Research Article
BibTex RIS Cite

Dondurarak Kurutma İşleminin Karayemiş ve Kivinin Fiziksel ve Antioksidan Özellikleri Üzerine Etkisi

Year 2019, Volume: 17 Issue: 1, 9 - 15, 26.03.2019
https://doi.org/10.24323/akademik-gida.543985

Abstract

Dondurarak kurutma besleyici ve sıcaklıktan
kolay etkilenebilen gıda ürünlerinin korunmasında kullanılan yeni bir metottur.
Bu çalışmada, dondurarak kurutmanın etkilerini gözlemlemek için yüksek askorbik
asit (kivi) ve fenolik bileşen içeren (karayemiş) iki tip meyve seçilmiştir. Kivi
ve karayemiş meyvelerinin dondurarak kurutulmasından önce ve sonra askorbik asit
içeriği, toplam fenolik madde içeriği ve antioksidan kapasiteleri
belirlenmiştir. Kivi ve karayemiş meyvesi için askorbik asit içerikleri
sırasıyla 205.14±21.33 ve
3.00±1.02 mg/100
g kuru madde olarak bulunmuştur. Kivi ve karayemiş meyvesi için toplam fenolik
madde içerikleri sırasıyla
262.66±19.97 ve 1056.78±90.73
mg GAE/100 g kuru madde olarak belirlenmiştir. Her iki meyve için de dondurarak
kurutma işlemi ile birlikte antioksidan kapasiteleri artarken, askorbik asit
içerikleri değişmemiştir. Toplam fenolik bileşen miktarında dondurarak
kurutulmuş karayemiş meyvesinde önemli ölçüde artış olmuştur ancak kivi
meyvesinde olmamıştır. Renk değerleri her iki meyve için dondurarak kurutma
işlemi ile birlikte değişmiştir, aydınlık ve sarılık değerleri önemli ölçüde
artmıştır (p<0.05). Dondurarak kurutulmuş kivi ve karayemiş meyvelerinin 25
ve 40
°C’deki
rehidrasyon oranlarının benzer olduğu bulunmuştur. Rehidrasyon oranları, 25 ve
40
°C’deki
suyun içerisinde tutulma sürelerinin başlangıcında daha hızlı artış gözlenmiştir.
Çalışmanın sonuçları dondurarak kurutma işleminin, besleyici kurutulmuş
meyveler ve sezon dışı ürünler için uygun bir metot olduğunu göstermiştir.

References

  • [1] Kalt, W., Forney, C.F., Martin, A., Prior, R.L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47, 4638-4644.
  • [2] Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, R11-R19.
  • [3] Harris, W.S. (1992). The prevention of atherosclerosis with antioxidants. Clinical Cardiology, 5, 636-640.
  • [4] Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Vupputuri, S., Myers, L., Whelton, P.K. (2002). Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first national health and nutrition examination survey epidemiologic follow-up study. American Journal of Clinical Nutrition, 76, 93-99.
  • [5] Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., Colditz, G.A., Rosner, B., Spiegelman, D., Willett, W.C. (2004). Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute, 96, 1577-1584.
  • [6] Karadeniz, F., Burdurlu, H.S., Koca, N., Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297-303. [7] Al-Fartosy, A.J. (2011). Antioxidant properties of methanolic extract from Inula graveolens L. Turkish Journal of Agriculture and Forestry, 35, 591-596.
  • [8] Meng, F., Zhong, G., Xu, X., Wu, Y. (2015). Functional ingredients analysis for the leaves of Premna ligustroides Hemsl. and the antioxidant activity evaluation for its ethanol extracts. Food Science and Technology Research, 21(6), 847-855.
  • [9] Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., Niu, Y. (2016). A comparative study on total anthocyanin content, composition of anthocyanidin, total phenolic content and antioxidant activity of pigmented potato peel and flesh. Food Science and Technology Research, 22(2), 219-226.
  • [10] Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66, 401-436.
  • [11] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22, 18-35.
  • [12] Cassano, A., Figoli, A., Tagarelli, A., Sindona, G., Drioli, E. (2006). Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination, 189, 21-30.
  • [13] Rush, E., Ferguson, L.R., Cumin, M., Thakur, V., Karunasinghe, N., Plank, L. (2006). Kiwifruit consumption reduces DNA fragility: a randomized controlled pilot study in volunteers. Nutrition Research, 26, 197-201.
  • [14] Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107, 282-288.
  • [15] Celik, F., Ercisli, S., Yilmaz, S.O., Hegedus, A. (2011). Estimation of certain physical and chemical fruit characteristics of various cherry laurel (Laurocerasus officinalis Roem.) genotypes. Hortscience, 46, 924-927.
  • [16] Kolayli, S., Küçük, M., Duran, C., Candan, F., Dinçer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea region. Journal of Agricultural and Food Chemistry, 51, 7489-7494.
  • [17] Lopez-Quiroga, E., Antelo, L.T., Alonso, A.A. (2012). Time-scale modeling and optimal control of freeze–drying. Journal of Food Engineering, 111, 655-666.
  • [18] Babić, J., Cantalejo, M.J., Arroqui, C. (2009). The effects of freeze-drying process parameters on Broiler chicken breast meat. LWT- Food Science and Technology, 42, 1325-1334.
  • [19] George, J.P., Datta, A.K. (2002). Development and validation of heat and mass transfer models for freeze-drying of vegetable slices. Journal of Food Engineering, 52, 89-93.
  • [20] Kola, O. (2010). Physical and chemical characteristics of the ripe pepino (Solanum muricatum) fruit grown in Turkey. Journal of Food, Agriculture, and Environment, 8(2), 168-171.
  • [21] Wojdyło, A., Oszmiański, J., Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949.
  • [22] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal Agricultural and Food Chemistry, 52, 7970-7981.
  • [23] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28, 25-30.
  • [24] Chen, Q., Li, Z., Bi, J., Zhou, L., Yi, J., Wu, X. (2017). Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT- Food Science and Technology, 80, 178-184.
  • [25] Kvesitadze, G.I., Kalandiya, A.G., Papunidze, S.G., Vanidze, M.R. (2001). Identification and quantification of ascorbic acid in kiwi fruit by high-performance liquid chromatography. Applied Biochemistry and Microbiology, 37, 215-218.
  • [26] Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal Agricultural and Food Chemistry, 51, 1237-1241.
  • [27] Gumuşay, O.A., Borazan, A.A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162.
  • [28] Chang, C.H., Lin, H.Y., Chang, C.Y., Liu, Y.C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77, 478-485.
  • [29] Gorinstein, S., Haruenkit, R., Poovarodom, S., Park, Y.S., Vearasilp, S., Suhaj, M., Ham, K.S., Heo, B.G., Cho, J.Y., Jang, H.G. (2009). The comparative characteristics of snake and kiwi fruits. Food and Chemical Toxicology, 47, 1884-1891.
  • [30] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., Yong, M.Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113, 166-172.
  • [31] Park, Y.S., Ham, K.S., Park, Y.K., Leontowicz, H., Leontowicz, M., Namieśnik, J., Katrich, E., Gorinstein, S. (2016). The effects of treatment on quality parameters of smoothie-type ‘Hayward’kiwi fruit beverages. Food Control, 70, 221-228.
  • [32] Das, A., Raychaudhuri, U., Chakraborty, R. (2012). Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. International Journal of Food Sciences and Nutrition, 63(6), 718-721.
  • [33] Zhang, Z., Lv, G., Pan, H., Wu, Y., Fan, L. (2009). Effects of different drying methods and extraction condition on antioxidant properties of Shiitake (Lentinus edodes). Food Science and Technology Research, 15(5), 547-552.
  • [34] Cui, Z.W., Li, C.Y., Song, C.F., Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517-1523.
  • [35] Kadam, D.M., Samuel, D.V.K., Chandra, P., Sikarwar, H.S. (2008). Impact of processing treatments and packaging material on some properties of stored dehydrated cauliflower International Journal of Food Science & Technology, 43, 1-14.
  • [36] Demiray, E., Tülek, Y. (2018). Rehydration kinetics of sun-dried eggplants (Solanum melongena L.) at different temperatures. Akademik Gıda, 16(3), 257-263. [37] Beaudry, C., Raghavan, G.S.V., Ratti, C., Rennie, T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology, 22, 521-539.

Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits

Year 2019, Volume: 17 Issue: 1, 9 - 15, 26.03.2019
https://doi.org/10.24323/akademik-gida.543985

Abstract

Freeze-drying is a trend method for the preservation
of thermosensitive and nutritive food products. In this study, two different fruits,
kiwi fruit with high ascorbic acid content and cherry laurel fruit with high phenolic
content, were selected to study the freeze-drying effect on these compounds.
Ascorbic acid content, total phenolic content and antioxidant capacity of kiwi
and cherry laurel fruits were determined before and after freeze-drying
process. Ascorbic acid content of kiwi and cherry laurel fruit were 205.14±21.33
and
3.00±1.02
mg/100 g dry matter, respectively. Total phenolic content of kiwi and cherry
laurel fruits were
262.66±19.97
and 1056.78±90.73 mg GAE/100 g dry matter, respectively. Ascorbic acid contents
did not change, while antioxidant capacities increased by freeze-drying process
for both fruits. The total phenolic content of cherry laurel fruits increased significantly
after freeze-drying in contrast to the total phenolic content of kiwi fruits.
Color values changed with freeze-drying, the lightness and yellowness values
increased significantly for both fruits (p<0.05). The rehydration ratios of
freeze-dried kiwi and cherry laurel fruits were found similar at 25 and 40
°C. The rehydration ratio in water at 40°C increased more quickly in the beginning of
immersion than the ratio at 25
°C. The
results of this study showed that freeze-drying method is highly recommended
for the preservation of nutritive values of these fruits and off-season
products.

References

  • [1] Kalt, W., Forney, C.F., Martin, A., Prior, R.L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47, 4638-4644.
  • [2] Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, R11-R19.
  • [3] Harris, W.S. (1992). The prevention of atherosclerosis with antioxidants. Clinical Cardiology, 5, 636-640.
  • [4] Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Vupputuri, S., Myers, L., Whelton, P.K. (2002). Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first national health and nutrition examination survey epidemiologic follow-up study. American Journal of Clinical Nutrition, 76, 93-99.
  • [5] Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., Colditz, G.A., Rosner, B., Spiegelman, D., Willett, W.C. (2004). Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute, 96, 1577-1584.
  • [6] Karadeniz, F., Burdurlu, H.S., Koca, N., Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297-303. [7] Al-Fartosy, A.J. (2011). Antioxidant properties of methanolic extract from Inula graveolens L. Turkish Journal of Agriculture and Forestry, 35, 591-596.
  • [8] Meng, F., Zhong, G., Xu, X., Wu, Y. (2015). Functional ingredients analysis for the leaves of Premna ligustroides Hemsl. and the antioxidant activity evaluation for its ethanol extracts. Food Science and Technology Research, 21(6), 847-855.
  • [9] Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., Niu, Y. (2016). A comparative study on total anthocyanin content, composition of anthocyanidin, total phenolic content and antioxidant activity of pigmented potato peel and flesh. Food Science and Technology Research, 22(2), 219-226.
  • [10] Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66, 401-436.
  • [11] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22, 18-35.
  • [12] Cassano, A., Figoli, A., Tagarelli, A., Sindona, G., Drioli, E. (2006). Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination, 189, 21-30.
  • [13] Rush, E., Ferguson, L.R., Cumin, M., Thakur, V., Karunasinghe, N., Plank, L. (2006). Kiwifruit consumption reduces DNA fragility: a randomized controlled pilot study in volunteers. Nutrition Research, 26, 197-201.
  • [14] Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107, 282-288.
  • [15] Celik, F., Ercisli, S., Yilmaz, S.O., Hegedus, A. (2011). Estimation of certain physical and chemical fruit characteristics of various cherry laurel (Laurocerasus officinalis Roem.) genotypes. Hortscience, 46, 924-927.
  • [16] Kolayli, S., Küçük, M., Duran, C., Candan, F., Dinçer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea region. Journal of Agricultural and Food Chemistry, 51, 7489-7494.
  • [17] Lopez-Quiroga, E., Antelo, L.T., Alonso, A.A. (2012). Time-scale modeling and optimal control of freeze–drying. Journal of Food Engineering, 111, 655-666.
  • [18] Babić, J., Cantalejo, M.J., Arroqui, C. (2009). The effects of freeze-drying process parameters on Broiler chicken breast meat. LWT- Food Science and Technology, 42, 1325-1334.
  • [19] George, J.P., Datta, A.K. (2002). Development and validation of heat and mass transfer models for freeze-drying of vegetable slices. Journal of Food Engineering, 52, 89-93.
  • [20] Kola, O. (2010). Physical and chemical characteristics of the ripe pepino (Solanum muricatum) fruit grown in Turkey. Journal of Food, Agriculture, and Environment, 8(2), 168-171.
  • [21] Wojdyło, A., Oszmiański, J., Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949.
  • [22] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal Agricultural and Food Chemistry, 52, 7970-7981.
  • [23] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28, 25-30.
  • [24] Chen, Q., Li, Z., Bi, J., Zhou, L., Yi, J., Wu, X. (2017). Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT- Food Science and Technology, 80, 178-184.
  • [25] Kvesitadze, G.I., Kalandiya, A.G., Papunidze, S.G., Vanidze, M.R. (2001). Identification and quantification of ascorbic acid in kiwi fruit by high-performance liquid chromatography. Applied Biochemistry and Microbiology, 37, 215-218.
  • [26] Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal Agricultural and Food Chemistry, 51, 1237-1241.
  • [27] Gumuşay, O.A., Borazan, A.A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162.
  • [28] Chang, C.H., Lin, H.Y., Chang, C.Y., Liu, Y.C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77, 478-485.
  • [29] Gorinstein, S., Haruenkit, R., Poovarodom, S., Park, Y.S., Vearasilp, S., Suhaj, M., Ham, K.S., Heo, B.G., Cho, J.Y., Jang, H.G. (2009). The comparative characteristics of snake and kiwi fruits. Food and Chemical Toxicology, 47, 1884-1891.
  • [30] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., Yong, M.Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113, 166-172.
  • [31] Park, Y.S., Ham, K.S., Park, Y.K., Leontowicz, H., Leontowicz, M., Namieśnik, J., Katrich, E., Gorinstein, S. (2016). The effects of treatment on quality parameters of smoothie-type ‘Hayward’kiwi fruit beverages. Food Control, 70, 221-228.
  • [32] Das, A., Raychaudhuri, U., Chakraborty, R. (2012). Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. International Journal of Food Sciences and Nutrition, 63(6), 718-721.
  • [33] Zhang, Z., Lv, G., Pan, H., Wu, Y., Fan, L. (2009). Effects of different drying methods and extraction condition on antioxidant properties of Shiitake (Lentinus edodes). Food Science and Technology Research, 15(5), 547-552.
  • [34] Cui, Z.W., Li, C.Y., Song, C.F., Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517-1523.
  • [35] Kadam, D.M., Samuel, D.V.K., Chandra, P., Sikarwar, H.S. (2008). Impact of processing treatments and packaging material on some properties of stored dehydrated cauliflower International Journal of Food Science & Technology, 43, 1-14.
  • [36] Demiray, E., Tülek, Y. (2018). Rehydration kinetics of sun-dried eggplants (Solanum melongena L.) at different temperatures. Akademik Gıda, 16(3), 257-263. [37] Beaudry, C., Raghavan, G.S.V., Ratti, C., Rennie, T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology, 22, 521-539.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Papers
Authors

Özlem Aktürk Gümüşay 0000-0001-9106-3151

Meral Yıldırım Yalçın This is me 0000-0002-5885-8849

Publication Date March 26, 2019
Submission Date October 9, 2018
Published in Issue Year 2019 Volume: 17 Issue: 1

Cite

APA Aktürk Gümüşay, Ö., & Yıldırım Yalçın, M. (2019). Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda, 17(1), 9-15. https://doi.org/10.24323/akademik-gida.543985
AMA Aktürk Gümüşay Ö, Yıldırım Yalçın M. Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda. March 2019;17(1):9-15. doi:10.24323/akademik-gida.543985
Chicago Aktürk Gümüşay, Özlem, and Meral Yıldırım Yalçın. “Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits”. Akademik Gıda 17, no. 1 (March 2019): 9-15. https://doi.org/10.24323/akademik-gida.543985.
EndNote Aktürk Gümüşay Ö, Yıldırım Yalçın M (March 1, 2019) Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda 17 1 9–15.
IEEE Ö. Aktürk Gümüşay and M. Yıldırım Yalçın, “Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits”, Akademik Gıda, vol. 17, no. 1, pp. 9–15, 2019, doi: 10.24323/akademik-gida.543985.
ISNAD Aktürk Gümüşay, Özlem - Yıldırım Yalçın, Meral. “Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits”. Akademik Gıda 17/1 (March 2019), 9-15. https://doi.org/10.24323/akademik-gida.543985.
JAMA Aktürk Gümüşay Ö, Yıldırım Yalçın M. Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda. 2019;17:9–15.
MLA Aktürk Gümüşay, Özlem and Meral Yıldırım Yalçın. “Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits”. Akademik Gıda, vol. 17, no. 1, 2019, pp. 9-15, doi:10.24323/akademik-gida.543985.
Vancouver Aktürk Gümüşay Ö, Yıldırım Yalçın M. Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda. 2019;17(1):9-15.

Cited By









25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).