Research Article
BibTex RIS Cite

Reduction of Tissue Maceration in Potatoes by Rose Essential Oil

Year 2018, Volume: 16 Issue: 2, 127 - 134, 05.08.2018
https://doi.org/10.24323/akademik-gida.449594

Abstract

Erwinia carotovora is a phytopathogen which causes soft-rot disease in a wide
variety of economically important plants. E. carotovora is known to produce a range of exoenzymes
that enhance its ability to damage the host tissue and cause disease. A cell to
cell communication mechanism called quorum sensing which is mediated by small
signalling molecules regulates exoenzymes
(cellulase, pectinase and
protease) and carbapenem production
in E. carotovora. Thus the
exploration of new strategies to manipulate this communication pathway for the
prevention of E. carotovora
infections is valuable.
In this study, the inhibitory effects of the rose,
orange, lavender, clove, cinnamon, black pepper and cumin
oils on
the production of the exoenzymes (cellulase, pectinase and protease) and
carbapenem in the Erwinia carotovora subsp.
carotovora ATCC 39048
were investigated
. And potato tissue maceration was also
tested in the presence of oils.
Rose and lavender essential
oils markedly inhibited the
production of pectinases by 38.7 and 9.7%, cellulases by 36.6
and 31.7%
and proteases by 29 and 16.1%, carbapenem by 61.9 and 54%, and maceration of potatoes by 61.4
and 30.7% in the E. carotovora
respectively
without affecting the growth of
cells.
Although
several studies have reported antibacterial effects of
rose and lavender essential oils, there is no report
describing their antivirulence potential. To the best of our knowledge, this is
the first report on
the rose and lavender
essential oils with potential
antivirulence components against soft rot caused by E. carotovora.

References

  • [1] Perombelon, M.C., Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18(1), 361-387.
  • [2] Kotoujansky, A. (1987). Molecular genetics of pathogenesis by soft-rot Erwinias. Annual Review of Phytopathology, 25(1), 405-430.
  • [3] Park, Y., Jeon, M.H., Lee, S., Moon, J.S., Cha, J., Kim, H.Y., Cho, T. (2005). Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato. Journal of Biochemistry and Molecular Biology, 38(6), 748-754.
  • [4] Li, Q.Q., Meng, S., Yu, Z.N. (2011). Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. Journal of Microbiology and Biotechnology, 21(12), 1330-1335.
  • [5] Collmer, A., Keen, N.T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24(1), 383-409.
  • [6] McGowan, S.J., Barnard, A.M., Bosgelmez, G., Sebaihia, M., Simpson, N.J., Thomson, N.R., Todd, D.E., Welch, M., Whitehead, N.A., Salmond, G.P., 2005. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing‐dependent control pathway. Molecular Microbiology, 55(2), 526-545.
  • [7] Parker, W.L., Rathnum, M.L., Wells, J.J.S., Trejo, W.H., Principe, P.A., Sykes, R.B. (1982). SQ 27,860, A simple carbapenem produced by species of Serratia and Erwinia. The Journal of Antibiotics, 35(6), 653-660.
  • [8] Smith-Palmer, A., Stewart, J., Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26(2), 118-122.
  • [9] Hammer, K.A., Carson, C., Riley, T. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990.
  • [10] Elgayyar, M., Draughon, F., Golden, D., Mount, J. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 64(7), 1019-1024.
  • [11] Andro, T., Chambost, J.P., Kotoujansky, A., Cattaneo, J., Bertheau, Y., Barras, F., Van Gijsegem, F., Coleno, A. (1984). Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. Journal of Bacteriology 160(3), 1199-1203.
  • [12] Hankin, L., Anagnostakis, S. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597-607.
  • [13] McGowan, S., Sebaihia, M., Porter, L., Stewart, G., Williams, P., Bycroft, B., Salmond, G. (1996). Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway. Molecular Microbiology, 22(3), 415-426.
  • [14] Walker, D.S., Reeves, P.J., Salmond, G. (1994). The major secreted cellulase, CelV, of Erwinia carotovora subsp. carotovora is an important soft rot virulence factor. Molecular Plant Microbe Interactions, 7(3), 425-431.
  • [15] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  • [16] Khan, M.S.A., Zahin, M., Hasan, S., Husain, F.M., Ahmad, I. (2009). Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Letters in Applied Microbiology, 49(3), 354-360.
  • [17] Szabó, M.Á., Varga, G.Z., Hohmann, J., Schelz, Z., Szegedi, E., Amaral, L., Molnár, J. (2010). Inhibition of quorum‐sensing signals by essential oils. Phytotherapy Research, 24(5), 782-786.
  • [18] Hyldgaard, M., Mygind, T., Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3(12), 1-24.
  • [19] Kalia, V.C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224-245.
  • [20] Truchado, P., Larrosa, Castro-Ibáñez, M.I., Allende, A. (2015). Plant food extracts and phytochemicals: Their role as quorum sensing inhibitors. Trends in Food Science & Technology, 43(2), 189-204.
  • [21] Singh, B.N., Pandey, G., Jadaun, V., Singh, S., Bajpai, R., Nayaka, S., Naqvi, A.H., Rawat, A.K.S., Upreti, D.K., Singh, B.R. (2015). Development and characterization of a novel Swarna-based herbo-metallic colloidal nano-formulation - inhibitor of Streptococcus mutans quorum sensing. RSC Advances, 5(8), 5809-5822.
  • [22] Eris, R., Ulusoy, S. (2013). Rose, clove, chamomile essential oils and pine turpentine inhibit quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Journal of Essential Oil Bearing Plants, 16(2), 126-135.
  • [23] Kerekes, E.B., Deák, É. Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C., Krisch, J. (2013). Anti‐biofilm forming and anti‐quorum sensing activity of selected essential oils and their main components on food‐related microrganisms. Journal of Applied Microbiology, 115(4), 933-942.
  • [24] Cuong, H.N., Tung, H.T., Minh, N.C., Van Hoa, N., Phuong, P.T.D., Trung, T.S. (2017). Antibacterial activity of chitosan from squid pens (Loligo chenisis) against Erwinia carotovora from soft rot postharvest tomato fruit. Journal of Polymer Materials, 34(1), 319-330.
  • [25] Rahman, M.M., Khan, A.A., Mian, I.H., Akanda, A.M., Alam, M.Z. (2017). Effect of some chemicals on incidence of potato soft rot disease in Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 52(2), 135-140.
  • [26] Ahmed, F.A., Arif, M., Alvarez, A.M. (2017). Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Frontiers in Microbiology, 8, 1728.
  • [27] U.F.a.D.A. FDA, FDA. (2014).
  • [28] Oliveira, D.R., Leitao, G.G., Santos, S.S., Bizzo, H.R., Lopes, D., Alviano, C.S., Alviano, D.S., Leitao, S.G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
  • [29] Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. Quax, W.J. (2006). Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infection and Immunity, 74(3), 1673-1682.
  • [30] Taganna, J.C., Quanico, J.P., Perono, R.M.G., Amor, E.C., Rivera, W.L. (2011). Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. Journal of Ethnopharmacology, 134(3), 865-871.

Patateslerde Yumuşak Çürüklüğün Gülyağıyla Azaltılması

Year 2018, Volume: 16 Issue: 2, 127 - 134, 05.08.2018
https://doi.org/10.24323/akademik-gida.449594

Abstract

Erwinia
carotovora
ekonomik
açıdan önemli pek çok bitkide yumuşak çürüklük hastalığına neden olan bir
fitopatojendir. E. carotovora’nın
konak dokulara zarar vermesini sağlayan ve hastalığa neden olan bir dizi
ekzoenzim ürettiği bilinmektedir. E. carotovora’da
ekzoenzim (selülaz, pektinaz ve proteaz) ve karbapenem üretimi, küçük sinyal
moleküllerinin aracı olduğu çevreyi algılama sistemi adı verilen hücreler arası
iletişim mekanizması tarafından düzenlenir. Bu nedenle E. carotovora enfeksiyonlarının önlenmesi için, bu iletişim yolunun
manipülasyonunu sağlayacak yeni stratejilerin araştırılması
değerlidir. Bu çalışmada, gül,
portakal, lavanta, karanfil, tarçın, karabiber ve kimyon yağlarının
E. carotovora’da, ekzoenzim (selülaz,
pektinaz ve proteaz) ve karbapenem üretimine inhibitör etkileri
araştırılmıştır.
  Ayrıca patateste yumuşak çürüklük miktarı, yağların varlığında test
edilmiştir. Gül ve lavanta uçucu yağları, bakteriyel hücre büyümesini
etkilemeksizin,
E. carotovora’da
pektinaz üretimini sırasıyla %38.7 ve 9.7,
selülaz üretimini %36.6 ve 31.7 ve proteaz üretimini %29 ve 16.1, karbapenem
üretimini %61.9 ve 54 ve patates yumuşak çürüklüğünü %61.4 ve 30.7 oranlarında
önemli
ölçüde inhibe etmiştir. Gül ve lavanta uçucu yağlarının antibakteriyel etkileri
çeşitli çalışmalarla rapor edilmiş olsa da, virülensi engelleyici potansiyelini
açıklayan herhangi bir çalışma bulunmamaktadır. Bildiğimiz kadarıyla bu çalışma
, gül ve lavanta uçucu yağlarının bileşenlerinin, E. carotovora’nın neden olduğu yumuşak
çürüklük hastalığına karşı potansiyeli hakkındaki ilk raporudur.

References

  • [1] Perombelon, M.C., Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18(1), 361-387.
  • [2] Kotoujansky, A. (1987). Molecular genetics of pathogenesis by soft-rot Erwinias. Annual Review of Phytopathology, 25(1), 405-430.
  • [3] Park, Y., Jeon, M.H., Lee, S., Moon, J.S., Cha, J., Kim, H.Y., Cho, T. (2005). Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato. Journal of Biochemistry and Molecular Biology, 38(6), 748-754.
  • [4] Li, Q.Q., Meng, S., Yu, Z.N. (2011). Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. Journal of Microbiology and Biotechnology, 21(12), 1330-1335.
  • [5] Collmer, A., Keen, N.T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24(1), 383-409.
  • [6] McGowan, S.J., Barnard, A.M., Bosgelmez, G., Sebaihia, M., Simpson, N.J., Thomson, N.R., Todd, D.E., Welch, M., Whitehead, N.A., Salmond, G.P., 2005. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing‐dependent control pathway. Molecular Microbiology, 55(2), 526-545.
  • [7] Parker, W.L., Rathnum, M.L., Wells, J.J.S., Trejo, W.H., Principe, P.A., Sykes, R.B. (1982). SQ 27,860, A simple carbapenem produced by species of Serratia and Erwinia. The Journal of Antibiotics, 35(6), 653-660.
  • [8] Smith-Palmer, A., Stewart, J., Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26(2), 118-122.
  • [9] Hammer, K.A., Carson, C., Riley, T. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990.
  • [10] Elgayyar, M., Draughon, F., Golden, D., Mount, J. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 64(7), 1019-1024.
  • [11] Andro, T., Chambost, J.P., Kotoujansky, A., Cattaneo, J., Bertheau, Y., Barras, F., Van Gijsegem, F., Coleno, A. (1984). Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. Journal of Bacteriology 160(3), 1199-1203.
  • [12] Hankin, L., Anagnostakis, S. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597-607.
  • [13] McGowan, S., Sebaihia, M., Porter, L., Stewart, G., Williams, P., Bycroft, B., Salmond, G. (1996). Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway. Molecular Microbiology, 22(3), 415-426.
  • [14] Walker, D.S., Reeves, P.J., Salmond, G. (1994). The major secreted cellulase, CelV, of Erwinia carotovora subsp. carotovora is an important soft rot virulence factor. Molecular Plant Microbe Interactions, 7(3), 425-431.
  • [15] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  • [16] Khan, M.S.A., Zahin, M., Hasan, S., Husain, F.M., Ahmad, I. (2009). Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Letters in Applied Microbiology, 49(3), 354-360.
  • [17] Szabó, M.Á., Varga, G.Z., Hohmann, J., Schelz, Z., Szegedi, E., Amaral, L., Molnár, J. (2010). Inhibition of quorum‐sensing signals by essential oils. Phytotherapy Research, 24(5), 782-786.
  • [18] Hyldgaard, M., Mygind, T., Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3(12), 1-24.
  • [19] Kalia, V.C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224-245.
  • [20] Truchado, P., Larrosa, Castro-Ibáñez, M.I., Allende, A. (2015). Plant food extracts and phytochemicals: Their role as quorum sensing inhibitors. Trends in Food Science & Technology, 43(2), 189-204.
  • [21] Singh, B.N., Pandey, G., Jadaun, V., Singh, S., Bajpai, R., Nayaka, S., Naqvi, A.H., Rawat, A.K.S., Upreti, D.K., Singh, B.R. (2015). Development and characterization of a novel Swarna-based herbo-metallic colloidal nano-formulation - inhibitor of Streptococcus mutans quorum sensing. RSC Advances, 5(8), 5809-5822.
  • [22] Eris, R., Ulusoy, S. (2013). Rose, clove, chamomile essential oils and pine turpentine inhibit quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Journal of Essential Oil Bearing Plants, 16(2), 126-135.
  • [23] Kerekes, E.B., Deák, É. Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C., Krisch, J. (2013). Anti‐biofilm forming and anti‐quorum sensing activity of selected essential oils and their main components on food‐related microrganisms. Journal of Applied Microbiology, 115(4), 933-942.
  • [24] Cuong, H.N., Tung, H.T., Minh, N.C., Van Hoa, N., Phuong, P.T.D., Trung, T.S. (2017). Antibacterial activity of chitosan from squid pens (Loligo chenisis) against Erwinia carotovora from soft rot postharvest tomato fruit. Journal of Polymer Materials, 34(1), 319-330.
  • [25] Rahman, M.M., Khan, A.A., Mian, I.H., Akanda, A.M., Alam, M.Z. (2017). Effect of some chemicals on incidence of potato soft rot disease in Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 52(2), 135-140.
  • [26] Ahmed, F.A., Arif, M., Alvarez, A.M. (2017). Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Frontiers in Microbiology, 8, 1728.
  • [27] U.F.a.D.A. FDA, FDA. (2014).
  • [28] Oliveira, D.R., Leitao, G.G., Santos, S.S., Bizzo, H.R., Lopes, D., Alviano, C.S., Alviano, D.S., Leitao, S.G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
  • [29] Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. Quax, W.J. (2006). Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infection and Immunity, 74(3), 1673-1682.
  • [30] Taganna, J.C., Quanico, J.P., Perono, R.M.G., Amor, E.C., Rivera, W.L. (2011). Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. Journal of Ethnopharmacology, 134(3), 865-871.
There are 30 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Emine Doğuş Sivri This is me 0000-0002-6364-8942

Seyhan Ulusoy 0000-0002-6559-1177

Publication Date August 5, 2018
Submission Date November 6, 2017
Published in Issue Year 2018 Volume: 16 Issue: 2

Cite

APA Doğuş Sivri, E., & Ulusoy, S. (2018). Reduction of Tissue Maceration in Potatoes by Rose Essential Oil. Akademik Gıda, 16(2), 127-134. https://doi.org/10.24323/akademik-gida.449594
AMA Doğuş Sivri E, Ulusoy S. Reduction of Tissue Maceration in Potatoes by Rose Essential Oil. Akademik Gıda. August 2018;16(2):127-134. doi:10.24323/akademik-gida.449594
Chicago Doğuş Sivri, Emine, and Seyhan Ulusoy. “Reduction of Tissue Maceration in Potatoes by Rose Essential Oil”. Akademik Gıda 16, no. 2 (August 2018): 127-34. https://doi.org/10.24323/akademik-gida.449594.
EndNote Doğuş Sivri E, Ulusoy S (August 1, 2018) Reduction of Tissue Maceration in Potatoes by Rose Essential Oil. Akademik Gıda 16 2 127–134.
IEEE E. Doğuş Sivri and S. Ulusoy, “Reduction of Tissue Maceration in Potatoes by Rose Essential Oil”, Akademik Gıda, vol. 16, no. 2, pp. 127–134, 2018, doi: 10.24323/akademik-gida.449594.
ISNAD Doğuş Sivri, Emine - Ulusoy, Seyhan. “Reduction of Tissue Maceration in Potatoes by Rose Essential Oil”. Akademik Gıda 16/2 (August 2018), 127-134. https://doi.org/10.24323/akademik-gida.449594.
JAMA Doğuş Sivri E, Ulusoy S. Reduction of Tissue Maceration in Potatoes by Rose Essential Oil. Akademik Gıda. 2018;16:127–134.
MLA Doğuş Sivri, Emine and Seyhan Ulusoy. “Reduction of Tissue Maceration in Potatoes by Rose Essential Oil”. Akademik Gıda, vol. 16, no. 2, 2018, pp. 127-34, doi:10.24323/akademik-gida.449594.
Vancouver Doğuş Sivri E, Ulusoy S. Reduction of Tissue Maceration in Potatoes by Rose Essential Oil. Akademik Gıda. 2018;16(2):127-34.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).