Review
BibTex RIS Cite

Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri

Year 2019, Volume: 17 Issue: 1, 89 - 101, 26.03.2019
https://doi.org/10.24323/akademik-gida.544831

Abstract

Sirke
çok eski yıllardan bu yana çeşitli gıdalarda aroma verici ve koruyucu madde
olarak kullanılan özel bir üründür. Başta Uzak Doğu ve Avrupa ülkeleri olmak
üzere tüm dünyada farklı hammadde ve üretim yöntemleri kullanılarak çeşitli sirkeler
üretilmektedir. Sirke mikroflorasında ağırlıklı olarak asetik asit bakterileri
ve mayalar yer almakta, ancak bazı küf ve laktik asit bakterisi türleri farklı özel
sirkelerin üretiminde önemli rol alabilmektedir. Sirke, içeriğinde bulunan
organik asitler, fenolik bileşikler, vitaminler, mineraller ve melanoidinler sayesinde
antimikrobiyel, antioksidan, antidiyabetik, antitümör, antikarsinojenik,
antienfeksiyon etkiler başta olmak üzere sağlık üzerine birçok olumlu etki göstermektedir.
Bu derlemede farklı sirke çeşitlerinin mikroflorası, biyoaktif içeriği ve
sağlık üzerine etkileri üzerine son yıllarda yapılan çalışmalar değerlendirilmiştir.

References

  • [1] FDA (Food and Drug Administration), (1989). Acetic acid - use in foods - labeling of foods in which used. https://www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074577.htm. (Erişim Tarihi Temmuz 2017).
  • [2] Karabiyikli, S., Sengun, I.Y. (2017). Beneficial Effects of Acetic Acid Bacteria and Their Food Products. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 221-242p.
  • [3] Plessi, M. (2003). Vinegar. In Encyclopedia of Food Sciences and Nutrition, Edited by B. Caballero, L.C. Trugo, P.M. Finglas, Academic Press, Oxford, 5996-6003p. [4] Solieri, L., Giudici, P. (2009). Vinegars of the World. Springer, Berlin.
  • [5] Rosma, A., Nadiah, A.H.S., Raj, A., Supwat, T., Sharma, S., Joshi, V.K. (2016). Acetic Acid Fermented Product. In Indigenous Fermented Foods of South Asia, Edited by V.K. Joshi, CRC Press, Taylor & Francis Group, Florida, 598-635p.
  • [6] TSE (Türk Standartları Enstitüsü), (2016). Sirke-Tarım kökenli sıvılardan elde edilen ürün-tarifler, özellikler, işaretleme (Vol. TS 1880 EN 13188/D1:2016), Ankara.
  • [7] Giudici, P., De Vero, L., Gullo, M. (2017). Vinegars. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 261-287p.
  • [8] FDA (Food and Drug Administration), (1989), Acetic acid - use in foods - labeling of foods in which used. https://www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074577.htm. Accessed: July 2017.
  • [9] EC (Council Regulation), (1999), No 1493/1999 of 17 May 199ِ9 on the common organisation of the market in wine, Official Journal of the European Communities L179: 1-84 pp.
  • [10] CNS (Chinese National Standard), (2005), Edible Vinegar, No.14834, N5239, Ministry of Economic Affairs, Taiwan, Republic of China.
  • [11] Gullo, M., Verzelloni, E., Canonico, M., 2014. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochemistry, 49, 1571-1579.
  • [12] De Vuyst, L. (2000). Technology aspects related to the application of functional starter cultures. Food Technology and Biotechnology, 38, 105-112.
  • [13] Morales, M.L., Tesfaye, W., Garcia-Parrilla, M.C., Casas, J.A., Troncosso, A.M. (2001). Sherry wine vinegar: Physicochemical changes during the acetification process. Journal Science and Food Agriculture, 81, 611-619.
  • [14] Tan, S.C. (2005), Vinegar Fermentation, MSc Thesis, University of Lousiana, 123p (unpublished).
  • [15] Aktan, N., Yıldırım, H.K. (2011). Sirke Teknolojisi. Sidas Yayınevi, İzmir.
  • [16] Guizani, N., Mothershaw, A. (2006). Fermentation: General principles. In Handbook of Food Science, Technology and Engineering, Edited by Y.H. Hui, Taylor & Francis, London, 63p.
  • [17] Shahidi, F., McDonald, J., Chandrasekara, A., Zhong, Y. (2008). Phytochemicals of foods, beverages and fruit vinegars: chemistry and health effects. Asia Pacific Journal of Clinical Nutrition, 17, 380-382.
  • [18] Sengun, I.Y. (2015). Acetic acid bacteria ın food fermentations. In Fermented Foods: Part 1. Biochemistry and Biotechnology, Edited by D. Montet, R.C. Ray, CRC Press, Boca Raton, USA, 91-111p.
  • [19] Joshi, V.K., Thakur, N.S. (2000). Vinegar: Composition and Production, In Postharvest Technology of Fruits and Vegetables, Edited by L.R. Verma, V.K. Joshi, New Delhi: The Indus Publication, 1128-1170p.
  • [20] Sengun, I.Y. (2013). Microbiological and chemical properties of fig vinegar produced in Turkey. African Journal of Microbiology Research, 7, 2332-2338.
  • [21] Disciplinare di produzione, (2000a9, Aceto Balsamico Tradizionale di Modena. MiPAF 15/05/2000. Gazzetta Ufficiale della Repubblica Italiana.
  • [22] Disciplinare di produzione, (2000b), Aceto Balsamico Tradizionale di Reggio Emilia. MiPAF 15/05/2000. Gazzetta Ufficiale della Repubblica Italiana.
  • [23] Verzelloni, E., Tagliazucchi, D., Conte, A. (2010). From balsamic to healthy: Traditional balsamic vinegar melanoidins inhibit lipid peroxidation during simulated gastric digestion of meat. Food and Chemical Toxicology, 48, 2097-2102.
  • [24] Tagliazucchi, D., Verzelloni, E., Conte, A. (2010). Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. Journal Food Biochemistry, 34, 1061-1078.
  • [25] Ilha, E.C., Santanna, E., Torres, R.C., Porto, A.C., Meinert, E.M. (2000). Utilization of bee (Apis mellifera) honey for vinegar production at laboratory scale. Acta Cientifica Venezolana, 51, 231-235.
  • [26] Alak, G.D. (2015). Bal ve bal sirkelerinin bazı fiziksel ve kimyasal özellikleri. Yüksek Lisans Tezi, Pamukkale Üniversitesi 113s (yayımlanmamış).
  • [27] Raspor, P., Goranovic, D., 2008. Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology 28: 101-124.
  • [28] Lee, J.H., Cho, H.D., Jeong, J.H., Lee, M.K., Jeong, Y.K., Shim, K.H., Seo, K.I. (2013). New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model. Food Chemistry, 141, 3241-3249.
  • [29] Sievers, M., Swings, J. (2005). Family II. Acetobacteraceae Gillis and De Ley 1980, Bergey’s Manual of Systematic Bacteriology. In the Proteobacteria, Part C, The Alpha-, Beta-, Delta- and Epsilonproteobacteria, Edited by G.M. Garrity, D.J. Brenner, N.R. Krieg, J.T. Staley, Springer, New York, 41-95p.
  • [30] Malimas, T., Vu, H.T.L., Muramatsu, Y., Yukphan, P., Tanasupawat, S., Yamada, Y. (2017). Systematics of Acetic Acid Bacteria. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 261-287p.
  • [31] Trček, J., Barja, F. (2015). Updates on quick identification of acetic acid bacteria with a focus on the 16S–23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. International Journal of Food Microbiology, 196, 137-144.
  • [32] Şengün, İ.Y., Kılıç, G. (2016). Asetik asit bakterilerinin izolasyonu, tanımlanması ve güncel taksonomisi. Biodicon-Biological Diversity and Conservation, 9(1), 154-162.
  • [33] Gullo, M., Caggia, C., De Vero, L., Giudici, P., 2006. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. International Journal of Food Microbiology 106: 209-212.
  • [34] Zahoor, T., Siddique, F., Farooq, U. (2006). Isolation and characterization of vinegar culture (Acetobacter aceti) from indigenous sources. British Food Journal, 108, 429-439.
  • [35] Sengun I.Y., Karabiyikli S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 22, 647-656.
  • [36] Hidalgo, C., Garcia, D., Romero, J., Mas, A., Torija, M.J., Mateo, E. (2013). Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Applied Microbiology, 57(3), 227-232.
  • [37] Mateo, E., Valera, M.J., Torija, M.J., Mas, A. (2014). Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied Microbiology and Biotechnology, 99(3), 1349-1361.
  • [38] Cleenwerck, I., De Vos, P. (2008). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. International Journal of Food Microbiology, 125(1), 2-14.
  • [39] Asai, T., Iizuka, H., Komagata, K. (1964). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. Journal of General and Applied Microbiology, 10, 95-126.
  • [40] Franke, I.H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E., Sly, L.I. (1999). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. International Journal of Systematic Bacteriology, 49, 1681-1693.
  • [41] Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T., Komagata, K. (2000). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 50, 823-829.
  • [42] Yamada, Y., Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125, 15-24.
  • [43] Yamada, Y., Yukphan, P., Lan Vu, H.T., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58, 397-404.
  • [44] Gullo, M., De Vero, L., Giudici, P. (2009). Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Applied of Environmental Microbiology, 75(8), 2585-2589.
  • [45] Lee, K.W., Shim, J.M., Kim, G.M., Shin, J-H., Kim, J.H., 2015. Isolation and characterization of Acetobacter species from a traditionally prepared vinegar. Microbiology and Biotechnology Letters 43(3): 219-226.
  • [46] Baek, C.H., Park, E.H., Baek, S.Y., Jeong, S.T., Kim, M.K., Kwon, J.H., Jeong, Y.J., Ye, S.H. (2014). Characterization of Acetobacter pomorum KJY8 isolated from Korean traditional vinegar. Journal of Microbiology and Biotechnology, 24(12), 1679-1684.
  • [47] Vegas, C., González, A., Mateo, E., Albert Mas, A., Poblet, M., Torija, M.J. (2013). Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Research International, 51(1), 404-411.
  • [48] Yetiman, A.E., Kesmen, Z. (2015). Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. International Journal of Food Microbiology, 204, 9-16.
  • [49] Perumpuli, P.A.B.N., Watanabe, T., Toyama, H. (2014). Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Bioscience, Biotechnology and Biochemistry, 78(3), 533-541.
  • [50] Fu, L., Chen, S., Yi, J., Hou, Z. (2013). Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar. Food Science and Technology International, 20(5), 321-331.
  • [51] Haruta, S., Ueno, S., Egawa, I., Hashiguchi, K., Fujii, A., Nagano, M., Ishii, M., Igarashi, Y. (2006). Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 109, 79-87.
  • [52] Wu, J.J., Ma, Y.K., Zhang, F.F., Chen, F.S. (2012). Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiology, 30, 289-297.
  • [53] Mas, A., Torija, M.J., Parrilla, M.C.G., Troncoso, A.M. (2014). Acetic acid bacteria and the production and quality of wine vinegar. The Scientific World Journal Volume, 6.
  • [54] Chun, J.E., Baik, M.Y., Kim, B.Y. (2014). Manufacture and quality evaluation of purple sweet potato makgeolli vinegar using a 2-stage fermentation. Food Science and Biotechnology, 23(4), 1145-1149.
  • [55] Wang, Z.M., Lu, Z.M., Yu, Y.J., Li, G.Q., Shi, J.S., Xu, Z.H. (2015). Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiology, 50, 64-69.
  • [56] Sengun, I.Y., Doyle, M.P. (2017). Microbiology of Fermented Foods. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 213-260p.
  • [57] Sokollek, S.J., Hammes. W.P. (1997). Description of a starter culture preparation for vinegar fermentation. Systematic and Applied Microbiology, 20, 481-491.
  • [58] Matsui, T., Ebuchi, S., Fukui, K., Matsugano, K., Terahara, N., Matsumoto, K. (2014). Caffeoylsophorose, a new natural a-glucosidase inhibitor, from red vinegar by fermented purple-fleshed sweet potato. Bioscience, Biotechnology, and Biochemistry, 68, 2239-2246.
  • [59] Hidalgo, C., Mateo, E., Cerezo, A.B., Torija, M.J., Mas, A. (2010a). Technological process for production of persimmon and strawberry vinegars. International Journal of Wine Research, 2, 55-61.
  • [60] Hidalgo, C., Vegas, C., Mateo, E., Tesfaye, W., Cerezo, A., Callejón, R., Poblet, M., Guillamón, J., Mas, A., Torija, M. (2010b). Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production. International Journal of Food Microbiology, 141(1), 56-62.
  • [61] Giudici, P., Solieri, L., Pulvirenti, A., Cassanelli, S. (2005). Strategies and perspectives for genetic improvement of wine yeasts. Applied Microbiology and Biotechnology, 66, 622-628.
  • [62] Gullo, M., Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125(1), 46-53.
  • [63] Cocolin, L., Pepe, V., Comitini, F., Comi, G., Ciani, M. (2004). Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Research, 5, 237-245.
  • [64] Parrondo, J., Herrero, M., García, L.A., Díaz, M. (2003). A Note – Production of vinegar from whey. Journal of the Institute of Brewing, 109, 356-358.
  • [65] Gobbi, M., De Vero, L., Solieri, L., Comitini, F., Oro, L., Giudici, P., Ciani, M. (2014). Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. European Food Research and Technology, 239, 41-48.
  • [66] Chen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT - Food Science and Technology, 84, 753-763.
  • [67] Solieri, L., Landi, S., De Vero, L., Giudici, P., 2006. Molecular assessment of indigenous yeast population from traditional balsamic vinegar. Journal of Applied Microbiology 101: 63-71.
  • [68] Londoño-Hernándeza, L., Ramírez-Torob, C., Ruiza, H.A., Ascacio-Valdésa, J.A., Aguilar-Gonzalezc, M.A., Rodríguez-Herreraa, R., Aguilar, C.N. (2017). Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 257, 110-127.
  • [69] Peng, Q., Yang, Y., Guo, Y., Han, Y., 2015. Analysis of bacterial diversity during acetic acid fermentation of tianjin duliu aged vinegar by 454 pyrosequencing. Current Microbiology 71(2): 195-203.
  • [70] Kılıç, O. (1976). Piyasada satılan sirkelerin bileşimleri üzerinde bir araştırma. Gıda, 1(1), 121-125.
  • [71] Şahin, İ., Yavaş, İ., Kılıç, O. (1977). Kuru üzüm sirkesi üretiminde öğütme ve çeşitli katkı maddelerinin fermantasyon süresi ve verime etkileri. Gıda, 2(3), 95-105.
  • [72] Şahin, İ., Kılıç, O. (1981). Kuru üzüm ve şarap sirkelerinin bileşimleri ve kontrol yöntemleri üzerinde araştırma. Gıda, 6(6), 5-13.
  • [73] Gerbi, V., Zeppa, G., Beltramo, R., Carnacini, A., Antonelli, A. (1998). Characterization of white vinegars of different sources with artificial neural networks. Journal Science Food Agriculture, 78, 415-425.
  • [74] Ozturk, I., Calıskan, O., Tornuk, F., Sagdıc, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional homemade Turkish vinegars. Lebensmittel-Wissenschaft und-Technologie, 63, 144-151.
  • [75] Spinosa, W.A., Santos Junior, V.D., Galyan, D., Fiorio, J.L., Gomez, R.J.H.C. (2015). Vinegar rice (Oryza sative L.) produced by submerged fermentation process from alcoholic fermented rice. Food Science and Technology, 35(1), 196-201.
  • [76] Horiuchi, J., Tada, K., Kobayashi, M., Kanno, T., Ebie, K. (2004). Biological approach for effective utilization of worthless onions vinegar production and composting. Resources, Conservation and Recycling, 40, 97-109 pp.
  • [77] Abe, K., Kushibiki, T., Matsue, H., Furukawa, K., Motomura, S. (2007). Generation of antitumor active neutral medium-sized a-glycan in apple vinegar fermentation. Bioscience, Biotechnology and Biochemstry, 71, 2124-2129.
  • [78] Ojansivua, I., Ferreirab, C.L., Salminena, S. (2011). Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends in Food Science & Technology, 22, 40-46.
  • [79] Ghosh, S., Chakraborty, R., Chatterjee, A., Raychaudhuri, U. (2014). Optimization of media components for the production of palm vinegar using response surface methodology. Journal Institute of Brewing and Distilling, 120, 550-558.
  • [80] Qi, W., Wang, C., Cao, X., Zhao, G., Wang, C., Hou, L. (2013). Flavour analysis of Chinese cereal vinegar. International conference on agricultural and natural resources engineering. IERI Procedia, 5, 332-338.
  • [81] Natera, R., Castro, R., Valme-Garcia-Moreno, M.D., Hernandez, M.J.., Garcia-Barroso, C. (2003). Chemometric studies of vinegars from different raw materials and processes of production. Journal of Agricultural and Food Chemistry, 51, 3345-3351.
  • [82] Budak, N.H., Guzel-Seydim, Z. (2010). Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. Journal of the Science of Food and Agriculture, 90, 2021-2026.
  • [83] Ubeda, C., Hidalgo, C., Torija, M.J., Mas, A., Troncoso, A.M., Morales, M.L. (2011). Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. Food Science and Technology, 44(7), 1591-1596.
  • [84] Bakir, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Capanoglu, E. (2016). Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. International Journal of Molecular Sciences, 17, 1658.
  • [85] Martins, S., Mussatto, S.I., Martınez-Avila, G., Montanez-Saenz, J., Aguilar, C.N., Teixeira, J.A. (2011). Bioactive phenolic compounds: production and extraction by solid-state fermentation. Biotechnology Advances, 29, 365-373.
  • [86] Jo, Y., Baek, J.Y., Jeong, I.Y., Jeong, Y.J., Yeo, S.H., Noh, B.S., Kwon, J.H. (2015). Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Science and Biotechnology, 24(2), 445-452.
  • [87] Budak, N.H. (2015). Dut sirkesi oluşum sürecinde ileri analitik tekniklerle toplam antioksidan aktivitesi ve fenolik bileşenleri. Meyvecilik Araştırma Enstitüsü Müdürlüğü, 2(2), 27-31.
  • [88] Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157: H7. Journal of Food Protection, 61(8), 953-959.
  • [89] Hindi, N.K. (2013). In vitro antibacterial activity of aquatic garlic extract, apple vinegar and apple vinegar-garlic extract combination. American Journal of Phytomedicine and Clinical Therapeutics, 1, 42-51.
  • [90] Sengun, I.Y., Karapinar, M., 2004. Effectiveness of lemon juice, vinegar and their mixture in elimination of Salmonella Typhimurium on carrots. International Journal of Food Microbiology 96: 301-305.
  • [91] Vijayakumar, C., Wolf-Hall, C. (2002). Evaluation of household sanitizers for reducing levels of E. coli on iceberg lettuce. Journal of Food Protection, 65, 1646-1650.
  • [92] Sengun, I.Y., Karapinar, M. (2005a). Effectiveness of household natural sanitizers in the elimination of Salmonella Typhimurium on rocket (Eruca sativa Miller) and spring onion (Allium cepa L.). International Journal of Food Microbiology, 98, 319-323.
  • [93] Sengun, I.Y., Karapinar, M. (2005b). Elimination of Yersinia enterocolitica on carrots (Daucus carota L.) by using household sanitisers. Food Control, 16, 845-850.
  • [94] Chang, J.M., Fang, T. J. (2007). Survival of Escherichia coli O157: H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157: H7. Food Microbiology, 24(7), 745-751.
  • [95] Ramos, B., Brandão, T.R.S., Teixeira, P., Silva, C. L. M. (2014). Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38-42.
  • [96] Nishidai, S., Nakamura, Y. and Torikai, K. (2000). Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Bioscience, Biotechnology and Biochemistry, 64, 1909-1914.
  • [97] Qiu, J., Ren, C., Fan, J., Li, Z. (2010). Antioxidant activities of aged oat vinegar in vitro and in mouse serum and liver. Journal of the Science of Food and Agriculture, 90, 1951-1958.
  • [98] Yang, L., Wang, X., Yang, X. (2014). Possible antioxidant mechanism of melanoidins extract from Shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways. Journal of Agricultural and Food Chemistry, 62, 8616-8622.
  • [99] Johnston, C.S., Kim, C.M., Buller, A.J. (2004). Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care, 27, 281-282.
  • [100] Xibib, S., Meilan, H., Moller, H., Evans, H.S., Dixin, D., Wenjie, D., Jianbang, L. (2003). Risk factors for oesophageal cancer in Linzhou, China: A case-control study. Asian-Pacific Journal of Cancer Prevention, 4, 119-124.
  • [101] Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., Kadowaki, T. (2006). Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice. Biochemical and Biophysical Research Communications, 344, 597-604.
  • [102] Yusoff, N.A., Yam, M.F., Beh, H.K., Razak, K.N.A., Widyawati, T., Mahmud, R., Ahmad, M., Asmawi, M.Z. (2015). Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia. Asian-Pacific Journal of Tropical Medicine, 8, 595-605.
  • [103] Laranjinha, J.A.N., Almeida, L.M., Madeira, V.M.C. (1994). Reactivity of dietary phenolic acids with peroxyl radicals: Antioxidant activity upon low density lipoprotein peroxidation. Biochemical Pharmacology, 48, 487-494.
  • [104] Budak, N.H., Kumbul Doguc, D., Savas, C.M., Seydim, A.C., Kok Tas, T., Ciris, M.I., Guzel-Seydim, Z.B. (2011). Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. Journal of Agricultural and Food Chemistry, 59, 6638-6644.
  • [105] Li, J., Yu, G., Fan, J. (2014). Alditols and monosaccharides from sorghum vinegar can attenuate platelet aggregation by inhibiting cyclooxygenase-1 and thromboxane-A2 synthase. Journal of Ethnopharmacology, 155, 285-292.
  • [106] Jing, L., Yanyan, Z., Junfeng, F. (2015). Acetic acid in aged vinegar affects molecular targets for thrombus disease management. Food and Function, 6, 2845-2853.
  • [107] Nanda, K., Miyoshi, N., Nakamura, Y., Shimoji, Y., Tamura, Y., Nishikawa, Y., Uenakai, K., Kohno, H., Tanaka, T. (2004). Extract of vinegar ‘Kurosu’ from unpolished rice inhibits the proliferation of human cancer cells. Journal of Experimental and Clinical Cancer Research, 23, 69-76.
  • [108] Inagaki, S., Morimura, S., Gondo, K., Tang, Y., Akutagawa, H., Kida, K. (2007). Isolation of tryptophol as an apoptosis-inducing component of vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells. Bioscience, Biotechnology, and Biochemistry, 71, 371-379.
  • [109] Baba, N., Higashi, Y., Kanekura, T. (2013). Japanese black vinegar “Izumi” inhibits the proliferation of human squamous cell carcinoma cells via necroptosis. Nutrition and Cancer, 65, 1093-1097.
  • [110] Park, J.E., Kim, J.Y., Kim, J., Kim, Y.J., Kim, M.J., Kwon, S.W., Kwon, O. (2014). Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: A double-blind, randomized and placebo-controlled trial. Journal of Functional Foods, 8, 274-281.
  • [111] Chou, C.H., Liu, C.W., Yang, D.J., Wu, Y.H.S., Chen, Y.C. (2015). Amino acid, mineral and polyphenolic profiles of black vinegar, and its lipid-lowering and antioxidant effects in vivo. Food Chemistry, 168, 63-69.
  • [112] Chen, H., Chen, T., Giudici, P., Chen, F. (2016). Vinegar functions on health: Constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15, 1124-1138.

Microflora, Bioactive Components and Health Effects of Various Kinds of Vinegars

Year 2019, Volume: 17 Issue: 1, 89 - 101, 26.03.2019
https://doi.org/10.24323/akademik-gida.544831

Abstract

Vinegar is a special kind of condiment used as a flavoring
and preservative agent in various foods since ancient times. Many types of
vinegars are produced worldwide, especially in the Far East and European
countries, using different raw materials and production techniques. Vinegar
microflora mainly composed of acetic acid bacteria and yeasts, but some molds
and lactic acid bacteria species can serve an important role in the production
of various special vinegars. Vinegar shows many positive health effects, particularly
antimicrobial, antioxidant, antidiabetic, antitumor,
anticarcinogenic, antidiabetic and antiinfection effects,
because of the substances found in vinegar such as organic acids, phenolic
compounds, vitamins, minerals and melanoidins. In this review, recent studies
on microflora, bioactive content and health effects of different kinds of
vinegars are presented.

References

  • [1] FDA (Food and Drug Administration), (1989). Acetic acid - use in foods - labeling of foods in which used. https://www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074577.htm. (Erişim Tarihi Temmuz 2017).
  • [2] Karabiyikli, S., Sengun, I.Y. (2017). Beneficial Effects of Acetic Acid Bacteria and Their Food Products. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 221-242p.
  • [3] Plessi, M. (2003). Vinegar. In Encyclopedia of Food Sciences and Nutrition, Edited by B. Caballero, L.C. Trugo, P.M. Finglas, Academic Press, Oxford, 5996-6003p. [4] Solieri, L., Giudici, P. (2009). Vinegars of the World. Springer, Berlin.
  • [5] Rosma, A., Nadiah, A.H.S., Raj, A., Supwat, T., Sharma, S., Joshi, V.K. (2016). Acetic Acid Fermented Product. In Indigenous Fermented Foods of South Asia, Edited by V.K. Joshi, CRC Press, Taylor & Francis Group, Florida, 598-635p.
  • [6] TSE (Türk Standartları Enstitüsü), (2016). Sirke-Tarım kökenli sıvılardan elde edilen ürün-tarifler, özellikler, işaretleme (Vol. TS 1880 EN 13188/D1:2016), Ankara.
  • [7] Giudici, P., De Vero, L., Gullo, M. (2017). Vinegars. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 261-287p.
  • [8] FDA (Food and Drug Administration), (1989), Acetic acid - use in foods - labeling of foods in which used. https://www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074577.htm. Accessed: July 2017.
  • [9] EC (Council Regulation), (1999), No 1493/1999 of 17 May 199ِ9 on the common organisation of the market in wine, Official Journal of the European Communities L179: 1-84 pp.
  • [10] CNS (Chinese National Standard), (2005), Edible Vinegar, No.14834, N5239, Ministry of Economic Affairs, Taiwan, Republic of China.
  • [11] Gullo, M., Verzelloni, E., Canonico, M., 2014. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochemistry, 49, 1571-1579.
  • [12] De Vuyst, L. (2000). Technology aspects related to the application of functional starter cultures. Food Technology and Biotechnology, 38, 105-112.
  • [13] Morales, M.L., Tesfaye, W., Garcia-Parrilla, M.C., Casas, J.A., Troncosso, A.M. (2001). Sherry wine vinegar: Physicochemical changes during the acetification process. Journal Science and Food Agriculture, 81, 611-619.
  • [14] Tan, S.C. (2005), Vinegar Fermentation, MSc Thesis, University of Lousiana, 123p (unpublished).
  • [15] Aktan, N., Yıldırım, H.K. (2011). Sirke Teknolojisi. Sidas Yayınevi, İzmir.
  • [16] Guizani, N., Mothershaw, A. (2006). Fermentation: General principles. In Handbook of Food Science, Technology and Engineering, Edited by Y.H. Hui, Taylor & Francis, London, 63p.
  • [17] Shahidi, F., McDonald, J., Chandrasekara, A., Zhong, Y. (2008). Phytochemicals of foods, beverages and fruit vinegars: chemistry and health effects. Asia Pacific Journal of Clinical Nutrition, 17, 380-382.
  • [18] Sengun, I.Y. (2015). Acetic acid bacteria ın food fermentations. In Fermented Foods: Part 1. Biochemistry and Biotechnology, Edited by D. Montet, R.C. Ray, CRC Press, Boca Raton, USA, 91-111p.
  • [19] Joshi, V.K., Thakur, N.S. (2000). Vinegar: Composition and Production, In Postharvest Technology of Fruits and Vegetables, Edited by L.R. Verma, V.K. Joshi, New Delhi: The Indus Publication, 1128-1170p.
  • [20] Sengun, I.Y. (2013). Microbiological and chemical properties of fig vinegar produced in Turkey. African Journal of Microbiology Research, 7, 2332-2338.
  • [21] Disciplinare di produzione, (2000a9, Aceto Balsamico Tradizionale di Modena. MiPAF 15/05/2000. Gazzetta Ufficiale della Repubblica Italiana.
  • [22] Disciplinare di produzione, (2000b), Aceto Balsamico Tradizionale di Reggio Emilia. MiPAF 15/05/2000. Gazzetta Ufficiale della Repubblica Italiana.
  • [23] Verzelloni, E., Tagliazucchi, D., Conte, A. (2010). From balsamic to healthy: Traditional balsamic vinegar melanoidins inhibit lipid peroxidation during simulated gastric digestion of meat. Food and Chemical Toxicology, 48, 2097-2102.
  • [24] Tagliazucchi, D., Verzelloni, E., Conte, A. (2010). Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. Journal Food Biochemistry, 34, 1061-1078.
  • [25] Ilha, E.C., Santanna, E., Torres, R.C., Porto, A.C., Meinert, E.M. (2000). Utilization of bee (Apis mellifera) honey for vinegar production at laboratory scale. Acta Cientifica Venezolana, 51, 231-235.
  • [26] Alak, G.D. (2015). Bal ve bal sirkelerinin bazı fiziksel ve kimyasal özellikleri. Yüksek Lisans Tezi, Pamukkale Üniversitesi 113s (yayımlanmamış).
  • [27] Raspor, P., Goranovic, D., 2008. Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology 28: 101-124.
  • [28] Lee, J.H., Cho, H.D., Jeong, J.H., Lee, M.K., Jeong, Y.K., Shim, K.H., Seo, K.I. (2013). New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model. Food Chemistry, 141, 3241-3249.
  • [29] Sievers, M., Swings, J. (2005). Family II. Acetobacteraceae Gillis and De Ley 1980, Bergey’s Manual of Systematic Bacteriology. In the Proteobacteria, Part C, The Alpha-, Beta-, Delta- and Epsilonproteobacteria, Edited by G.M. Garrity, D.J. Brenner, N.R. Krieg, J.T. Staley, Springer, New York, 41-95p.
  • [30] Malimas, T., Vu, H.T.L., Muramatsu, Y., Yukphan, P., Tanasupawat, S., Yamada, Y. (2017). Systematics of Acetic Acid Bacteria. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 261-287p.
  • [31] Trček, J., Barja, F. (2015). Updates on quick identification of acetic acid bacteria with a focus on the 16S–23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. International Journal of Food Microbiology, 196, 137-144.
  • [32] Şengün, İ.Y., Kılıç, G. (2016). Asetik asit bakterilerinin izolasyonu, tanımlanması ve güncel taksonomisi. Biodicon-Biological Diversity and Conservation, 9(1), 154-162.
  • [33] Gullo, M., Caggia, C., De Vero, L., Giudici, P., 2006. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. International Journal of Food Microbiology 106: 209-212.
  • [34] Zahoor, T., Siddique, F., Farooq, U. (2006). Isolation and characterization of vinegar culture (Acetobacter aceti) from indigenous sources. British Food Journal, 108, 429-439.
  • [35] Sengun I.Y., Karabiyikli S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 22, 647-656.
  • [36] Hidalgo, C., Garcia, D., Romero, J., Mas, A., Torija, M.J., Mateo, E. (2013). Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Applied Microbiology, 57(3), 227-232.
  • [37] Mateo, E., Valera, M.J., Torija, M.J., Mas, A. (2014). Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied Microbiology and Biotechnology, 99(3), 1349-1361.
  • [38] Cleenwerck, I., De Vos, P. (2008). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. International Journal of Food Microbiology, 125(1), 2-14.
  • [39] Asai, T., Iizuka, H., Komagata, K. (1964). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. Journal of General and Applied Microbiology, 10, 95-126.
  • [40] Franke, I.H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E., Sly, L.I. (1999). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. International Journal of Systematic Bacteriology, 49, 1681-1693.
  • [41] Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T., Komagata, K. (2000). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 50, 823-829.
  • [42] Yamada, Y., Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125, 15-24.
  • [43] Yamada, Y., Yukphan, P., Lan Vu, H.T., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58, 397-404.
  • [44] Gullo, M., De Vero, L., Giudici, P. (2009). Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Applied of Environmental Microbiology, 75(8), 2585-2589.
  • [45] Lee, K.W., Shim, J.M., Kim, G.M., Shin, J-H., Kim, J.H., 2015. Isolation and characterization of Acetobacter species from a traditionally prepared vinegar. Microbiology and Biotechnology Letters 43(3): 219-226.
  • [46] Baek, C.H., Park, E.H., Baek, S.Y., Jeong, S.T., Kim, M.K., Kwon, J.H., Jeong, Y.J., Ye, S.H. (2014). Characterization of Acetobacter pomorum KJY8 isolated from Korean traditional vinegar. Journal of Microbiology and Biotechnology, 24(12), 1679-1684.
  • [47] Vegas, C., González, A., Mateo, E., Albert Mas, A., Poblet, M., Torija, M.J. (2013). Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Research International, 51(1), 404-411.
  • [48] Yetiman, A.E., Kesmen, Z. (2015). Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. International Journal of Food Microbiology, 204, 9-16.
  • [49] Perumpuli, P.A.B.N., Watanabe, T., Toyama, H. (2014). Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Bioscience, Biotechnology and Biochemistry, 78(3), 533-541.
  • [50] Fu, L., Chen, S., Yi, J., Hou, Z. (2013). Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar. Food Science and Technology International, 20(5), 321-331.
  • [51] Haruta, S., Ueno, S., Egawa, I., Hashiguchi, K., Fujii, A., Nagano, M., Ishii, M., Igarashi, Y. (2006). Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 109, 79-87.
  • [52] Wu, J.J., Ma, Y.K., Zhang, F.F., Chen, F.S. (2012). Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiology, 30, 289-297.
  • [53] Mas, A., Torija, M.J., Parrilla, M.C.G., Troncoso, A.M. (2014). Acetic acid bacteria and the production and quality of wine vinegar. The Scientific World Journal Volume, 6.
  • [54] Chun, J.E., Baik, M.Y., Kim, B.Y. (2014). Manufacture and quality evaluation of purple sweet potato makgeolli vinegar using a 2-stage fermentation. Food Science and Biotechnology, 23(4), 1145-1149.
  • [55] Wang, Z.M., Lu, Z.M., Yu, Y.J., Li, G.Q., Shi, J.S., Xu, Z.H. (2015). Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiology, 50, 64-69.
  • [56] Sengun, I.Y., Doyle, M.P. (2017). Microbiology of Fermented Foods. In Acetic Acid Bacteria: Fundamentals and Food Applications, Edited by I.Y. Sengun, Boca Raton: CRC Press, Taylor & Francis Group, 213-260p.
  • [57] Sokollek, S.J., Hammes. W.P. (1997). Description of a starter culture preparation for vinegar fermentation. Systematic and Applied Microbiology, 20, 481-491.
  • [58] Matsui, T., Ebuchi, S., Fukui, K., Matsugano, K., Terahara, N., Matsumoto, K. (2014). Caffeoylsophorose, a new natural a-glucosidase inhibitor, from red vinegar by fermented purple-fleshed sweet potato. Bioscience, Biotechnology, and Biochemistry, 68, 2239-2246.
  • [59] Hidalgo, C., Mateo, E., Cerezo, A.B., Torija, M.J., Mas, A. (2010a). Technological process for production of persimmon and strawberry vinegars. International Journal of Wine Research, 2, 55-61.
  • [60] Hidalgo, C., Vegas, C., Mateo, E., Tesfaye, W., Cerezo, A., Callejón, R., Poblet, M., Guillamón, J., Mas, A., Torija, M. (2010b). Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production. International Journal of Food Microbiology, 141(1), 56-62.
  • [61] Giudici, P., Solieri, L., Pulvirenti, A., Cassanelli, S. (2005). Strategies and perspectives for genetic improvement of wine yeasts. Applied Microbiology and Biotechnology, 66, 622-628.
  • [62] Gullo, M., Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125(1), 46-53.
  • [63] Cocolin, L., Pepe, V., Comitini, F., Comi, G., Ciani, M. (2004). Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Research, 5, 237-245.
  • [64] Parrondo, J., Herrero, M., García, L.A., Díaz, M. (2003). A Note – Production of vinegar from whey. Journal of the Institute of Brewing, 109, 356-358.
  • [65] Gobbi, M., De Vero, L., Solieri, L., Comitini, F., Oro, L., Giudici, P., Ciani, M. (2014). Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. European Food Research and Technology, 239, 41-48.
  • [66] Chen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT - Food Science and Technology, 84, 753-763.
  • [67] Solieri, L., Landi, S., De Vero, L., Giudici, P., 2006. Molecular assessment of indigenous yeast population from traditional balsamic vinegar. Journal of Applied Microbiology 101: 63-71.
  • [68] Londoño-Hernándeza, L., Ramírez-Torob, C., Ruiza, H.A., Ascacio-Valdésa, J.A., Aguilar-Gonzalezc, M.A., Rodríguez-Herreraa, R., Aguilar, C.N. (2017). Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 257, 110-127.
  • [69] Peng, Q., Yang, Y., Guo, Y., Han, Y., 2015. Analysis of bacterial diversity during acetic acid fermentation of tianjin duliu aged vinegar by 454 pyrosequencing. Current Microbiology 71(2): 195-203.
  • [70] Kılıç, O. (1976). Piyasada satılan sirkelerin bileşimleri üzerinde bir araştırma. Gıda, 1(1), 121-125.
  • [71] Şahin, İ., Yavaş, İ., Kılıç, O. (1977). Kuru üzüm sirkesi üretiminde öğütme ve çeşitli katkı maddelerinin fermantasyon süresi ve verime etkileri. Gıda, 2(3), 95-105.
  • [72] Şahin, İ., Kılıç, O. (1981). Kuru üzüm ve şarap sirkelerinin bileşimleri ve kontrol yöntemleri üzerinde araştırma. Gıda, 6(6), 5-13.
  • [73] Gerbi, V., Zeppa, G., Beltramo, R., Carnacini, A., Antonelli, A. (1998). Characterization of white vinegars of different sources with artificial neural networks. Journal Science Food Agriculture, 78, 415-425.
  • [74] Ozturk, I., Calıskan, O., Tornuk, F., Sagdıc, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional homemade Turkish vinegars. Lebensmittel-Wissenschaft und-Technologie, 63, 144-151.
  • [75] Spinosa, W.A., Santos Junior, V.D., Galyan, D., Fiorio, J.L., Gomez, R.J.H.C. (2015). Vinegar rice (Oryza sative L.) produced by submerged fermentation process from alcoholic fermented rice. Food Science and Technology, 35(1), 196-201.
  • [76] Horiuchi, J., Tada, K., Kobayashi, M., Kanno, T., Ebie, K. (2004). Biological approach for effective utilization of worthless onions vinegar production and composting. Resources, Conservation and Recycling, 40, 97-109 pp.
  • [77] Abe, K., Kushibiki, T., Matsue, H., Furukawa, K., Motomura, S. (2007). Generation of antitumor active neutral medium-sized a-glycan in apple vinegar fermentation. Bioscience, Biotechnology and Biochemstry, 71, 2124-2129.
  • [78] Ojansivua, I., Ferreirab, C.L., Salminena, S. (2011). Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends in Food Science & Technology, 22, 40-46.
  • [79] Ghosh, S., Chakraborty, R., Chatterjee, A., Raychaudhuri, U. (2014). Optimization of media components for the production of palm vinegar using response surface methodology. Journal Institute of Brewing and Distilling, 120, 550-558.
  • [80] Qi, W., Wang, C., Cao, X., Zhao, G., Wang, C., Hou, L. (2013). Flavour analysis of Chinese cereal vinegar. International conference on agricultural and natural resources engineering. IERI Procedia, 5, 332-338.
  • [81] Natera, R., Castro, R., Valme-Garcia-Moreno, M.D., Hernandez, M.J.., Garcia-Barroso, C. (2003). Chemometric studies of vinegars from different raw materials and processes of production. Journal of Agricultural and Food Chemistry, 51, 3345-3351.
  • [82] Budak, N.H., Guzel-Seydim, Z. (2010). Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. Journal of the Science of Food and Agriculture, 90, 2021-2026.
  • [83] Ubeda, C., Hidalgo, C., Torija, M.J., Mas, A., Troncoso, A.M., Morales, M.L. (2011). Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. Food Science and Technology, 44(7), 1591-1596.
  • [84] Bakir, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Capanoglu, E. (2016). Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. International Journal of Molecular Sciences, 17, 1658.
  • [85] Martins, S., Mussatto, S.I., Martınez-Avila, G., Montanez-Saenz, J., Aguilar, C.N., Teixeira, J.A. (2011). Bioactive phenolic compounds: production and extraction by solid-state fermentation. Biotechnology Advances, 29, 365-373.
  • [86] Jo, Y., Baek, J.Y., Jeong, I.Y., Jeong, Y.J., Yeo, S.H., Noh, B.S., Kwon, J.H. (2015). Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Science and Biotechnology, 24(2), 445-452.
  • [87] Budak, N.H. (2015). Dut sirkesi oluşum sürecinde ileri analitik tekniklerle toplam antioksidan aktivitesi ve fenolik bileşenleri. Meyvecilik Araştırma Enstitüsü Müdürlüğü, 2(2), 27-31.
  • [88] Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157: H7. Journal of Food Protection, 61(8), 953-959.
  • [89] Hindi, N.K. (2013). In vitro antibacterial activity of aquatic garlic extract, apple vinegar and apple vinegar-garlic extract combination. American Journal of Phytomedicine and Clinical Therapeutics, 1, 42-51.
  • [90] Sengun, I.Y., Karapinar, M., 2004. Effectiveness of lemon juice, vinegar and their mixture in elimination of Salmonella Typhimurium on carrots. International Journal of Food Microbiology 96: 301-305.
  • [91] Vijayakumar, C., Wolf-Hall, C. (2002). Evaluation of household sanitizers for reducing levels of E. coli on iceberg lettuce. Journal of Food Protection, 65, 1646-1650.
  • [92] Sengun, I.Y., Karapinar, M. (2005a). Effectiveness of household natural sanitizers in the elimination of Salmonella Typhimurium on rocket (Eruca sativa Miller) and spring onion (Allium cepa L.). International Journal of Food Microbiology, 98, 319-323.
  • [93] Sengun, I.Y., Karapinar, M. (2005b). Elimination of Yersinia enterocolitica on carrots (Daucus carota L.) by using household sanitisers. Food Control, 16, 845-850.
  • [94] Chang, J.M., Fang, T. J. (2007). Survival of Escherichia coli O157: H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157: H7. Food Microbiology, 24(7), 745-751.
  • [95] Ramos, B., Brandão, T.R.S., Teixeira, P., Silva, C. L. M. (2014). Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38-42.
  • [96] Nishidai, S., Nakamura, Y. and Torikai, K. (2000). Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Bioscience, Biotechnology and Biochemistry, 64, 1909-1914.
  • [97] Qiu, J., Ren, C., Fan, J., Li, Z. (2010). Antioxidant activities of aged oat vinegar in vitro and in mouse serum and liver. Journal of the Science of Food and Agriculture, 90, 1951-1958.
  • [98] Yang, L., Wang, X., Yang, X. (2014). Possible antioxidant mechanism of melanoidins extract from Shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways. Journal of Agricultural and Food Chemistry, 62, 8616-8622.
  • [99] Johnston, C.S., Kim, C.M., Buller, A.J. (2004). Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care, 27, 281-282.
  • [100] Xibib, S., Meilan, H., Moller, H., Evans, H.S., Dixin, D., Wenjie, D., Jianbang, L. (2003). Risk factors for oesophageal cancer in Linzhou, China: A case-control study. Asian-Pacific Journal of Cancer Prevention, 4, 119-124.
  • [101] Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., Kadowaki, T. (2006). Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice. Biochemical and Biophysical Research Communications, 344, 597-604.
  • [102] Yusoff, N.A., Yam, M.F., Beh, H.K., Razak, K.N.A., Widyawati, T., Mahmud, R., Ahmad, M., Asmawi, M.Z. (2015). Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia. Asian-Pacific Journal of Tropical Medicine, 8, 595-605.
  • [103] Laranjinha, J.A.N., Almeida, L.M., Madeira, V.M.C. (1994). Reactivity of dietary phenolic acids with peroxyl radicals: Antioxidant activity upon low density lipoprotein peroxidation. Biochemical Pharmacology, 48, 487-494.
  • [104] Budak, N.H., Kumbul Doguc, D., Savas, C.M., Seydim, A.C., Kok Tas, T., Ciris, M.I., Guzel-Seydim, Z.B. (2011). Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. Journal of Agricultural and Food Chemistry, 59, 6638-6644.
  • [105] Li, J., Yu, G., Fan, J. (2014). Alditols and monosaccharides from sorghum vinegar can attenuate platelet aggregation by inhibiting cyclooxygenase-1 and thromboxane-A2 synthase. Journal of Ethnopharmacology, 155, 285-292.
  • [106] Jing, L., Yanyan, Z., Junfeng, F. (2015). Acetic acid in aged vinegar affects molecular targets for thrombus disease management. Food and Function, 6, 2845-2853.
  • [107] Nanda, K., Miyoshi, N., Nakamura, Y., Shimoji, Y., Tamura, Y., Nishikawa, Y., Uenakai, K., Kohno, H., Tanaka, T. (2004). Extract of vinegar ‘Kurosu’ from unpolished rice inhibits the proliferation of human cancer cells. Journal of Experimental and Clinical Cancer Research, 23, 69-76.
  • [108] Inagaki, S., Morimura, S., Gondo, K., Tang, Y., Akutagawa, H., Kida, K. (2007). Isolation of tryptophol as an apoptosis-inducing component of vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells. Bioscience, Biotechnology, and Biochemistry, 71, 371-379.
  • [109] Baba, N., Higashi, Y., Kanekura, T. (2013). Japanese black vinegar “Izumi” inhibits the proliferation of human squamous cell carcinoma cells via necroptosis. Nutrition and Cancer, 65, 1093-1097.
  • [110] Park, J.E., Kim, J.Y., Kim, J., Kim, Y.J., Kim, M.J., Kwon, S.W., Kwon, O. (2014). Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: A double-blind, randomized and placebo-controlled trial. Journal of Functional Foods, 8, 274-281.
  • [111] Chou, C.H., Liu, C.W., Yang, D.J., Wu, Y.H.S., Chen, Y.C. (2015). Amino acid, mineral and polyphenolic profiles of black vinegar, and its lipid-lowering and antioxidant effects in vivo. Food Chemistry, 168, 63-69.
  • [112] Chen, H., Chen, T., Giudici, P., Chen, F. (2016). Vinegar functions on health: Constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15, 1124-1138.
There are 111 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

İlkin Yücel Şengün 0000-0002-9445-5166

Gülden Kılıç This is me 0000-0001-6125-6219

Publication Date March 26, 2019
Submission Date December 18, 2017
Published in Issue Year 2019 Volume: 17 Issue: 1

Cite

APA Yücel Şengün, İ., & Kılıç, G. (2019). Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri. Akademik Gıda, 17(1), 89-101. https://doi.org/10.24323/akademik-gida.544831
AMA Yücel Şengün İ, Kılıç G. Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri. Akademik Gıda. March 2019;17(1):89-101. doi:10.24323/akademik-gida.544831
Chicago Yücel Şengün, İlkin, and Gülden Kılıç. “Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri Ve Sağlık Üzerine Etkileri”. Akademik Gıda 17, no. 1 (March 2019): 89-101. https://doi.org/10.24323/akademik-gida.544831.
EndNote Yücel Şengün İ, Kılıç G (March 1, 2019) Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri. Akademik Gıda 17 1 89–101.
IEEE İ. Yücel Şengün and G. Kılıç, “Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri”, Akademik Gıda, vol. 17, no. 1, pp. 89–101, 2019, doi: 10.24323/akademik-gida.544831.
ISNAD Yücel Şengün, İlkin - Kılıç, Gülden. “Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri Ve Sağlık Üzerine Etkileri”. Akademik Gıda 17/1 (March 2019), 89-101. https://doi.org/10.24323/akademik-gida.544831.
JAMA Yücel Şengün İ, Kılıç G. Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri. Akademik Gıda. 2019;17:89–101.
MLA Yücel Şengün, İlkin and Gülden Kılıç. “Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri Ve Sağlık Üzerine Etkileri”. Akademik Gıda, vol. 17, no. 1, 2019, pp. 89-101, doi:10.24323/akademik-gida.544831.
Vancouver Yücel Şengün İ, Kılıç G. Farklı Sirke Çeşitlerinin Mikroflorası, Biyoaktif Bileşenleri ve Sağlık Üzerine Etkileri. Akademik Gıda. 2019;17(1):89-101.

Cited By








SİRKENİN SAĞLIK ÜZERİNE ETKİLERİ
GIDA / THE JOURNAL OF FOOD
ÇAĞLAR GÖKIRMAKLI
https://doi.org/10.15237/gida.GD19079

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).