Research Article
BibTex RIS Cite

Characterization, Bioactive Properties and Antifungal Activity of Chlorella protothecoides Microalgae Oil

Year 2019, Volume: 17 Issue: 2, 217 - 225, 02.09.2019
https://doi.org/10.24323/akademik-gida.613575

Abstract

Microalgae
can produce valuable metabolites such as protein, fatty acids, carbohydrates,
minerals, pigments, vitamins, sterols, antioxidants and bioactive polyphenols,
which are rich sources of active ingredients. Thanks to these valuable
metabolites, microalgae today have the potential to be used in many areas such
as food, cosmetics, pharmaceuticals and agriculture. Green single cell Chlorella sp. belonging to the Chlorophyta group shows antitumor,
anticoagulant, antibacterial, antiviral, antifungal and antioxidant activity.
It is known that microalgae oils have antimicrobial effect against fungal
microorganisms and can be used as a preservative in foods. In this study, the antifungal
activity of Chlorella protothecoides
microalgae oil, an alternative to chemical preservation, against Penicillium chrysogenum and Aspergillus parasiticus fungi, which may
cause qualitative and quantitative losses in foods, was determined. The
antifungal effect of C. protothecoides
microalgae oil prepared by using 5% and 10% concentrations in dimethyl
sulfoxide (DMSO) against these fungi was determined by the disc diffusion
method. In both fungal pathogens, C.
protothecoides
microalgae oil decreased micellar growth. The antioxidant
activity of the C. protothecoides
microalgae oil was determined using the 1,1-diphenyl-2-picryl hydrazyl (DPPH)
free radical removal method. Antioxidant effect of microalgae oil was
determined as 45.93%. C. protothecoides
microalgae oil had an antifungal activity against P. chrysogenum and A. parasiticus.
According to the results, it can be concluded that C. protothecoides oil may be used as a food preservative in the
food industry.

References

  • [1] Luz, C., Saladino, E., Luciano, F.B., Manes, J., Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT- Food Science and Technology, 81, 128-135.
  • [2] Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A., Gullino, M.L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49, 121-128.
  • [3] Pawlowska, A.M., Zannini, E., Coffey, A., Arendit, E.K. (2012). Green preservatives combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advanced in Foods and Nutrition Research, 66, 217-238.
  • [4] Dai, J., Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352.
  • [5] Devi, K.P., Suganthy, N., Kesika, P., Pandian, S.K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8(1), 38-49.
  • [6] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2019). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları, Akademik Gıda, 52, 166-178.
  • [7] De Morais, M.G., Vaz Bda, S., de Morais, E.G., Costa, J.A. (2015). Biologically active metabolites synthesized by microalgae. Biomed Research International, 1 -15.
  • [8] Danielli, M.M., Dantas, Romero, M.P.B., Costa, Maria, G., Carneiro-da-Cunha, A.O., Galvez, A.R., Drummond, Bezerra, R.S. (2015). Bioproduction, antimicrobial and antioxidant activities of compounds from Chlorella vulgaris. Journal Botany Science, 4, 12-18.
  • [9] Prakash, J.W., Johnson, M., Solomon, J. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani. Asian Pacific Journal of Tropical Biomedicine, 1 (2), 170-173.
  • [10] Radhika, D., Veerabahu, C., Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 89-90.
  • [11] Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., Durmaz, Y. (2006). Algal antioksidanlar. E.Ü. Su Ürünleri Dergisi, 23(1), 85-89.
  • [12] Shannon, E., Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Marine Drugs, 14(81) 1-23.
  • [13] Yilmaz, A., Ermis, E., Boyraz, N. (2016). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot deseases Colletotrichum gleosporioides, Botrytis cinerea and Penicillium expansum. Journal Food Safety and Quality, 67, 113-148.
  • [14] Yilmaz, A., Bozkurt, F., Cicek, P.K., Dertli, E., Durak, Z.M., Yilmaz, M.T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science and Emerging Technologies, 37, 74-83.
  • [15] Gülyurt, M.Ö., Özçimen, D., Inan, B. (2016). Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. International Journal Molecular Science, 17(4), 579-587.
  • [16] Büyüksırıt, T., Kuleaşan, H. (2014). Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve gıda analizlerinde kullanımı. Gıda, 39(4), 235-241.
  • [17] Özçimen, D. (2018). Chlorella protothecoides mikroalg yağının Botrytis cinerea ve Aspergillus niger küflerine karşı antifungal etkisinin incelenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(02), 45-52.
  • [18] Vehapi, M., Yilmaz, A., Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letter, doi: 10.26327/RBL2018.228
  • [19] Vehapi, M., Yilmaz, A., Ozcimen, D. (2018b). Investigation of antibacterial and antioxidant activities of some algae species. Journal of Biotechnology, 280, 80.
  • [20] Brand-Williams, W., Cuvelier, M. Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28, 25-30.
  • [21] Boutennoun, H., Boussouf, L., Kebieche, M., Al-Qaoud, K., Madani, K. (2017). In vivo analgesic, anti-inflammatory and antioxidant potentials of Achillea odorata from north Algeria. South African Journal of Botany, 112, 307-313.
  • [22] Çalişkan Eleren, S., Öneri B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25 (3), 304-319.
  • [23] Krzemińska, I., Nawrocka, A., Piasecka, A., Jagielski, P., Tys, J. (2015). Cultivation of Chlorella protothecoides in photobioreactors: the combined impact of photoperiod and CO2 concentration. Engineering Life Science, 15, 533-541.
  • [24] Jebsena Christian, Noricib, A., Wagnera, H., Palmuccib, M., Giordanob, M., Wilhelma, C. (2012). FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiologia Plantarum, 146(4), 427-438.
  • [25] Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R., Aguilar, C.N. (2012). Antifungal properties of bioactive compounds from plants. In Dhanasekaran D (ed) Fungicides for Plant and Animal Diseases. InTech Croatia, 81-106.
  • [26] Thomas, N.V., Kim, S.K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146-164.
  • [27] Pérez, M.J., Falqué, E., Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52.
  • [28] Maadane, A., Merghoub, N., Ainane, T., Arroussi, E.H., Benhima, R., Amzazi, S., Bakri, Y., Wahby, I. (2015). Antioxidant activity of some Moroccan marine microalgae: PUFA profiles, carotenoids and phenolic content. Journal Biotechnology, 10(215), 13-9.
  • [29] Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-6.

Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği

Year 2019, Volume: 17 Issue: 2, 217 - 225, 02.09.2019
https://doi.org/10.24323/akademik-gida.613575

Abstract

Mikroalgler protein, yağ
asitleri, karbonhidrat, mineral, pigment, vitaminler, steroller, antioksidanlar
ve biyoaktif polifenoller gibi değerli metabolitler üretilebilen, aktif bileşenler
açısından zengin kaynaklardır. Bu değerli metobolitleri sayesinde günümüzde
mikroalgler gıda, kozmetik, eczacılık, tarım gibi birçok alanda kullanım
potansiyeline sahiptir. Chlorophyta grubuna ait yeşil tek hücreli Chlorella
sp. antitümör, antikoagülan, antibakteriyel, antiviral, antifungal ve antioksidan
aktivite göstermektedir. Mikroalg türlerinden elde edilen mikroalg yağlarının
fungal mikroorganizmalara karşı antimikrobiyal etkiye sahip olduğu ve gıdalarda
koruyucu olarak kullanılabileceği düşünülmektedir. Bu çalışmada gıdalarda kalitatif ve
kantitatif kayıplara yol açan
Penicillium
chrysogenum
ve Aspergillus parasiticus funguslarına karşı, kimyasal
gıda koruyucularına alternatif olabilecek C. protothecoides mikroalg
yağının antifungal etkinliği incelenmiştir.
Penicillium
chrysogenum
ve Aspergillus parasiticus funguslarına karşı %5 ve %10’luk
konsantrasyonlarda dimetil sülfoksit (DMSO) kullanılarak hazırlanan C.
protothecoides
mikroalg yağı, disk difüzyon metodu kullanılarak antifungal
etkisi araştırılmıştır. Her iki fungal patojende C. protothecoides mikroalg
yağının misel gelişimini azalttığı tespit edilmiştir. C. protothecoides mikroalg
yağının antioksidan aktivitesi 1,1-difenil-2-pikril hidrazil (DPPH) serbest
radikali giderme metodu kullanılarak tayin edilmiştir. Mikroalg yağının antioksidan
etkisi %45.93 olarak tespit edilmiştir. C. protothecoides mikroalg yağının,
denenen P.
chrysogenum ve A. parasitıcus’a
karşı antifungal aktiviteye sahip olduğu görülmüştür. Bu sonuçlar doğrultusunda C. protothecoides yağının gıda
endüstrisinde gıda koruyucu olarak kullanılabileceği öngörülmektedir.

References

  • [1] Luz, C., Saladino, E., Luciano, F.B., Manes, J., Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT- Food Science and Technology, 81, 128-135.
  • [2] Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A., Gullino, M.L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49, 121-128.
  • [3] Pawlowska, A.M., Zannini, E., Coffey, A., Arendit, E.K. (2012). Green preservatives combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advanced in Foods and Nutrition Research, 66, 217-238.
  • [4] Dai, J., Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352.
  • [5] Devi, K.P., Suganthy, N., Kesika, P., Pandian, S.K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8(1), 38-49.
  • [6] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2019). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları, Akademik Gıda, 52, 166-178.
  • [7] De Morais, M.G., Vaz Bda, S., de Morais, E.G., Costa, J.A. (2015). Biologically active metabolites synthesized by microalgae. Biomed Research International, 1 -15.
  • [8] Danielli, M.M., Dantas, Romero, M.P.B., Costa, Maria, G., Carneiro-da-Cunha, A.O., Galvez, A.R., Drummond, Bezerra, R.S. (2015). Bioproduction, antimicrobial and antioxidant activities of compounds from Chlorella vulgaris. Journal Botany Science, 4, 12-18.
  • [9] Prakash, J.W., Johnson, M., Solomon, J. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani. Asian Pacific Journal of Tropical Biomedicine, 1 (2), 170-173.
  • [10] Radhika, D., Veerabahu, C., Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 89-90.
  • [11] Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., Durmaz, Y. (2006). Algal antioksidanlar. E.Ü. Su Ürünleri Dergisi, 23(1), 85-89.
  • [12] Shannon, E., Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Marine Drugs, 14(81) 1-23.
  • [13] Yilmaz, A., Ermis, E., Boyraz, N. (2016). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot deseases Colletotrichum gleosporioides, Botrytis cinerea and Penicillium expansum. Journal Food Safety and Quality, 67, 113-148.
  • [14] Yilmaz, A., Bozkurt, F., Cicek, P.K., Dertli, E., Durak, Z.M., Yilmaz, M.T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science and Emerging Technologies, 37, 74-83.
  • [15] Gülyurt, M.Ö., Özçimen, D., Inan, B. (2016). Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. International Journal Molecular Science, 17(4), 579-587.
  • [16] Büyüksırıt, T., Kuleaşan, H. (2014). Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve gıda analizlerinde kullanımı. Gıda, 39(4), 235-241.
  • [17] Özçimen, D. (2018). Chlorella protothecoides mikroalg yağının Botrytis cinerea ve Aspergillus niger küflerine karşı antifungal etkisinin incelenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(02), 45-52.
  • [18] Vehapi, M., Yilmaz, A., Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letter, doi: 10.26327/RBL2018.228
  • [19] Vehapi, M., Yilmaz, A., Ozcimen, D. (2018b). Investigation of antibacterial and antioxidant activities of some algae species. Journal of Biotechnology, 280, 80.
  • [20] Brand-Williams, W., Cuvelier, M. Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28, 25-30.
  • [21] Boutennoun, H., Boussouf, L., Kebieche, M., Al-Qaoud, K., Madani, K. (2017). In vivo analgesic, anti-inflammatory and antioxidant potentials of Achillea odorata from north Algeria. South African Journal of Botany, 112, 307-313.
  • [22] Çalişkan Eleren, S., Öneri B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25 (3), 304-319.
  • [23] Krzemińska, I., Nawrocka, A., Piasecka, A., Jagielski, P., Tys, J. (2015). Cultivation of Chlorella protothecoides in photobioreactors: the combined impact of photoperiod and CO2 concentration. Engineering Life Science, 15, 533-541.
  • [24] Jebsena Christian, Noricib, A., Wagnera, H., Palmuccib, M., Giordanob, M., Wilhelma, C. (2012). FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiologia Plantarum, 146(4), 427-438.
  • [25] Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R., Aguilar, C.N. (2012). Antifungal properties of bioactive compounds from plants. In Dhanasekaran D (ed) Fungicides for Plant and Animal Diseases. InTech Croatia, 81-106.
  • [26] Thomas, N.V., Kim, S.K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146-164.
  • [27] Pérez, M.J., Falqué, E., Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52.
  • [28] Maadane, A., Merghoub, N., Ainane, T., Arroussi, E.H., Benhima, R., Amzazi, S., Bakri, Y., Wahby, I. (2015). Antioxidant activity of some Moroccan marine microalgae: PUFA profiles, carotenoids and phenolic content. Journal Biotechnology, 10(215), 13-9.
  • [29] Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-6.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Azime Yılmaz 0000-0002-9470-4310

Publication Date September 2, 2019
Submission Date March 16, 2019
Published in Issue Year 2019 Volume: 17 Issue: 2

Cite

APA Yılmaz, A. (2019). Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda, 17(2), 217-225. https://doi.org/10.24323/akademik-gida.613575
AMA Yılmaz A. Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda. September 2019;17(2):217-225. doi:10.24323/akademik-gida.613575
Chicago Yılmaz, Azime. “Chlorella Protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri Ve Antifungal Etkinliği”. Akademik Gıda 17, no. 2 (September 2019): 217-25. https://doi.org/10.24323/akademik-gida.613575.
EndNote Yılmaz A (September 1, 2019) Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda 17 2 217–225.
IEEE A. Yılmaz, “Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği”, Akademik Gıda, vol. 17, no. 2, pp. 217–225, 2019, doi: 10.24323/akademik-gida.613575.
ISNAD Yılmaz, Azime. “Chlorella Protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri Ve Antifungal Etkinliği”. Akademik Gıda 17/2 (September 2019), 217-225. https://doi.org/10.24323/akademik-gida.613575.
JAMA Yılmaz A. Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda. 2019;17:217–225.
MLA Yılmaz, Azime. “Chlorella Protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri Ve Antifungal Etkinliği”. Akademik Gıda, vol. 17, no. 2, 2019, pp. 217-25, doi:10.24323/akademik-gida.613575.
Vancouver Yılmaz A. Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda. 2019;17(2):217-25.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).