wang, W.C., Sastry, S.K. (2002). Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technology, 3, 371-377.
  • [54] Yodsuwan, N., Kamonpatana, P., Chisti, Y., Sirisansaneeyakul, S. (2018). Ohmic heating pretreatment of algal slurry for production of biodiesel. Journal of Biotechnology, 267, 71-78.
  • [55] Cabas, B. M., Azazi, I., Doner, D., Bayana, D., Cokgezme, O. F., Icier, F. (2019). Comperative performance analysis of ohmic thawing and conventional thawing of spinach puree. 4th International Conference on Food and Biosystems Engineering, May 30- June 2, 2019, Create Island, Greece, Book of Proceedings, 77-85.
  • [56] Donsì, F., Ferrari, G., Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109-130.
  • [57] Porras-Parral, G., Miri, T., Bakalis, S., Fryer, P.J. (2012). The effect of electrical processing on mass transfer in beetroot and model gels. Journal of Food Engineering, 112(3), 208-217.
  • [58] Zimmermann, U., (1986). Electrical breakdown, electropermeabilization and electrofusion. Review of Physiology, Biochemistry and Pharmacology, 105, 175–255.
  • [59] Maran, J.P., Priya, B. (2015). Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate Polymers, 115, 732-738.
  • [60] Yang, Z., Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science and Emerging Technologies, 11(3), 470-476.
  • [61] Salengke, S., Waris, S.A., Mochtar, A.H. (2016). Design and optimization of pilot scale ohmic-based carrageenan extraction technology. Journal of Nutrition and Food Sciences, 6(6), 67.
  • [62] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Golmakani, M.T., Farahnaky, A. (2017). Effects of electrolyte concentration and ultrasound pretreatment on ohmic-assisted hydrodistillation of essential oils from Mentha piperita L. International Journal of Food Engineering, 13(10).
  • [63] Lebovka, N.I., Shynkaryk, M., Vorobiev, E. (2007). Moderate electric field treatment of sugarbeet tissues. Biosystems Engineering, 96(1), 47-56.
  • [64] Imai, T., Uemura, K., Ishida, N., Yoshizaki, S., Noguchi, A. (1995). Ohmic heating of Japanese white radish Rhaphanus sativus L. International Journal of Food Science and Technology, 30(4), 461-472.
  • [65] Sastry, S.K., Barach, J.T. (2000). Ohmic and inductive heating. Journal of Food Science, 65, 42-46.
  • [66] Kim, J., Pyun, Y. (1995). Extraction of soy milk using ohmic heating. 9 th Congress of Food Science Technology, July 31–August 4, 1995, Budapest, Hungary, Book of Proceedings, 102-120.
  • [67] Knirsch, M.C., Dos Santos, C.A., de Oliveira Soares, A.A.M., Penna, T.C.V. (2010). Ohmic heating–a review. Trends in Food Science and Technology, 21(9), 436-441.
  • [68] Praporscic, I., Lebovka, N.I., Ghnimi, S., Vorobiev, E. (2006). Ohmically heated, enhanced expression of juice from apple and potato tissues. Biosystems Engineering, 93(2), 199-204.
  • [69] Coelho, M.I., Pereira, R.N.C., Teixeira, J.A., Pintado, M.E. (2017). Valorization of tomato by-products: Influence of ohmic heating process on polyphenols extraction. 1th World Congress on Polyphenols Applications, June 20–21, 2017, Vienna, 87p., Retrieved from https://hdl.handle.net/1822/47502
  • [70] Al-Hilphy, A. R., AlRikabi, A. K., & Al-Salim, A. M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43, 21-28.
  • [71] Halden, K., de Alwis, A.A.P., Fryer, P.J. (1990). Changes in the electrical conductivity of foods during ohmic heating. International Journal of Food Science and Technology, 25, 9-25.
  • [72] Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O.F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science and Emerging Technologies, 39, 241-246.
  • [73] Goullieux, A., Pain, J.P. (2005). Emerging technologies for food processing: Ohmic heating, Elsevier Academic Press, Inc, San Diego, CA, 476-479.
  • [74] Lima, M., Sastry, S.K. (1999). The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of Food Engineering, 41(2), 115-119.
  • [75] Onwuka, U.N., Ejikeme, C. (2005). Influence of voltage and electrode type on the yield and quality of fruit juice extracted by ohmic heating. Fruits, 60(5), 341-349.
  • [76] Lima, M., Heskitt, B.F., Sastry, S.K. (2001). Diffusion of beet dye during electrical and conventional heating at steady‐state temperature. Journal of Food Process Engineering, 24(5), 331-340.
  • [77] Hashemi, S.M.B., Nikmaram, N., Esteghlal, S., Khaneghah, A.M., Niakousari, M., Barba, F.J., Roohinejad, S., Koubaa, M. (2017). Efficiency of ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innovative Food Science and Emerging Technologies, 41, 172-178.
  • [78] Damyeh, M.S., Niakousari, M. (2017). Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil. Industrial Crops and Products, 98, 100-107.
  • [79] Gavahian, M., Lee, Y.T., Chu, Y. H. (2018). Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science and Emerging Technologies, 48, 33-41.
  • [80] Kandušer, M., Miklavčič, D., (2009). Electroporation in biological cell and tissue: an overview. In electrotechnologies for extraction from food plants and biomaterials. Springer, New York, 1-37.
  • [81] Luengo, E., Condón-Abanto, S., Álvarez, I., Raso, J. (2014). Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. The Journal of Membrane Biology, 247(12), 1269-1277.
  • [82] Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N.I., Vorobiev, E. (2014). Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresource Technology, 153, 254-259.
  • [83] El Darra, N., Grimi, N., Vorobiev, E., Louka, N., Maroun, R. (2013). Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology, 6(5), 1281-1289.
  • [84] Boussetta, N., Lanoisellé, J.L., Bedel-Cloutour, C., Vorobiev, E. (2009). Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. Journal of Food Engineering, 95(1), 192-198.
  • [85] Zderic, A., Zondervan, E. (2016). Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design, 109, 586-592.
  • [86] Darvishi, H., Hosainpour, A., Nargesi, F., Fadavi, A. (2015). Exergy and energy analyses of liquid food in an Ohmic heating process: A case study of tomato production. Innovative Food Science and Emerging Technologies, 31, 73-82.
  • [87] Tunç, M.T., Koca, İ. (2021). Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. Journal of Food Process Engineering, 44(3), e13635.
  • [88] Gahruie, H.H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., Mohsenpour, Z. (2020). Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants, 19, 100264.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Buse Melek Çabas This is me 0000-0002-2799-8654

Filiz İçier This is me 0000-0002-9555-3390

Project Number FYL-2019-21153
Publication Date August 1, 2021
Submission Date March 26, 2021
Published in Issue Year 2021

Cite

APA Çabas, B. M., & İçier, F. (2021). Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi. Akademik Gıda, 19(2), 185-197. https://doi.org/10.24323/akademik-gida.977297
AMA Çabas BM, İçier F. Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi. Akademik Gıda. August 2021;19(2):185-197. doi:10.24323/akademik-gida.977297
Chicago Çabas, Buse Melek, and Filiz İçier. “Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri Ile Gıdalardan Değerli Bileşen Eldesi”. Akademik Gıda 19, no. 2 (August 2021): 185-97. https://doi.org/10.24323/akademik-gida.977297.
EndNote Çabas BM, İçier F (August 1, 2021) Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi. Akademik Gıda 19 2 185–197.
IEEE B. M. Çabas and F. İçier, “Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi”, Akademik Gıda, vol. 19, no. 2, pp. 185–197, 2021, doi: 10.24323/akademik-gida.977297.
ISNAD Çabas, Buse Melek - İçier, Filiz. “Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri Ile Gıdalardan Değerli Bileşen Eldesi”. Akademik Gıda 19/2 (August 2021), 185-197. https://doi.org/10.24323/akademik-gida.977297.
JAMA Çabas BM, İçier F. Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi. Akademik Gıda. 2021;19:185–197.
MLA Çabas, Buse Melek and Filiz İçier. “Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri Ile Gıdalardan Değerli Bileşen Eldesi”. Akademik Gıda, vol. 19, no. 2, 2021, pp. 185-97, doi:10.24323/akademik-gida.977297.
Vancouver Çabas BM, İçier F. Düşük Frekansta Elektriksel İşlem Destekli Ekstraksiyon Yöntemleri ile Gıdalardan Değerli Bileşen Eldesi. Akademik Gıda. 2021;19(2):185-97.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).