Review
BibTex RIS Cite

Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu

Year 2018, Volume: 16 Issue: 4, 458 - 469, 31.12.2018
https://doi.org/10.24323/akademik-gida.505539

Abstract

Küfler,
meyve ve sebzelerin bozulmasına neden olarak ekonomik kayıplara ve mikotoksin
üreterek sağlık üzerinde olumsuz etkilere neden olabilmektedir. UV-C ışık
teknolojisi, meyve ve sebzelerin yüzey dekontaminasyonu için kullanılan ısıl
olmayan işlemlerden biri olup, mikroorganizmaların gelişimini inhibe etmek, ve
bu yolla depolama ve nakliye sırasındaki kayıpları kontrol altına almak için
kullanılan alternatif yöntemlerden biridir. UV uygulaması gıda güvenilirliğinin
sağlanmasında ürünlerin kalitesini olumsuz yönde etkilememesi ve ekonomik bir
yöntem olması nedeniyle pek çok araştırmanın konusu olmuştur. Ultraviyole ışık
ile bakterilerin inaktivasyonu ile ilgili birçok çalışma mevcut iken,
literatürde küflerle ilgili sınırlı sayıda çalışmaya rastlanmıştır. Bu çalışma kapsamında, meyve ve sebzelerde bulunan
küflerin inhibisyonda UV-C ışık uygulamalarının germisidal ve hormetik (savunma
mekanizmasının uyarılması) etkileri incelenmiştir.

References

  • [1] Pitt, J.I., Hocking, A.D. (2009). Fungi and Food Spoilage. Springer Science and Business Media, London.
  • [2] Ma, L., Zhang, M., Bhandari, B., Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38.
  • [3] Romanazzi, G., Sanzani, S.M., Bi, Y., Tian, S., Martínez, P.G., Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology 122, 82–94.
  • [4] Liu, J., Sui, Y., Wisniewski, M., Xie, Z., Liu, Y., You, Y., Zhang, X., Sun, Z., Li, W., Li, Y., Wang, Q. (2017). The impact of the postharvest environment on the viability and virulence of decay fungi. Critical Reviews In Food Science and Nutrition, 1-7.
  • [5] Günaydın, Ş., Karaca, H. (2015). Küf gelişimi ve mikotoksin oluşumunun kontrolünde doğal bitki ekstraktlarının kullanımı. Akademik Gıda, 13(2), 173-182.
  • [6] Wang, C.Y., Chen, C.T., Wang, S.Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117, 426-431.
  • [7] Artes-Hernandez, F., Martinez- Hernandez, G.B., Aguayo, E., Gomez, P.A., Artes, F. (2017). Fresh-cut fruit and vegetables: Emerging eco-friendly techniques for sanitation and preserving safety. Postharvest Handling, 7-45.
  • [8] Wu, J., Liu, W., Yuan, L., Guan, W.Q., Brennan, C.S., Zhang, Y.Y., Zhang, J., Wang, Z.D. (2017). The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports, 7, 1-11.
  • [9] Shama, G., Alderson, P. (2005). UV hormesis in fruits: a concept ripe for commercialization. Trends in Food Science and Technology, 16, 128-136.
  • [10] Charles, M.T., Goulet, A., Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: IV. Biochemical modification of structural barriers. Postharvest Biology and Technology, 47, 41-53.
  • [11] Charles, M.T., Tano, K., Asselin, A., Arul, J. (2009). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. constitutive defense enzymes and inducible pathogenesis-related proteins. Postharvest Biology and Technology, 51, 414-424.
  • [12] Khademi, O., Zamani, Z., Poor Ahmadi, E., Kalantari, S. (2013). Effect of UV-C radiation on postharvest physiology of persimmon fruit (Diospyros kaki Thunb.) cv. `Karaj´ during storage at cold temperature. International Food Research Journal, 20(1), 247-253.
  • [13] Masschelein, W.J., Rice, R.G. (2002). Ultraviolet light in water and waste water sanitation. Lewis Publishers, Boca Raton, 2p.
  • [14] Koutchma, T., Forney, L.J., Moraru, C.I. (2009). Ultraviolet Light in Food Technology: Principles and Applications, CRC Press, New York, 1-31, 69-101, 102-125.
  • [15] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V. (2004). Advantages and limitations on processing foods by UV light, Food Science and Technology International, 10(3), 137-147.
  • [16] Hijnen, W.A.M., Beerendonk, E.F., Medema, G.J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water. Water Research, 40, 3-22.
  • [17] Yaun, B.R., Sumner, S.S., Eifert, J.D., Marcy, J.E. (2004). Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology, 90(1), 1-8.
  • [18] Sastry, S.K., Datta, A.K., Worobo, R.W. (2000). Ultraviolet light. Journal Food Science Supplement, 65(12), 90–92.
  • [19] Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R.K. (2000). Existing and potential applications of ultraviolet light in the food industry. Journal of the Science of Food and Agriculture, 80, 637-645.
  • [20] Lopez-Malo, A., Palou, E. (2005). Ultraviolet light and food preservation. Novel food processing Technologies, 18, 405-421.
  • [21] Krishnamurthy, K., Irudayaraj J., Yang, W., Demirci, A. (2008). UV Pasteurization of food materials, Food processing operations modeling design and analysis, Edited by Irudayaraj, J., Jun, S., CRC Press, New York, 281–302p.
  • [22] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V. (2005). Reduction of Saccharomyces cerevisiae, Escherichia coli, Listeria innocua in apple juice by ultraviolet light. Journal of Food Process Engineering, 28, 437-452.
  • [23] Müller, A., Stahl, M.R., Graef, V., Franz, C.M.A.P., Huch, M. (2011). UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. Journal of Food Engineering, 107, 268-275.
  • [24] Tran, M.T.T., Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies, 5, 495-502.
  • [25] Locke, T., Fletcher, J.T. (1988). Incidence of benomyl and iprodione resistance in isolates of Botrytis cinerea in tomato crops in England and Wales in 1986. Plant Pathology, 37, 381–384.
  • [26] Katan, T. (1982). Resistance to 3,5-dichlorophenyl-N-cyclicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea in protected crops. Plant Pathology, 31, 133–141.
  • [27] Georgopoulos, S.G. (1987). The development of fungicide resistance. In Population of plant pathogens: Their Dynamics and Genetics, Edited by M.S., Wolfe & C.E., Caten., UK: Blackwell, Oxford, 239-251p.
  • [28] Staub, T. (1991). Fungicide resistance; practical experience with anti resistance strategies and the role of integrated use. Annual Review of Phytopathology, 29, 421–442.
  • [29] Elad, Y., Yunis, H., Katan, T. (1992). Multiple resistance to benzimidazoles dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology, 41, 41–46.
  • [30] Janisiewicz, W.J., Takeda, F., Gleen, D.M., Camp, M.J., Jurick II, W. M. (2016). Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology, 106(4), 386-394.
  • [31] Rico, D., Martín-Diana, A.B., Barat, J.M., Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables. Trends in Food Science & Technology, 18, 373–386.
  • [32] Arul, J. (1994). Emerging technologies for the control of postharvest diseases of fresh fruits and vegetables. In: Biological Control of Postharvest Diseases, Theory and Practice. Edited by Wilson, C.L., Wisniewski, M.E., CRC Press, London, Tokyo, 1–10p.
  • [33] Wilson, C.L., El Ghaouth, A., Chalutz, E., Droby, S., Stevens, C., Lu, J.Y., Khan, V., Arul, J. (1994). Potential of induced resistance to control postharvest diseases of fruits and vegetables. Plant Disease (USA), 78, 837–845.
  • [34] Mari, M., Guizzardi, M., Brunelli, M., Folchi, A. (1996). Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection, 15(8), 699–705.
  • [35] Arul, J., Mercier, J., Charles, M.T., Baka, M., Maharaj, R. (2001). Photochemical treatment for control of postharvest diseases in horticultural crops. In: Physical Control Methods in Plant Protection, Edited by C, Vincent, B., Panneton, F. Fleurat-Lessard, INRA Editions, Paris, 146–161p.
  • [36] Ben-Yeohshua, S., Mercier, J. (2005). UV irradiation, biological agents, and natural compounds for controlling postharvest decay in fresh fruits and vegetables. In: Environmentally Friendly Technologies for Agricultural Produce Quality, Edited by S. Ben-Yehoshua, Taylor & Francis, Boca Raton, 266–299p.
  • [37] Charles, M.T., Benhamou, N., Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology, 47, 27–40.
  • [38] Muraca, P., Stout, J.E., Yu, V.L. (1987). Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Applied and Environmental Microbiology, 53(2), 447-453.
  • [39] Jemni, M., Gómez, P.A., Souza, M., Chaira, N., Ferchichi, A., Otón, M., Artés, F. (2014). Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT-Food Science and Technology, 59(2), 649-655.
  • [40] Mukhopadhyay, S., Ukuku, D.O., Juneja, V., Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110-117.
  • [41] Tawema, P., Han, J., Vu, K.D., Salmieri, S., Lacroix, M. (2016). Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157: H7, and total yeasts/molds in fresh cut cauliflower. LWT-Food Science and Technology, 65, 451-456.
  • [42] Cho, M., Yoo, J., Cho, M., Kim, J.H. (2006). Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Research, 40, 2911-2920.
  • [43] Hadjok, C., Mittal, G.S., Warriner, K. (2008). Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. Journal of Applied Microbiology, 104, 1014-1024.
  • [44] Jung, Y.J., Oh, B.S., Kang, J.W. (2008). Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus spores. Water Research, 42, 1613-1621.
  • [45] Koivunen, J., Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39, 1519-1526.
  • [46] Murphy, H.M., Payne, S.J., Gagnon, G.A. (2008). Sequential UV- and chlorine based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Research, 42, 2083-2092.
  • [47] Rodriguez-Romo, L.A., Yousef, A.E. (2005). Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation. Journal of Food Protection, 68, 711-717.
  • [48] Allende, A., Artes, F. (2003). UV-C radiation as a novel technique for keeping quality of fresh processed ‘Lollo Rosso’ lettuce. Food Research International, 36(7), 739-746.
  • [49] Nimitkeatkai, H., Kulthip, J. (2016). Effect of sequential UV-C irradiation on microbial reduction and quality of fresh-cut dragon fruit. International Food Research Journal, 23(4), 1818-1822.
  • [50] Terry, L.A., Joyce D.C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops. Postharvest Biology and Technology, 32, 1–13.
  • [51] Gündüz, G.T., Juneja, V.K., Pazır, F. (2015). Application of Ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens. Food Control, 57, 9-13.
  • [52] Gündüz, G.T., Pazır, F. (2013). Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light. Journal of Food Protection, 76(10), 1761–1766.
  • [53] Syamaladevi, R.M., Adhikari, A., Lupien, S.L., Dugan, F., Bhunia, K., Dhingra, A., Sablani, S.S. (2015). Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces. Food Control, 50, 297-303.
  • [54] Kinay, P., Yıldız, F., Şen, F., Yıldız, M., Karacali, I. (2005). Integration of pre- and postharvest treatments to minimize Penicillium decay of Satsuma mandarins. Postharvest Biology and Technology, 37, 31-36.
  • [55] Erkan, M., Wang, C.Y., Krizek, D.T. (2001). UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany, 45, 1-9.
  • [56] Wang, Q., Chu, L. and Kou, L. (2017). UV-C Treatment maintains quality and delays senescence of oyster mushroom (Pleurotus ostreatus). Scientia Horticulturae, 225, 380–385.
  • [57] Rodov, V., Tiete, Z., Vinokur, Y., Horev, B., Eshel, D. (2010). Ultraviolet light stimulates flavonol accumulation in peeled onions and controls microorganisms on their surface. Journal of Agricultural and Food Chemistry, 58, 9071-9076.
  • [58] Valero, A., Begum, M., Leong, S.L., Hocking, A.D., Ramos, A.J., Sanchis, V., Marin, S. (2007). Effect of germicidal UV-C light on fungi isolated from grapes and raisins. Letters in Applied Microbiology, ISSN 0266-8254.
  • [59] Begum, M., Hocking, A.D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UV-C) irradiation. International Journal of Food Microbiology, 129, 74–77.
  • [60] Fernandez, Y.J., Hall, D.J. (2004). In vitro response of Penicillium digitatum and Geotrichum candidum to ultraviolet (UV-C) exposure. Proceedings of Florida. State Horticultural Society, 117, 380-381.
  • [61] Green, C.F., Scarpino, P.V., Jensen, P., Jensen, N.J., Gibbs, S.G. (2004). Disinfection of selected Aspergillus spp. using ultraviolet germicidal irradiation. Canadian Journal of Microbiology, 50, 221–224.
  • [62] Menetrez, M.Y., Foarde, K.K., Dean, T.R., Betancourt, D.A. (2010). The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chemical Engineering Journal, 157, 443–450.
  • [63] Hamanaka, D., Nrimura, N., Baba, N., Mano, K., Kakiuchi, M., Tanaka, F., Uchino, T. (2011). Surface decontamination of fig fruit by combination of infrared radiation heating with ultraviolet irradiation. Food Control, 22, 375-380.
  • [64] U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition. 2000. Ultraviolet radiation for the processing and treatment of food. Electronic Code of Federal Regulations, Ch 1., Title 21. https://www.ecfr.gov/cgi-bin/text-idx?SID=215a87adad2ac773b018b90432f287d3&mc=true&tpl=/ecfrbrowse/ Title21/ 21cfr179_main_02.tpl (Erişim tarihi: 29.10.2017).
  • [65] Riganakosa, K.A., Karabagias, I.K., Gertzou, I., Stahl, M. (2017). Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innovative Food Science and Emerging Technologies, 42, 165–172.
  • [66] Bhat, R. (2016). Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemistry, 213, 635–640.
  • [67] Pala, Ç.U., Toklucu, A.K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food and Bioprocess Technology, 6, 719–725.
  • [68] Müller, A., Noack, L., Greiner, R., Stahl, M.R., Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juice. Innovative Food Science and Emerging Technologies, 1-31.
  • [69] Feng, M., Ghafoor, K., Seo, B., Yang, K., Park, J. (2013). Effects of ultraviolet-C treatment in Teflon-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innovative Food Science and Emerging Technologies, 19, 133–139.
  • [70] Shama, G. (2007). A new role for UV Extensions to the shelf life of plant foods by UV induced effects. IOA-IUVA Joint World Congress, August 27–29, Los Angeles, California, USA.
  • [71] Gonzalez-Aguilar, G.A., Villegas-Ochoa, M.A., Martinez-Tellez, M.A., Gardea, A.A., Ayala-Zavala. J.F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72, S197-S202.
  • [72] Alothman, M., Bhat, R., Karim, A.A. (2009). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology, 20, 201- 212.
  • [73] Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44, 1–8.
  • [74] Stevens, C., Wilson, C. L., Lu, J.Y., Khan, V.A., Chalutz, E., Droby, S., Kabwe, M.K., Haung, Z., Adeyeye, O., Pusey, L.P., Wisniewski, M.E., West, M. (1996). Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Protection, 15, 129–134.
  • [75] Lu, J.Y., Stevens, C., Khan, V.A., Kabwe, M. (1991). The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. Journal of Food Quality, 14, 299–305.
  • [76] Mercier, J., Arul, J., Julien, C. (1993). Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. Journal of Phytopathology, 139, 17–25.
  • [77] Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111.
  • [78] Perkins-Veazie, P., Collins, J.K., Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47, 280–285.
  • [79] Rodov, V., Ben-Yehoshua, S., Kim, J.J., Shapiro, B., Ittah, Y. (1992). Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. Journal of American Society for Horticultural Science, 117, 788-792.
  • [80] Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Pusey, P.L. Kabwe, M.K., Igwegbe, E.C.K., Chalutz, E., Droby, S. (1998). The germisidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches. Crop Protection, 17, 75-84.
  • [81] Nigro, F., Ippolito, A., Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13, 171–181.
  • [82] Romanazzi, G., Mlikota Gabler, F., Smilanick, J.L. (2006). Preharvest chitosan and postharvest UV-C irradiation treatments suppress gray mold of table grapes. Plant Disease, 90, 445–450.
  • [83] Akbudak, B., Karabulut, Ö.A. (2002). Üzüm muhafazasında gri küften (B. cinerea Pers:Fr.) kaynaklanan kalite kaybı ve çürümelerin Ultraviolet-C (UV-C) ışık uygulamaları ile önlenmesi üzerine bir araştırma. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 35-46.
  • [84] Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L. (1999). Induced resistance of sweetpotato to Fusarium root rot by UV-C hormesis. Crop protection, 0261-2194.
  • [85] Capdeville, G., Wilson, C.L., Beer, S.V., Aist, J.R. (2002). Alternative disease control agents ınduce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. The American Phytopathological Society, 92(8), 900-908.
  • [86] Moreno, C., Andrade-Cuvi, M.J., Zaro, M.J., Darre, M., Vicente, A.R., Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut Carambola. Hindawi Journal of Food Quality, 1-9.
  • [87] Gonzalez-Aguilar, G.A., Villa-Rodriguez, J.A., Ayala-Zavala, J.F., Yahia, E.M. (2010). Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science & Technology, 21, 475–482.
  • [88] Koutchma, T., Orlowska, M. (2012). Ultraviolet light for processing fruits and fruit products, Rodrigues, S., Fernandez, F.A.N. (Eds.), Advences in Frit Processing Technologies. CRC Press, Taylor and Francis Group, Boca Raton, pp. 1-31.
  • [89] Pombo, M.A., Dotto, M.C., Martínez, G.A., Civello, P.M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51, 141–148.
  • [90] D’hallewin, G., Schirra, M., Manueddu, E., Piga, A., Ben-Yehoshua, S. (1999). Scoparone and scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. Journal of the American Society for Horticultural Science, 124, 702-707.
  • [91] Mercier, J., Roussel, D., Charles, M.T., Arul, J. (2000). Systemic and local responses associated with UV- and pathogen-induced resistance to Botrytis cinerea in Stored Carrot. Phytopathology, 90, 981-986.
  • [92] Ben- Yehoshua, S., Rodov, V., Kim, J.J., Carmeli, S. (1992). Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. Journal of Agricultural and Food Chemistry, 40, 1217-1221.
  • [93] Charles, M.T., Mercier, J., Makhlouf, J., Arul, J. (2008). Physiologicalbasis of UV-C- induced resistance to Botrytis cinerea in tomato fruit: I. Role of pre- and post- challenge accumulation of phytoalexin-rishitin. Postharvest Biology and Techonology, 47, 10-20.
  • [94] Charles, M.T., Benhamou, N., Arul, J. (2008). Physiologicalbasis of UV-C- induced resistance to Botrytis cinerea in tomato fruit: III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology, 47, 27-40.
  • [95] Vàsquez, H., Ouhibia, C., Lizzi, Y., Azzouz, N., Forgesa, M., Bardin, M., Nicot, P., Urban, L., Aarrouf, J. (2017). Pre-harvest hormetic doses of UV-C radiation can decrease susceptibility of lettuce leaves (Lactuca sativa L.) to Botrytis cinerea L. Scientia Horticulturae, 222, 32–39.
  • [96] Ohlsson, T., Bengtsson, N. (2002). Minimal Processing Technologies in the Food Industry, CRC Press, New York, 34–57p.
  • [97] Cuvelier, M., Berset, C. (2005). Phenolic compounds and plant extracts protect paprika against UV-induced discoloration. International Journal Food Science and Technology, 40, 67–73.
  • [98] Kolakowska, A. (2003). Lipid oxidation in food systems. In Chemical and functional properties of food lipids, Edited by Kolakowska, A., Sikorski, Z.E., CRC Press, New York, 133–168p.

Mold Inhibition on Fruits and Vegetables by UV-C Light Treatments

Year 2018, Volume: 16 Issue: 4, 458 - 469, 31.12.2018
https://doi.org/10.24323/akademik-gida.505539

Abstract

Molds can lead to the deterioration of fruits and vegetables, causing
economic losses and have negative effects on health by producing mycotoxins.
UV-C light technology is one of the non-thermal processes used for the surface
decontamination of fruits and vegetables and is one of the alternative methods
used to inhibit the growth of microorganisms and to control losses during
storage and transport. UV-C treatment has been the subject of many studies
since the quality of products is not adversely affected and it is a low-cost
method. Limited number of studies is found in the literature on mold inhibition,
while there are many studies on the inactivation of bacteria by ultraviolet
light. In this study, germicidal and hormetic effects of UV-C light
applications for inhibition of molds in fruits and vegetables were reviewed.

References

  • [1] Pitt, J.I., Hocking, A.D. (2009). Fungi and Food Spoilage. Springer Science and Business Media, London.
  • [2] Ma, L., Zhang, M., Bhandari, B., Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38.
  • [3] Romanazzi, G., Sanzani, S.M., Bi, Y., Tian, S., Martínez, P.G., Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology 122, 82–94.
  • [4] Liu, J., Sui, Y., Wisniewski, M., Xie, Z., Liu, Y., You, Y., Zhang, X., Sun, Z., Li, W., Li, Y., Wang, Q. (2017). The impact of the postharvest environment on the viability and virulence of decay fungi. Critical Reviews In Food Science and Nutrition, 1-7.
  • [5] Günaydın, Ş., Karaca, H. (2015). Küf gelişimi ve mikotoksin oluşumunun kontrolünde doğal bitki ekstraktlarının kullanımı. Akademik Gıda, 13(2), 173-182.
  • [6] Wang, C.Y., Chen, C.T., Wang, S.Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117, 426-431.
  • [7] Artes-Hernandez, F., Martinez- Hernandez, G.B., Aguayo, E., Gomez, P.A., Artes, F. (2017). Fresh-cut fruit and vegetables: Emerging eco-friendly techniques for sanitation and preserving safety. Postharvest Handling, 7-45.
  • [8] Wu, J., Liu, W., Yuan, L., Guan, W.Q., Brennan, C.S., Zhang, Y.Y., Zhang, J., Wang, Z.D. (2017). The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports, 7, 1-11.
  • [9] Shama, G., Alderson, P. (2005). UV hormesis in fruits: a concept ripe for commercialization. Trends in Food Science and Technology, 16, 128-136.
  • [10] Charles, M.T., Goulet, A., Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: IV. Biochemical modification of structural barriers. Postharvest Biology and Technology, 47, 41-53.
  • [11] Charles, M.T., Tano, K., Asselin, A., Arul, J. (2009). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. constitutive defense enzymes and inducible pathogenesis-related proteins. Postharvest Biology and Technology, 51, 414-424.
  • [12] Khademi, O., Zamani, Z., Poor Ahmadi, E., Kalantari, S. (2013). Effect of UV-C radiation on postharvest physiology of persimmon fruit (Diospyros kaki Thunb.) cv. `Karaj´ during storage at cold temperature. International Food Research Journal, 20(1), 247-253.
  • [13] Masschelein, W.J., Rice, R.G. (2002). Ultraviolet light in water and waste water sanitation. Lewis Publishers, Boca Raton, 2p.
  • [14] Koutchma, T., Forney, L.J., Moraru, C.I. (2009). Ultraviolet Light in Food Technology: Principles and Applications, CRC Press, New York, 1-31, 69-101, 102-125.
  • [15] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V. (2004). Advantages and limitations on processing foods by UV light, Food Science and Technology International, 10(3), 137-147.
  • [16] Hijnen, W.A.M., Beerendonk, E.F., Medema, G.J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water. Water Research, 40, 3-22.
  • [17] Yaun, B.R., Sumner, S.S., Eifert, J.D., Marcy, J.E. (2004). Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology, 90(1), 1-8.
  • [18] Sastry, S.K., Datta, A.K., Worobo, R.W. (2000). Ultraviolet light. Journal Food Science Supplement, 65(12), 90–92.
  • [19] Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R.K. (2000). Existing and potential applications of ultraviolet light in the food industry. Journal of the Science of Food and Agriculture, 80, 637-645.
  • [20] Lopez-Malo, A., Palou, E. (2005). Ultraviolet light and food preservation. Novel food processing Technologies, 18, 405-421.
  • [21] Krishnamurthy, K., Irudayaraj J., Yang, W., Demirci, A. (2008). UV Pasteurization of food materials, Food processing operations modeling design and analysis, Edited by Irudayaraj, J., Jun, S., CRC Press, New York, 281–302p.
  • [22] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V. (2005). Reduction of Saccharomyces cerevisiae, Escherichia coli, Listeria innocua in apple juice by ultraviolet light. Journal of Food Process Engineering, 28, 437-452.
  • [23] Müller, A., Stahl, M.R., Graef, V., Franz, C.M.A.P., Huch, M. (2011). UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. Journal of Food Engineering, 107, 268-275.
  • [24] Tran, M.T.T., Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies, 5, 495-502.
  • [25] Locke, T., Fletcher, J.T. (1988). Incidence of benomyl and iprodione resistance in isolates of Botrytis cinerea in tomato crops in England and Wales in 1986. Plant Pathology, 37, 381–384.
  • [26] Katan, T. (1982). Resistance to 3,5-dichlorophenyl-N-cyclicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea in protected crops. Plant Pathology, 31, 133–141.
  • [27] Georgopoulos, S.G. (1987). The development of fungicide resistance. In Population of plant pathogens: Their Dynamics and Genetics, Edited by M.S., Wolfe & C.E., Caten., UK: Blackwell, Oxford, 239-251p.
  • [28] Staub, T. (1991). Fungicide resistance; practical experience with anti resistance strategies and the role of integrated use. Annual Review of Phytopathology, 29, 421–442.
  • [29] Elad, Y., Yunis, H., Katan, T. (1992). Multiple resistance to benzimidazoles dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology, 41, 41–46.
  • [30] Janisiewicz, W.J., Takeda, F., Gleen, D.M., Camp, M.J., Jurick II, W. M. (2016). Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology, 106(4), 386-394.
  • [31] Rico, D., Martín-Diana, A.B., Barat, J.M., Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables. Trends in Food Science & Technology, 18, 373–386.
  • [32] Arul, J. (1994). Emerging technologies for the control of postharvest diseases of fresh fruits and vegetables. In: Biological Control of Postharvest Diseases, Theory and Practice. Edited by Wilson, C.L., Wisniewski, M.E., CRC Press, London, Tokyo, 1–10p.
  • [33] Wilson, C.L., El Ghaouth, A., Chalutz, E., Droby, S., Stevens, C., Lu, J.Y., Khan, V., Arul, J. (1994). Potential of induced resistance to control postharvest diseases of fruits and vegetables. Plant Disease (USA), 78, 837–845.
  • [34] Mari, M., Guizzardi, M., Brunelli, M., Folchi, A. (1996). Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection, 15(8), 699–705.
  • [35] Arul, J., Mercier, J., Charles, M.T., Baka, M., Maharaj, R. (2001). Photochemical treatment for control of postharvest diseases in horticultural crops. In: Physical Control Methods in Plant Protection, Edited by C, Vincent, B., Panneton, F. Fleurat-Lessard, INRA Editions, Paris, 146–161p.
  • [36] Ben-Yeohshua, S., Mercier, J. (2005). UV irradiation, biological agents, and natural compounds for controlling postharvest decay in fresh fruits and vegetables. In: Environmentally Friendly Technologies for Agricultural Produce Quality, Edited by S. Ben-Yehoshua, Taylor & Francis, Boca Raton, 266–299p.
  • [37] Charles, M.T., Benhamou, N., Arul, J. (2008). Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology, 47, 27–40.
  • [38] Muraca, P., Stout, J.E., Yu, V.L. (1987). Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system. Applied and Environmental Microbiology, 53(2), 447-453.
  • [39] Jemni, M., Gómez, P.A., Souza, M., Chaira, N., Ferchichi, A., Otón, M., Artés, F. (2014). Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT-Food Science and Technology, 59(2), 649-655.
  • [40] Mukhopadhyay, S., Ukuku, D.O., Juneja, V., Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110-117.
  • [41] Tawema, P., Han, J., Vu, K.D., Salmieri, S., Lacroix, M. (2016). Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157: H7, and total yeasts/molds in fresh cut cauliflower. LWT-Food Science and Technology, 65, 451-456.
  • [42] Cho, M., Yoo, J., Cho, M., Kim, J.H. (2006). Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Research, 40, 2911-2920.
  • [43] Hadjok, C., Mittal, G.S., Warriner, K. (2008). Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. Journal of Applied Microbiology, 104, 1014-1024.
  • [44] Jung, Y.J., Oh, B.S., Kang, J.W. (2008). Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus spores. Water Research, 42, 1613-1621.
  • [45] Koivunen, J., Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39, 1519-1526.
  • [46] Murphy, H.M., Payne, S.J., Gagnon, G.A. (2008). Sequential UV- and chlorine based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Research, 42, 2083-2092.
  • [47] Rodriguez-Romo, L.A., Yousef, A.E. (2005). Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation. Journal of Food Protection, 68, 711-717.
  • [48] Allende, A., Artes, F. (2003). UV-C radiation as a novel technique for keeping quality of fresh processed ‘Lollo Rosso’ lettuce. Food Research International, 36(7), 739-746.
  • [49] Nimitkeatkai, H., Kulthip, J. (2016). Effect of sequential UV-C irradiation on microbial reduction and quality of fresh-cut dragon fruit. International Food Research Journal, 23(4), 1818-1822.
  • [50] Terry, L.A., Joyce D.C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops. Postharvest Biology and Technology, 32, 1–13.
  • [51] Gündüz, G.T., Juneja, V.K., Pazır, F. (2015). Application of Ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens. Food Control, 57, 9-13.
  • [52] Gündüz, G.T., Pazır, F. (2013). Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light. Journal of Food Protection, 76(10), 1761–1766.
  • [53] Syamaladevi, R.M., Adhikari, A., Lupien, S.L., Dugan, F., Bhunia, K., Dhingra, A., Sablani, S.S. (2015). Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces. Food Control, 50, 297-303.
  • [54] Kinay, P., Yıldız, F., Şen, F., Yıldız, M., Karacali, I. (2005). Integration of pre- and postharvest treatments to minimize Penicillium decay of Satsuma mandarins. Postharvest Biology and Technology, 37, 31-36.
  • [55] Erkan, M., Wang, C.Y., Krizek, D.T. (2001). UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany, 45, 1-9.
  • [56] Wang, Q., Chu, L. and Kou, L. (2017). UV-C Treatment maintains quality and delays senescence of oyster mushroom (Pleurotus ostreatus). Scientia Horticulturae, 225, 380–385.
  • [57] Rodov, V., Tiete, Z., Vinokur, Y., Horev, B., Eshel, D. (2010). Ultraviolet light stimulates flavonol accumulation in peeled onions and controls microorganisms on their surface. Journal of Agricultural and Food Chemistry, 58, 9071-9076.
  • [58] Valero, A., Begum, M., Leong, S.L., Hocking, A.D., Ramos, A.J., Sanchis, V., Marin, S. (2007). Effect of germicidal UV-C light on fungi isolated from grapes and raisins. Letters in Applied Microbiology, ISSN 0266-8254.
  • [59] Begum, M., Hocking, A.D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UV-C) irradiation. International Journal of Food Microbiology, 129, 74–77.
  • [60] Fernandez, Y.J., Hall, D.J. (2004). In vitro response of Penicillium digitatum and Geotrichum candidum to ultraviolet (UV-C) exposure. Proceedings of Florida. State Horticultural Society, 117, 380-381.
  • [61] Green, C.F., Scarpino, P.V., Jensen, P., Jensen, N.J., Gibbs, S.G. (2004). Disinfection of selected Aspergillus spp. using ultraviolet germicidal irradiation. Canadian Journal of Microbiology, 50, 221–224.
  • [62] Menetrez, M.Y., Foarde, K.K., Dean, T.R., Betancourt, D.A. (2010). The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chemical Engineering Journal, 157, 443–450.
  • [63] Hamanaka, D., Nrimura, N., Baba, N., Mano, K., Kakiuchi, M., Tanaka, F., Uchino, T. (2011). Surface decontamination of fig fruit by combination of infrared radiation heating with ultraviolet irradiation. Food Control, 22, 375-380.
  • [64] U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition. 2000. Ultraviolet radiation for the processing and treatment of food. Electronic Code of Federal Regulations, Ch 1., Title 21. https://www.ecfr.gov/cgi-bin/text-idx?SID=215a87adad2ac773b018b90432f287d3&mc=true&tpl=/ecfrbrowse/ Title21/ 21cfr179_main_02.tpl (Erişim tarihi: 29.10.2017).
  • [65] Riganakosa, K.A., Karabagias, I.K., Gertzou, I., Stahl, M. (2017). Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innovative Food Science and Emerging Technologies, 42, 165–172.
  • [66] Bhat, R. (2016). Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemistry, 213, 635–640.
  • [67] Pala, Ç.U., Toklucu, A.K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food and Bioprocess Technology, 6, 719–725.
  • [68] Müller, A., Noack, L., Greiner, R., Stahl, M.R., Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juice. Innovative Food Science and Emerging Technologies, 1-31.
  • [69] Feng, M., Ghafoor, K., Seo, B., Yang, K., Park, J. (2013). Effects of ultraviolet-C treatment in Teflon-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innovative Food Science and Emerging Technologies, 19, 133–139.
  • [70] Shama, G. (2007). A new role for UV Extensions to the shelf life of plant foods by UV induced effects. IOA-IUVA Joint World Congress, August 27–29, Los Angeles, California, USA.
  • [71] Gonzalez-Aguilar, G.A., Villegas-Ochoa, M.A., Martinez-Tellez, M.A., Gardea, A.A., Ayala-Zavala. J.F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72, S197-S202.
  • [72] Alothman, M., Bhat, R., Karim, A.A. (2009). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology, 20, 201- 212.
  • [73] Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44, 1–8.
  • [74] Stevens, C., Wilson, C. L., Lu, J.Y., Khan, V.A., Chalutz, E., Droby, S., Kabwe, M.K., Haung, Z., Adeyeye, O., Pusey, L.P., Wisniewski, M.E., West, M. (1996). Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Protection, 15, 129–134.
  • [75] Lu, J.Y., Stevens, C., Khan, V.A., Kabwe, M. (1991). The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. Journal of Food Quality, 14, 299–305.
  • [76] Mercier, J., Arul, J., Julien, C. (1993). Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. Journal of Phytopathology, 139, 17–25.
  • [77] Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111.
  • [78] Perkins-Veazie, P., Collins, J.K., Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47, 280–285.
  • [79] Rodov, V., Ben-Yehoshua, S., Kim, J.J., Shapiro, B., Ittah, Y. (1992). Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. Journal of American Society for Horticultural Science, 117, 788-792.
  • [80] Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Pusey, P.L. Kabwe, M.K., Igwegbe, E.C.K., Chalutz, E., Droby, S. (1998). The germisidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches. Crop Protection, 17, 75-84.
  • [81] Nigro, F., Ippolito, A., Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13, 171–181.
  • [82] Romanazzi, G., Mlikota Gabler, F., Smilanick, J.L. (2006). Preharvest chitosan and postharvest UV-C irradiation treatments suppress gray mold of table grapes. Plant Disease, 90, 445–450.
  • [83] Akbudak, B., Karabulut, Ö.A. (2002). Üzüm muhafazasında gri küften (B. cinerea Pers:Fr.) kaynaklanan kalite kaybı ve çürümelerin Ultraviolet-C (UV-C) ışık uygulamaları ile önlenmesi üzerine bir araştırma. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 35-46.
  • [84] Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L. (1999). Induced resistance of sweetpotato to Fusarium root rot by UV-C hormesis. Crop protection, 0261-2194.
  • [85] Capdeville, G., Wilson, C.L., Beer, S.V., Aist, J.R. (2002). Alternative disease control agents ınduce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. The American Phytopathological Society, 92(8), 900-908.
  • [86] Moreno, C., Andrade-Cuvi, M.J., Zaro, M.J., Darre, M., Vicente, A.R., Concellón, A. (2017). Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut Carambola. Hindawi Journal of Food Quality, 1-9.
  • [87] Gonzalez-Aguilar, G.A., Villa-Rodriguez, J.A., Ayala-Zavala, J.F., Yahia, E.M. (2010). Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science & Technology, 21, 475–482.
  • [88] Koutchma, T., Orlowska, M. (2012). Ultraviolet light for processing fruits and fruit products, Rodrigues, S., Fernandez, F.A.N. (Eds.), Advences in Frit Processing Technologies. CRC Press, Taylor and Francis Group, Boca Raton, pp. 1-31.
  • [89] Pombo, M.A., Dotto, M.C., Martínez, G.A., Civello, P.M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51, 141–148.
  • [90] D’hallewin, G., Schirra, M., Manueddu, E., Piga, A., Ben-Yehoshua, S. (1999). Scoparone and scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. Journal of the American Society for Horticultural Science, 124, 702-707.
  • [91] Mercier, J., Roussel, D., Charles, M.T., Arul, J. (2000). Systemic and local responses associated with UV- and pathogen-induced resistance to Botrytis cinerea in Stored Carrot. Phytopathology, 90, 981-986.
  • [92] Ben- Yehoshua, S., Rodov, V., Kim, J.J., Carmeli, S. (1992). Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. Journal of Agricultural and Food Chemistry, 40, 1217-1221.
  • [93] Charles, M.T., Mercier, J., Makhlouf, J., Arul, J. (2008). Physiologicalbasis of UV-C- induced resistance to Botrytis cinerea in tomato fruit: I. Role of pre- and post- challenge accumulation of phytoalexin-rishitin. Postharvest Biology and Techonology, 47, 10-20.
  • [94] Charles, M.T., Benhamou, N., Arul, J. (2008). Physiologicalbasis of UV-C- induced resistance to Botrytis cinerea in tomato fruit: III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology, 47, 27-40.
  • [95] Vàsquez, H., Ouhibia, C., Lizzi, Y., Azzouz, N., Forgesa, M., Bardin, M., Nicot, P., Urban, L., Aarrouf, J. (2017). Pre-harvest hormetic doses of UV-C radiation can decrease susceptibility of lettuce leaves (Lactuca sativa L.) to Botrytis cinerea L. Scientia Horticulturae, 222, 32–39.
  • [96] Ohlsson, T., Bengtsson, N. (2002). Minimal Processing Technologies in the Food Industry, CRC Press, New York, 34–57p.
  • [97] Cuvelier, M., Berset, C. (2005). Phenolic compounds and plant extracts protect paprika against UV-induced discoloration. International Journal Food Science and Technology, 40, 67–73.
  • [98] Kolakowska, A. (2003). Lipid oxidation in food systems. In Chemical and functional properties of food lipids, Edited by Kolakowska, A., Sikorski, Z.E., CRC Press, New York, 133–168p.
There are 98 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Ayça Korkmaz 0000-0003-2084-5337

Gülten Tiryaki Gündüz 0000-0002-5878-7411

Publication Date December 31, 2018
Submission Date November 13, 2017
Published in Issue Year 2018 Volume: 16 Issue: 4

Cite

APA Korkmaz, A., & Tiryaki Gündüz, G. (2018). Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu. Akademik Gıda, 16(4), 458-469. https://doi.org/10.24323/akademik-gida.505539
AMA Korkmaz A, Tiryaki Gündüz G. Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu. Akademik Gıda. December 2018;16(4):458-469. doi:10.24323/akademik-gida.505539
Chicago Korkmaz, Ayça, and Gülten Tiryaki Gündüz. “Meyve Ve Sebzelerde UV-C Işık Uygulamaları Ile Küf İnhibisyonu”. Akademik Gıda 16, no. 4 (December 2018): 458-69. https://doi.org/10.24323/akademik-gida.505539.
EndNote Korkmaz A, Tiryaki Gündüz G (December 1, 2018) Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu. Akademik Gıda 16 4 458–469.
IEEE A. Korkmaz and G. Tiryaki Gündüz, “Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu”, Akademik Gıda, vol. 16, no. 4, pp. 458–469, 2018, doi: 10.24323/akademik-gida.505539.
ISNAD Korkmaz, Ayça - Tiryaki Gündüz, Gülten. “Meyve Ve Sebzelerde UV-C Işık Uygulamaları Ile Küf İnhibisyonu”. Akademik Gıda 16/4 (December 2018), 458-469. https://doi.org/10.24323/akademik-gida.505539.
JAMA Korkmaz A, Tiryaki Gündüz G. Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu. Akademik Gıda. 2018;16:458–469.
MLA Korkmaz, Ayça and Gülten Tiryaki Gündüz. “Meyve Ve Sebzelerde UV-C Işık Uygulamaları Ile Küf İnhibisyonu”. Akademik Gıda, vol. 16, no. 4, 2018, pp. 458-69, doi:10.24323/akademik-gida.505539.
Vancouver Korkmaz A, Tiryaki Gündüz G. Meyve ve Sebzelerde UV-C Işık Uygulamaları ile Küf İnhibisyonu. Akademik Gıda. 2018;16(4):458-69.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).