Review
BibTex RIS Cite

Phytases: Their Effects on Environment, Nutritional and Biotechnological Importance

Year 2018, Volume: 16 Issue: 1, 109 - 119, 23.04.2018
https://doi.org/10.24323/akademik-gida.417903

Abstract

Phytic acid is the primary storage form of phosphate
in cereals, legumes and oilseeds, which are the principal components of animal
feeds. Because of the lack of gastrointestinal phytase enzyme, monogastric
animals and human are unable to digest phytate completely and do not benefit the
phosphate of phytates. Furthermore, phytic acid shows anti-nutritive effect
because it forms non-soluble complexes with some metal ions and proteins at physiologic
pH values that prevent their bioavailability. Because of the anti-nutritive
effect, the need for extra phosphorus addition to feeds and formation of
environmental pollution due to excretion of phosphorus in its structure that
cannot be used, de-phosphorulation of phytic acid by phytase enzyme is very
important. Industrially, phytases have to be used in various fields especially
in feed and food industries. Among phytase enzymes obtained from different
sources, microbial phytases are the most appropriate ones for industrial and
biotechnological applications. Phytases produced by thermophilic fungi have several
features such as activity at a wide pH range, high specific activity and especially
thermostability at high temperatures applied in industrial processes. So they
have very important place among microbial phytases. In this review, properties
of phytase enzyme, precautions for human nutrition and health and environment, sources
and uses of phytases are discussed.

References

  • [1] Telefoncu, A., 1986. İmmobilize Enzimler ve İmmobilizasyon Yöntemleri. Temel ve Uygulamalı Enzimoloji Biyokimya Lisans Üstü Yaz Okulu, İzmir.
  • [2] Shuler, M.L., Kargi, F., 2002. Bioprocess Engineering. 2nd ed. Prentice Hall PTR, USA.
  • [3] Gözükara E., 1997. Biyokimya 2. Nobel Tıp Kitapevleri.
  • [4] Bailey J.E., Ollis D.F., 1977. Biochemical Engineering Fundamentals. Edited by Mc Graw-Hill, USA.
  • [5] Wiseman, A., 1987. Chapter 3. The Application of Enzymes in Industry. Handbook of Enzymes Biotechnology, Ed. by Ellis Horwood Second Edition, Chichester, UK, 274-373p.
  • [6] Turner, P., Mamo, G., Karlsson, E.N., 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories 6(9): 1-23.
  • [7] John, F.K., 1987. Enzyme Technology. Biotechnology 7A, Edited by H.J. Rehm, G. Reed, Lincoln, UK, 37-62p.
  • [8] Maheshwari, R., Bharadwaj, G., Bhat, M.K., 2000. Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews 64(3): 461-488.
  • [9] Lei, X., Blake, J.P., Forsberg, C.W., Fox, D.G., Grabau, E., Mroz, Z., Sutton, A.L., Walker, W.R., Webb, K., Matthews, J.C., Shears, S.B., Veum, T., Bell, A.W., 2006. Animal Agriculture’s Future Through Biotechnology. Part 4, CAST Council for Agricultural Science and Technology, Issue paper no: 33.
  • [10] Sariyska, M.V., Gargova, S.A., Koleva, A.L., Angelov, A.I., 2005. Aspergillus niger phytase: Purification and characterization. Biotechnol.&Biotechnol. Eq. 19: 98-105.
  • [11] Polaina, J., Maccabe, A.P., 2007. Industrial Enzymes Structure, Function and Applications. Springer 641: 505-529.
  • [12] Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A., Soccol, V.T., 2001. Production, purification and properties of microbial phytases. Bioresource Technol 7: 203-214.
  • [13] Feil, B., 2001. Phytic acid. Journal of New Seeds 3(3): 1-35.
  • [14] Kumar, V., Sinha, A.K., Makkar, H.P.S., Becker, K., 2010. Dietary roles of phytate and phytase in human nutrition. Food Chemistry 120: 945–959.
  • [15] Afinah, S., Yazid, A.M., Anis Shobirin, M.H., Shuhaimi, M., 2010. Phytase: Application in food industry. International Food Research Journal 17: 13-21.
  • [16] Bohn, L., Meyer, A.S., Rasmussen, S.K., 2008. Phytate: Impact on environment and human nutrition, A challenge for molecular breeding. Journal of Zhejiang Univ. Sci. B. 9(3):165-191.
  • [17] Wodzinski, R.J., Ullah, A.H.J., 1996. Phytase. Advances in Applied Microbiology 42: 263–303.
  • [18] Lei, X.G., J.M. Porres., 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters 25: 1787-1794.
  • [19] Greiner, R., Haller, E., Konietzny, U., Jany, K.D., 1997. Purification and characterisation of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics 341: 201–206.
  • [20] Chadha, B.S., Harmeet G., Mandeep M., Saini, H.S., Singh, N., 2004. Phytase production by the thermophilic fungus Rhizomucor pusillus. World Journal of Microbiology & Biotechnology 20: 105-109.
  • [21] Akdeniz, V., Kınık, Ö., Yerlikaya, O., Akan E., 2016. İnsan sağlığı ve beslenme fizyolojisi açısından çinkonun önemi, Akademik Gıda 14(3): 307-314.
  • [22] Vats, P., Banerjee, U.C., 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology 35: 3–14.
  • [23] Kornegay, E.T., 2001. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. Enzymes in Farm Animal Nutrition. Ed. by M.R. Bedford, G.G. Partridge, CAB International Publishing, UK, 237-272p.
  • [24] Pekşen, E., Artık, C., 2005. Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. OMÜ Ziraat Fakültesi Dergisi 20(2): 110-120.
  • [25] Midilli, M., Muğlalı, H., Alp, M., Kocabağlı, N., Tanör, M.A., Toklu, G.S., 2003. Yeme katılan fitaz enziminin broylerde besi performansı ve mineral dengesi üzerine etkisi. Turkish Journal of Veterinary and Animal Science 27: 751-759.
  • [26] Konietzny, U., Greiner, R., 2002. Molecular and catalytic properties of phytate degrading enzymes (phytases). Int. J. Food Sci. Technol. 37: 791-812.
  • [27] Grenier, R., Konietzny, U., 2006. Phytase for food application. Food Technol. Biotechnol. 44(2): 125-140.
  • [28] Bommarius, A.S., Riebel, B.R., 2000. Biocatalysis. Wiley-VCH Verlag Gmbh & Co. KGaA. 611: 152-158.
  • [29] Aşan, M., 2007. Mikrobiyal fitazlar, uygulama alanları ve biyoteknoloji. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi 13(2): 147-155.
  • [30] Shieh, T.R., Ware, J.H., 1968. Survey of microorganisms for the production of extracellular phytase. Applied Microbiology 16: 1348-1351.
  • [31] Singh B., Kunze G., Satyanarayana T., 2011. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev. 6(3): 69-87.
  • [32] Greaves, M.P., Anderson, G., Webley, D.M., 1967. The hydrolysis of inositol phosphates by Aerobocter aerogenes. Biochim. Biophys. Acta 132: 412-418.
  • [33] Kim, H.W., Kim, Y.O., Lee, J.H., Kim, K.K., Kim, Y.J., 2003. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol. Lett. 25: 1231-1234.
  • [34] Yoon, S.J., Choi, Y.J., Min, H.K., Cho, K.K., Kim, J.W., Lee, S.C., Jung, Y.H., 1996. Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technol. 18: 449-454.
  • [35] Yanke, L.J., Bae, H.D., Selinger, L.B., Cheng, K.-J., 1998. Phytase activity of anaerobic ruminal bacteria. Microbiol. 144: 1565-1573.
  • [36] Lan, G.Q., Abdullah, N., Jalaludin, S., Ho, Y.W., 2002. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J. Appl. Microbiol. 93: 668-674.
  • [37] Nayini, N.R., Markakis, P., 1984. The phytase of yeast. Lebensm.-Wiss. Technol. 17: 24–26.
  • [38] Vohra, A., Satyanarayana, T., 2001. Phytase production by the yeast Pichia anomala, Biotechnology Letter 238: 551–554.
  • [39] Quan, C., Zhang, L., Wang, Y., Ohta, Y., 2001. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. Journal of Bioscience and Bioengineering 92(2): 154-160.
  • [40] Vohra, A., Satyanarayana, T., 2002. Purification and characterisation of a thermostable and acid-stable phytase from Pichia anomala. World Journal of Microbiology and Biotechnology 18: 687-691.
  • [41] Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., Galzy, P., 1992. Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and Bioengineering 74: 7-11.
  • [42] De Angelis, M., Gallo, G., Corbo, M.R., Mcsweeney, P.L.H., Faccia, M., Giovine, M., Gobbetti, M., 2003. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfrancisensis CB1. Int. J. Food Microbiol. 87: 259- 270.
  • [43] Rodriguez Couto S., Rivela, I., Sanroman, A., 2000. Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid state bioreactor. Biotechnology letters 22: 1443-1147.
  • [44] Hirimuthugoda, N.Y., Chi, Z., Li, X., Wang, L., Wu, L., 2006. Diversity of phytase-producing marine yeasts. Ciencias Marinas 32: 673-682.
  • [45] Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M., Loon, A.P.G.M.V., 1999. Biochemical characterization of fungal phytase (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and Environmental Microbiology 65(2): 367-373.
  • [46] Han, Y., Wilson, D.B., Lei, X.G., 1999. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Applied and Environmental Microbiology 65: 1915-1918.
  • [47] Pasamontes, L., Haiker, M., Wyss, M., Tessier, M., Loon, A.P.G.V., 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Applied and Environmental Microbiology 63: 1696-1700.
  • [48] Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E.,Gadient, M., Müler,F., Loon, A.P.G.M.V., 1998b. Comparasion of the thermostability properties of three acid phosphatates from molds: Aspergillus fumigatus phytase, A.niger phytase, and A.niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology 64: 4446-4451.
  • [49] Quan, C.S.,Tian, W.J., Fan, S.D., Kikuchi, Y., 2004. Purification and properties of a low-molecular weight phytase from Cladosporium sp. FP-1. Journal of Bioscience and Bioengineering 94: 260-266.
  • [50] Neves M.L.C., Silva M.F., Souza-Motta C.M, Spier M.R, Soccol C.R, Porto T.S., Moreira K.A., Porto A.L.F., 2011. Lichtheimia blakesleeana as a new potential producer of phytase and xylanase. Molecules 16: 4807-4817.
  • [51] Marlida, Y., Delfita, R., Gusmanizar, N., Ciptaan, G., 2010. Identification characterization and production of phytase from endophytic fungi, Engineering and Technology 41: 1043-1046.
  • [52] Lassen, S.F., Breinholt, J., Ostergaard, P.R., Brugger, R., Bischoff, A., Wyss, M., Fuglsang, C.C., 2001. Expression, gene cloning, and characterization of five novel phytase from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Applied and Environmental Microbiology 67(10): 4701-4707.
  • [53] Simon, O., Igbasan, F., 2002. In vitro properties of phytases from various microbial origins. International Journal of Food Science and Tecnology 37: 813-822.
  • [54] Berka, R.M., Rey, M., Brown, K.M., Byun, T., Klozt, A.V., 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology 64(11): 4423-4427.
  • [55] Mitchell, D.B., Vogel, K., Weimann, B., Pasamontes, L., P.G.M., A., Loon, V., 1997. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252.
  • [56] Dungelhoef, M., Rodehutscord, M., Spiekers, H., Pfeffer, E., 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology 49(1-2): 1-10.
  • [57] Nahm, K.H., 2002. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology 32(1):1-16.
  • [58] Revy, P.S., Jondreville, C., Dourmad, J.Y., Nys, Y., 2006. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. Journal of Animal Physiology and Animal Nutrition 90: 50-59.
  • [59] Cowteson, A.J., Acamovic, T., Bedford, M.R., 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids from broiler chickens. British Poultry Science 45: 101-108.
  • [60] Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., Li, D., 2007. Application of microbial phytase in fish feed. Enzyme and Microbial Technology 40: 497-507.
  • [61] Boyce, A., Walsh, G., 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. Journal of Environmental Science and Health Part A. 41: 789-798.
  • [62] Vats, P., Bhushan, B., Banerjee, U.C., 2009. Studies on the dephosphorylation of phytic acid in livestock fed using phytase from Aspegillus niger van teigem. Bioresource Technology 100: 287-291.
  • [63] Simell, M., Trunen, M., Piironen, J., Vara, T., 1989. Feed and food applications of phytase, Lecture at 3rd Meet. Industrial Applications of Enzymes, Barcelona, Spain.
  • [64] Haros, M., Rosell, C. M., Benedito, C., 2001. Fungal phytase as a potential breadmaking additive. Eur Food Technol. 213: 317-322.
  • [65] Haros, M., Rosell, C.M., Benedito, C., 2001. Use of fungal phytase to improve breadmaking performance of whole wheat bread. J Agric Food Chem. 49(11): 5450-4.
  • [66] Bilgiçli, N., Türker, S., 2004. Tarhanada sindirilebilir protein ve kül miktarı üzerine maya, malt unu ve fitaz katkılarının etkileri. Selçuk Üniversitesi Ziraat Fakültesi Dergisi 18(33): 90-97.
  • [67] Siren, M., 1995. Method of Treating Pain Using İnositol Triphosphate. U.S. Patent 5407924.
  • [68] Siren, M., 1998. Use of an Ester of Inositoltriphosphate for the Preparing of Medicaments. U.S. Patent 5846957.
  • [69] Billington, D.C., 1993. The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim/VCH Publishers, New York, USA.
  • [70] Siren, M., 1986, New Myo-Inositol Triphosphoric Acid Isomer. Pat. SW 052950.
  • [71] Liu, B., Rafiq, A., Tzeng, Y., Rob A., 1998. The İnduction and characterization of phytase and beyond. Enzyme and Microbial Technology 22: 415-424.
  • [72] Dalal, R.C., 1978. Soil organic phosphorus. Adv. Agronom. 29: 83-117.
  • [73] Day, P.R., 1996. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr. 63: 651-656.
  • [74] Naz, F., Maqbool, A., Abdullamalik, K., 2013. Degradation of legume phytate in soil using fungal phytase. Pak. J. Bot. 45(3): 1017-1022.

Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi

Year 2018, Volume: 16 Issue: 1, 109 - 119, 23.04.2018
https://doi.org/10.24323/akademik-gida.417903

Abstract

Hayvanlar
alemi için önemli besin kaynaklarından olan tahıllarda, baklagillerde ve yağlı
tohumlarda fosfatın temel depo formu fitik asittir. Basit mideli hayvanlar ve
insanlar gastrointestinal fitaz enziminden yoksun oldukları için fitatı tam
olarak parçalayamaz ve fitat fosfatından yararlanamazlar. Ayrıca, fitik asit
beslenme karşıtı bir etki de göstermektedir, çünkü bazı metal iyonları ve
proteinlerle fizyolojik pH değerlerinde çözünmeyen kompleksler oluşturarak
bunların biyolojik kullanımını engellemektedir. Beslenme karşıtı etkisi, yapısındaki
fosforun kullanılamayıp atılmasıyla oluşan çevresel kirlilik ve gıdalara ekstra
fosfor ekleme gereksinimini ortaya çıkartması sebebiyle fitik asitin fitaz
enzimleri tarafından defosforilasyonu oldukça önemlidir. Fitazlar endüstriyel
olarak özellikle yem ve gıda sanayi olmak üzere çok çeşitli alanlarda kullanıma
sahiptirler. Farklı kaynaklardan elde edilebilen fitaz enzimleri içerisinde
endüstriyel ve biyoteknolojik uygulamalar için en uygun olanları mikrobiyal
fitazlardır. Termofilik fungusların ürettiği fitazlar, geniş pH aralığında
aktif olma, yüksek spesifik aktivite ve özellikle endüstriyel proseslerde
uygulanan yüksek sıcaklıklarda aktivitesini kaybetmemesini sağlayan
termostabilite gibi özelliklere sahiptirler. Bu yüzden mikrobiyal fitazlar
arasında oldukça önemli bir yere sahiptirler. Bu derlemede, fitaz enziminin
özellikleri, beslenme, insan sağlığı, çevresel açıdan önemi ve fitaz
kaynakları, kullanıldığı alanlar ele alınmıştır.

References

  • [1] Telefoncu, A., 1986. İmmobilize Enzimler ve İmmobilizasyon Yöntemleri. Temel ve Uygulamalı Enzimoloji Biyokimya Lisans Üstü Yaz Okulu, İzmir.
  • [2] Shuler, M.L., Kargi, F., 2002. Bioprocess Engineering. 2nd ed. Prentice Hall PTR, USA.
  • [3] Gözükara E., 1997. Biyokimya 2. Nobel Tıp Kitapevleri.
  • [4] Bailey J.E., Ollis D.F., 1977. Biochemical Engineering Fundamentals. Edited by Mc Graw-Hill, USA.
  • [5] Wiseman, A., 1987. Chapter 3. The Application of Enzymes in Industry. Handbook of Enzymes Biotechnology, Ed. by Ellis Horwood Second Edition, Chichester, UK, 274-373p.
  • [6] Turner, P., Mamo, G., Karlsson, E.N., 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories 6(9): 1-23.
  • [7] John, F.K., 1987. Enzyme Technology. Biotechnology 7A, Edited by H.J. Rehm, G. Reed, Lincoln, UK, 37-62p.
  • [8] Maheshwari, R., Bharadwaj, G., Bhat, M.K., 2000. Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews 64(3): 461-488.
  • [9] Lei, X., Blake, J.P., Forsberg, C.W., Fox, D.G., Grabau, E., Mroz, Z., Sutton, A.L., Walker, W.R., Webb, K., Matthews, J.C., Shears, S.B., Veum, T., Bell, A.W., 2006. Animal Agriculture’s Future Through Biotechnology. Part 4, CAST Council for Agricultural Science and Technology, Issue paper no: 33.
  • [10] Sariyska, M.V., Gargova, S.A., Koleva, A.L., Angelov, A.I., 2005. Aspergillus niger phytase: Purification and characterization. Biotechnol.&Biotechnol. Eq. 19: 98-105.
  • [11] Polaina, J., Maccabe, A.P., 2007. Industrial Enzymes Structure, Function and Applications. Springer 641: 505-529.
  • [12] Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A., Soccol, V.T., 2001. Production, purification and properties of microbial phytases. Bioresource Technol 7: 203-214.
  • [13] Feil, B., 2001. Phytic acid. Journal of New Seeds 3(3): 1-35.
  • [14] Kumar, V., Sinha, A.K., Makkar, H.P.S., Becker, K., 2010. Dietary roles of phytate and phytase in human nutrition. Food Chemistry 120: 945–959.
  • [15] Afinah, S., Yazid, A.M., Anis Shobirin, M.H., Shuhaimi, M., 2010. Phytase: Application in food industry. International Food Research Journal 17: 13-21.
  • [16] Bohn, L., Meyer, A.S., Rasmussen, S.K., 2008. Phytate: Impact on environment and human nutrition, A challenge for molecular breeding. Journal of Zhejiang Univ. Sci. B. 9(3):165-191.
  • [17] Wodzinski, R.J., Ullah, A.H.J., 1996. Phytase. Advances in Applied Microbiology 42: 263–303.
  • [18] Lei, X.G., J.M. Porres., 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters 25: 1787-1794.
  • [19] Greiner, R., Haller, E., Konietzny, U., Jany, K.D., 1997. Purification and characterisation of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics 341: 201–206.
  • [20] Chadha, B.S., Harmeet G., Mandeep M., Saini, H.S., Singh, N., 2004. Phytase production by the thermophilic fungus Rhizomucor pusillus. World Journal of Microbiology & Biotechnology 20: 105-109.
  • [21] Akdeniz, V., Kınık, Ö., Yerlikaya, O., Akan E., 2016. İnsan sağlığı ve beslenme fizyolojisi açısından çinkonun önemi, Akademik Gıda 14(3): 307-314.
  • [22] Vats, P., Banerjee, U.C., 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology 35: 3–14.
  • [23] Kornegay, E.T., 2001. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. Enzymes in Farm Animal Nutrition. Ed. by M.R. Bedford, G.G. Partridge, CAB International Publishing, UK, 237-272p.
  • [24] Pekşen, E., Artık, C., 2005. Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. OMÜ Ziraat Fakültesi Dergisi 20(2): 110-120.
  • [25] Midilli, M., Muğlalı, H., Alp, M., Kocabağlı, N., Tanör, M.A., Toklu, G.S., 2003. Yeme katılan fitaz enziminin broylerde besi performansı ve mineral dengesi üzerine etkisi. Turkish Journal of Veterinary and Animal Science 27: 751-759.
  • [26] Konietzny, U., Greiner, R., 2002. Molecular and catalytic properties of phytate degrading enzymes (phytases). Int. J. Food Sci. Technol. 37: 791-812.
  • [27] Grenier, R., Konietzny, U., 2006. Phytase for food application. Food Technol. Biotechnol. 44(2): 125-140.
  • [28] Bommarius, A.S., Riebel, B.R., 2000. Biocatalysis. Wiley-VCH Verlag Gmbh & Co. KGaA. 611: 152-158.
  • [29] Aşan, M., 2007. Mikrobiyal fitazlar, uygulama alanları ve biyoteknoloji. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi 13(2): 147-155.
  • [30] Shieh, T.R., Ware, J.H., 1968. Survey of microorganisms for the production of extracellular phytase. Applied Microbiology 16: 1348-1351.
  • [31] Singh B., Kunze G., Satyanarayana T., 2011. Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol. Mol. Biol. Rev. 6(3): 69-87.
  • [32] Greaves, M.P., Anderson, G., Webley, D.M., 1967. The hydrolysis of inositol phosphates by Aerobocter aerogenes. Biochim. Biophys. Acta 132: 412-418.
  • [33] Kim, H.W., Kim, Y.O., Lee, J.H., Kim, K.K., Kim, Y.J., 2003. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol. Lett. 25: 1231-1234.
  • [34] Yoon, S.J., Choi, Y.J., Min, H.K., Cho, K.K., Kim, J.W., Lee, S.C., Jung, Y.H., 1996. Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technol. 18: 449-454.
  • [35] Yanke, L.J., Bae, H.D., Selinger, L.B., Cheng, K.-J., 1998. Phytase activity of anaerobic ruminal bacteria. Microbiol. 144: 1565-1573.
  • [36] Lan, G.Q., Abdullah, N., Jalaludin, S., Ho, Y.W., 2002. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J. Appl. Microbiol. 93: 668-674.
  • [37] Nayini, N.R., Markakis, P., 1984. The phytase of yeast. Lebensm.-Wiss. Technol. 17: 24–26.
  • [38] Vohra, A., Satyanarayana, T., 2001. Phytase production by the yeast Pichia anomala, Biotechnology Letter 238: 551–554.
  • [39] Quan, C., Zhang, L., Wang, Y., Ohta, Y., 2001. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. Journal of Bioscience and Bioengineering 92(2): 154-160.
  • [40] Vohra, A., Satyanarayana, T., 2002. Purification and characterisation of a thermostable and acid-stable phytase from Pichia anomala. World Journal of Microbiology and Biotechnology 18: 687-691.
  • [41] Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., Galzy, P., 1992. Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and Bioengineering 74: 7-11.
  • [42] De Angelis, M., Gallo, G., Corbo, M.R., Mcsweeney, P.L.H., Faccia, M., Giovine, M., Gobbetti, M., 2003. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfrancisensis CB1. Int. J. Food Microbiol. 87: 259- 270.
  • [43] Rodriguez Couto S., Rivela, I., Sanroman, A., 2000. Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid state bioreactor. Biotechnology letters 22: 1443-1147.
  • [44] Hirimuthugoda, N.Y., Chi, Z., Li, X., Wang, L., Wu, L., 2006. Diversity of phytase-producing marine yeasts. Ciencias Marinas 32: 673-682.
  • [45] Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M., Loon, A.P.G.M.V., 1999. Biochemical characterization of fungal phytase (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and Environmental Microbiology 65(2): 367-373.
  • [46] Han, Y., Wilson, D.B., Lei, X.G., 1999. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Applied and Environmental Microbiology 65: 1915-1918.
  • [47] Pasamontes, L., Haiker, M., Wyss, M., Tessier, M., Loon, A.P.G.V., 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Applied and Environmental Microbiology 63: 1696-1700.
  • [48] Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E.,Gadient, M., Müler,F., Loon, A.P.G.M.V., 1998b. Comparasion of the thermostability properties of three acid phosphatates from molds: Aspergillus fumigatus phytase, A.niger phytase, and A.niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology 64: 4446-4451.
  • [49] Quan, C.S.,Tian, W.J., Fan, S.D., Kikuchi, Y., 2004. Purification and properties of a low-molecular weight phytase from Cladosporium sp. FP-1. Journal of Bioscience and Bioengineering 94: 260-266.
  • [50] Neves M.L.C., Silva M.F., Souza-Motta C.M, Spier M.R, Soccol C.R, Porto T.S., Moreira K.A., Porto A.L.F., 2011. Lichtheimia blakesleeana as a new potential producer of phytase and xylanase. Molecules 16: 4807-4817.
  • [51] Marlida, Y., Delfita, R., Gusmanizar, N., Ciptaan, G., 2010. Identification characterization and production of phytase from endophytic fungi, Engineering and Technology 41: 1043-1046.
  • [52] Lassen, S.F., Breinholt, J., Ostergaard, P.R., Brugger, R., Bischoff, A., Wyss, M., Fuglsang, C.C., 2001. Expression, gene cloning, and characterization of five novel phytase from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Applied and Environmental Microbiology 67(10): 4701-4707.
  • [53] Simon, O., Igbasan, F., 2002. In vitro properties of phytases from various microbial origins. International Journal of Food Science and Tecnology 37: 813-822.
  • [54] Berka, R.M., Rey, M., Brown, K.M., Byun, T., Klozt, A.V., 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology 64(11): 4423-4427.
  • [55] Mitchell, D.B., Vogel, K., Weimann, B., Pasamontes, L., P.G.M., A., Loon, V., 1997. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252.
  • [56] Dungelhoef, M., Rodehutscord, M., Spiekers, H., Pfeffer, E., 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology 49(1-2): 1-10.
  • [57] Nahm, K.H., 2002. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology 32(1):1-16.
  • [58] Revy, P.S., Jondreville, C., Dourmad, J.Y., Nys, Y., 2006. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. Journal of Animal Physiology and Animal Nutrition 90: 50-59.
  • [59] Cowteson, A.J., Acamovic, T., Bedford, M.R., 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids from broiler chickens. British Poultry Science 45: 101-108.
  • [60] Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., Li, D., 2007. Application of microbial phytase in fish feed. Enzyme and Microbial Technology 40: 497-507.
  • [61] Boyce, A., Walsh, G., 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. Journal of Environmental Science and Health Part A. 41: 789-798.
  • [62] Vats, P., Bhushan, B., Banerjee, U.C., 2009. Studies on the dephosphorylation of phytic acid in livestock fed using phytase from Aspegillus niger van teigem. Bioresource Technology 100: 287-291.
  • [63] Simell, M., Trunen, M., Piironen, J., Vara, T., 1989. Feed and food applications of phytase, Lecture at 3rd Meet. Industrial Applications of Enzymes, Barcelona, Spain.
  • [64] Haros, M., Rosell, C. M., Benedito, C., 2001. Fungal phytase as a potential breadmaking additive. Eur Food Technol. 213: 317-322.
  • [65] Haros, M., Rosell, C.M., Benedito, C., 2001. Use of fungal phytase to improve breadmaking performance of whole wheat bread. J Agric Food Chem. 49(11): 5450-4.
  • [66] Bilgiçli, N., Türker, S., 2004. Tarhanada sindirilebilir protein ve kül miktarı üzerine maya, malt unu ve fitaz katkılarının etkileri. Selçuk Üniversitesi Ziraat Fakültesi Dergisi 18(33): 90-97.
  • [67] Siren, M., 1995. Method of Treating Pain Using İnositol Triphosphate. U.S. Patent 5407924.
  • [68] Siren, M., 1998. Use of an Ester of Inositoltriphosphate for the Preparing of Medicaments. U.S. Patent 5846957.
  • [69] Billington, D.C., 1993. The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim/VCH Publishers, New York, USA.
  • [70] Siren, M., 1986, New Myo-Inositol Triphosphoric Acid Isomer. Pat. SW 052950.
  • [71] Liu, B., Rafiq, A., Tzeng, Y., Rob A., 1998. The İnduction and characterization of phytase and beyond. Enzyme and Microbial Technology 22: 415-424.
  • [72] Dalal, R.C., 1978. Soil organic phosphorus. Adv. Agronom. 29: 83-117.
  • [73] Day, P.R., 1996. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr. 63: 651-656.
  • [74] Naz, F., Maqbool, A., Abdullamalik, K., 2013. Degradation of legume phytate in soil using fungal phytase. Pak. J. Bot. 45(3): 1017-1022.
There are 74 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Derya Berikten This is me 0000-0002-8672-4813

Merih Kıvanç This is me 0000-0002-8647-3428

Publication Date April 23, 2018
Submission Date July 25, 2017
Published in Issue Year 2018 Volume: 16 Issue: 1

Cite

APA Berikten, D., & Kıvanç, M. (2018). Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi. Akademik Gıda, 16(1), 109-119. https://doi.org/10.24323/akademik-gida.417903
AMA Berikten D, Kıvanç M. Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi. Akademik Gıda. April 2018;16(1):109-119. doi:10.24323/akademik-gida.417903
Chicago Berikten, Derya, and Merih Kıvanç. “Fitazlar: Çevreye Etkisi, Beslenme Ve Biyoteknolojideki Önemi”. Akademik Gıda 16, no. 1 (April 2018): 109-19. https://doi.org/10.24323/akademik-gida.417903.
EndNote Berikten D, Kıvanç M (April 1, 2018) Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi. Akademik Gıda 16 1 109–119.
IEEE D. Berikten and M. Kıvanç, “Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi”, Akademik Gıda, vol. 16, no. 1, pp. 109–119, 2018, doi: 10.24323/akademik-gida.417903.
ISNAD Berikten, Derya - Kıvanç, Merih. “Fitazlar: Çevreye Etkisi, Beslenme Ve Biyoteknolojideki Önemi”. Akademik Gıda 16/1 (April 2018), 109-119. https://doi.org/10.24323/akademik-gida.417903.
JAMA Berikten D, Kıvanç M. Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi. Akademik Gıda. 2018;16:109–119.
MLA Berikten, Derya and Merih Kıvanç. “Fitazlar: Çevreye Etkisi, Beslenme Ve Biyoteknolojideki Önemi”. Akademik Gıda, vol. 16, no. 1, 2018, pp. 109-1, doi:10.24323/akademik-gida.417903.
Vancouver Berikten D, Kıvanç M. Fitazlar: Çevreye Etkisi, Beslenme ve Biyoteknolojideki Önemi. Akademik Gıda. 2018;16(1):109-1.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).