Research Article
BibTex RIS Cite

Effect of Gum, Protein and Emulsifier Use at Different Ratios and Gelatinization on Rice Pasta Quality

Year 2020, Volume: 18 Issue: 1, 45 - 63, 30.04.2020
https://doi.org/10.24323/akademik-gida.730113

Abstract

Celiac disease is a permanent intolerance to gluten. So, patients need to change their eating habits. Currently, this creates a high demand for high-quality gluten-free products, such as gluten-free pasta. The objective of this work is to evaluate the effect of compositions such as hydrocolloids, emulsifier, and proteins on the rheological and textural properties of pasta based on rice at different gelatinization ratios. The effect of hydrocolloids and proteins on gluten-free formulations having 60, 80 and 100% gelatinized rice doughs were determined with rheological and color experiments. Carboxymethyl cellulose (CMC), xanthan gum (XG), guar gum (GG), carrageenan gum (CG), locust bean gum (LBG), casein (CSN), egg-white (EW) and glycerin monostearate (GM) were used. Hydrocolloid (2% w/w) or hydrocolloid+protein (in different amount, total 2% w/w) for doughs were added. The study on the rheological behavior of doughs was performed by Rheometer, Dynamic Mechanical Analyzer (DMA) and Texture Analyzer. The elasticity and resistance to the deformation of dough were determined by creep-recovery and dynamic viscoelastic measurements, and the results were modeled by Burger equation. It was found that XG and CMC exhibited the lowest creep compliance values among the added hydrocolloids. Incorporation of casein was the elastic behavior of the rice dough. It was determined that the recovery result was better when CMC and XG were added to 100% JP dough and the dough mixture containing 80% JP and CMC showed the highest recovery value. The results of Texture Profile Analysis (TPA) applied to pasta samples after cooking showed that stickiness values decreased and hardness values increased when XG, KZN and GMS were added together to 80% and 100% JP dough.

References

  • [1] Hall, N.J., Rubin, G., Charnock, A. (2009). Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacololy Therapeutics, 30(4), 315-330.
  • [2] Mirhosseini, H., Rashid, N.F.A., Amid, B.T., Cheong, K.W., Kazemi, M. Zulkurnain, M. (2015). Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. Lwt-Food Science and Technology, 63(1), 184-190.
  • [3] Attenburrow, G., Barnes, D.J., Davies, A.P., Ingman, S.J. (1990). Rheological properties of wheat gluten. Journal of Cereal Science, 12(1–14).
  • [4] Hibberd, G.E., Parker, N.S., (1975). Measurement of the fundamental rheological properties of wheat-flour doughs. Cereal Chemistry, 52, 1–23.
  • [5] Mills, E.N.C., Burgess, S.R., Tahtam, A.S., Shewry, P.R., Chan, H.W.S., Morgan, M.R.A. (1990). Characterization of a panel of monoclonal anti-gliadin antibodies. Journal of Cereal Science, 11, 89-101.
  • [6] Matsuo, R.R., Irvine, G.N. (1970). Effect of gluten on the cooking properties of spaghetti. Cereal Chemistry, 47, 173–180.
  • [7] Ciaffi, M., Tozzi, L., Lafiandra, D. (1996). Relationship between flour protein composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chemistry, 73, 346–351.
  • [8] Wall, J.S. (1979). Recent advances in biochemistry of cereals. Academic Press, London.
  • [9] Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849-855.
  • [10] Mariotti, M., Iametti, S., Cappa, C., Rasmussen, P., Lucisano, M. (2011). Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. Journal of Cereal Science, 53(3), 319-327.
  • [11] Larrosa, V., Lorenzo, G., Zaritzky, N.E., Califano, A. (2012). Effect of the addition of proteins and hydrocolloids on the water mobility in gluten-free pasta formulations. Water Journal, 4, 1-17.
  • [12] Arendt, E.K., Morrissey, A., Moore, M. M., Dal Bello, F. (2008). Gluten-free cereal products and beverages. Ireland Academic Press.
  • [13] Chillo, S., Laverse, J., Falcone, P. M., Del Nobile, M. A. (2008). Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. Journal of Food Engineering, 84(1), 101-107.
  • [14] Fiorda, F.A., Soares, M.S., da Silva, F.A., Grosmann, M.V.E., Souto, L.R.F. (2013). Microestructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. Lwt-Food Science and Technology, 54(1), 132-138.
  • [15] Huang, J.C., Knight, S., Goad, C. (2001). Model prediction for sensory attributes of nongluten pasta. Journal of Food Quality, 24(6), 495-511.
  • [16] Marti, A., Barbiroli, A., Marengo, M., Fongaro, L., Iametti, S., Pagani, M.A. (2014). Structuring and texturing gluten-free pasta: egg albumen or whey proteins? European Food Research and Technology, 238(2), 217-224.
  • [17] Cureton, P., Fasano, A. (2009). The increasing incidence of celiac disease and the range of gluten-free products in the market place. Gluten Free Food Science and Technology. Wiley-Blackwell, Oxford, UK.
  • [18] Eliasson, A., Larsson, K. (1993). In Cereals in breadmaking. Newyork: Marcel Dekker.
  • [19] Sivaramakrishnan, H.P., Senge, B., Chattopadhyay, P.K. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62(1), 37-45.
  • [20] Rosell, C.M., Collar, C., Haros, M. (2007). Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids, 21(3), 452-462.
  • [21] Marco, C., Rosell, C.M. (2008). Breadmaking performance of protein enriched, gluten-free breads. European Food Research and Technology, 227(4), 1205-1213.
  • [22] Lyon, B.G., Champagne, E.T., Vinyard, B.T., Windham, W.R., Barton, F.E., Webb, B.D., McClung, A.M., Moldenhauer, K.A., Linscombe, S., McKenzie, K.S., Kohlwey, D.E. (1999). Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice. Cereal Chemistry, 76(1), 56-62.
  • [23] Heo, S., Jeon, S., Lee, S. (2014). Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles. LWT - Food Science and Technology, 55(2), 627-631.
  • [24] Lai, H.M. (2002). Effects of rice properties and emulsifiers on the quality of rice pasta. Journal of the Science of Food and Agriculture. 82(2), 203-216.
  • [25] Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C.G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3),1033-1047.
  • [26] Cunin, C. (1999). Xanthan gum-a food stabiliser of choice. Innovations in Food Technology, 5, 13-15.
  • [27] Larrosa, V., Lorenzo, G., Zaritzky, N., Califano, A. (2016). Improvement of the texture and quality of cooked gluten-free pasta. LWT - Food Science and Technology, 70, 96-103.
  • [28] Chaisawang, M., Suphantharika, M. (2005). Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch. Carbohydrate Polymers, 61(3), 288–295.
  • [29] Kim, C., Yoo, B. (2006). Rheological properties of rice starch–xanthan gum mixtures. Journal of Food Engineering, 75(1), 120-128.
  • [30] Mandala, I.G., Savvas, T.P., Kostaropoulos, A.E. (2004). Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Journal of Food Engineering, 64(3), 335-342.
  • [31] Nussinovitch, A., (1997). Hydrocolloid Applications. ed. G.T.i.t.F.a.O. Industries. London: Blackie Academic & Professional.
  • [32] Kulicke, W.M., Eidam, D., Kath, F., Kix, M., Kull, A.H. (1996). Hydrocolloids and rheology: Regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch-Starke, 48(3), 105-114.
  • [33] Rosell, C.M., Rojas, J.A., de Barber, C.B. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81.
  • [34] Ylimaki, G., Hawrysh, Z.J., Hardin, R.T., Thomson, A.B.R. (1991). Response-Surface methodology in the development of rice flour yeast breads - sensory evaluation. Journal of Food Science, 56(3), 751.
  • [35] Cato, L., Rafael, L.G.B., Gan, J., Small, D.M. (2002). The use of rice flour and hydrocolloid gums for gluten-free breads, in Proceedings of The 51st Australian Cereal Chemistry Conference, 304-308p.
  • [36] Alamprese, C., Casiraghi, E., Pagani, M. (2007). Development of gluten-free fresh egg pasta analogues containing buckwheat. European Food Research and Technology, 225 (2), 205-213.
  • [37] Alamprese, C., Casiraghi, E., Rossi, M. (2009). Modeling of fresh egg pasta characteristics for egg content and albumen to yolk ratio. Journal of Food Engineering, 93, 302-307.
  • [38] Yu, L.J., Ngadi, M.O. (2004). Textural and other quality properties of instant fried noodles as affected by some ingredients. Cereal Chemistry, 81(6), 772-776.
  • [39] Lee, J.M., Lee, M.K., Lee ,S.K., Cho, N.J., Cha, W.J., Park, J.K. (2000). Effect of gums on the characteristics of the dough in making frozen dough. . Korean Journal of Food Science and Technology,.32, 604-609.
  • [40] Raina, C.S., Singh, S., Bawa, A.S., Saxena, D.C. (2005). Textural characteristics of pasta made from rice flour supplemented with proteins and hydrocolloids. Journal of Texture Studies, 36(4), 402-420.
  • [41] Matsuo, R.R., Bradley, J.W., Irvine, G.N. (1972). Effect of protein content on the cooking quality of spaghetti. Cereal Chemistry, 49, 707-777.
  • [42] Plancken van der, I., Loey van, A., Hendrickx, M.E. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science and Emerging Technologies, 6, 11-20.
  • [43] Chuang, G.C., Yeh, A. (2006). Rheological characteristics and texture attributes of glutinous rice cakes (mochi). Journal of Food Engineering, 74, 314–323.
  • [44] AOAC, Official Methods of Analysis: Official Method for Moisture. Method No. 925.10. Association of Official Analytical Chemists, Washington DC. 1995.
  • [45] Malcolmson, L.J., Matsuo, R.R. (1993). Effects of Cooking Water Composition on Stickiness and Cooking Loss of Spaghetti. Cereal Chemistry, 70(3), 272-275.
  • [46] Ndife, M., Sumnu, G., Bayındırlı, L. (1998). Differential scanning calorimetry determination of gelatinization rates in different starches due to microwave heating. Lebensmittel-Wissenschaft und-Technologie, 31, 484-488.
  • [47] Spigno, G., De Faveri, D.M. (2004). Gelatinization kinetics of rice starch studied by non-isothermal calorimetric technique: influence of extraction method, water concentration and heating rate. Journal of Food Engineering, 62(4), 337-344.
  • [48] Dexter, J.E., Matsuo, R.R. (1979). Effect of starch on pasta dough rheology and spaghetti cooking quality. Cereal Chemistry. 56(3), 190-195.
  • [49] Eerlingen, R.C., Delcour, J.A. (1995). Formation, Analysis, Structure and Properties of Type-III Enzyme Resistant Starch. Journal of Cereal Science, 22(2), 129-138.
  • [50] Steffe, J.F. (1996). Rheological Methods in Food Process Engineering (2nd edition). Freeman Press, East Lansing, MI, USA.
  • [51] Edwards, N.M., Dexter, J.E., Scanlon, M.G., Cenkowski, S. (1999). Relationship of creep-recovery and dynamic oscillatory measurements to durum wheat physical dough properties. Cereal Chemistry, 76(5), 638-645.
  • [52] Wang, F.C., Sun, X.S. (2002). Creep-recovery of wheat flour doughs and relationship to other physical dough tests and breadmaking performance. Cereal Chemistry 79(4), 567-571.
  • [53] Dobraszczyk, B.J., Morgenstern, M. (2003). Rheology and the breadmaking process. Journal of Cereal Science, 38(3), 229-245.
  • [54] Weipert, D. (1990). The Benefits of Basic Rheometry in Studying Dough Rheology. Cereal Chemistry, 67, 311-317.
  • [55] Mandala, I.G., Bayas, E. (2004). Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids, 18(2), 191-201.
  • [56] Keller, J.D. (1982). Sodium Carboxymethylcellulose (CMC). In Food Hydrocolloids,, ed. M. G. Vol. 3. CRC Press, Inc: Florida. 43-104p.
  • [57] Chaudemanche, C., Budtova,T. (2008). Mixtures of pregelatinised maize starch and -carrageenan: Compatibility, rheology and gelation. Carbohydrate Polymers, 72, 579–589.
  • [58] Jack, F.R., Paterson, A. (1992). Texture of hard cheeses. Trends in Food Science & Technology, 3, 160-164.
  • [59] Yang, H., Irudayaraj, J., Otgonchimeg, S., Walsh, M. (2004). Rheological study of starch and dairy ingredient-based food systems. Food Chemistry, 86(4), 571-578.
  • [60] Chan, P.S., Chen, J., Ettelaie, R., Law, Z., Alevisopoulos, S., Day, E., Smith, S. (2007). Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures. Food Hydrocolloids, 21, 716-725.
  • [61] Stadelman, W.J., Olson, V.M., Shemwell, G.A., Posch, S. (1988). Egg and Poultry Meat Processing: Ellis Harword Ltd. Chiester, England.
  • [62] Spagnuolo, P.A., Dalgleish, D.G., Goff, H.D., Morris, E.R. (2005). Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocolloids, 19, 371-377.
  • [63] Everett, D.W., McLeod, R.E. (2005). Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. International Dairy Journal, 15(11), 1175-1183.
  • [64] Hemar, Y., Tamehana, M., Munro, P.A., Singh, H. (2001). Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocolloids, 15(4-6), 565-574.
  • [65] Mavrakis, C., Kiosseoglou, V. (2008). The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food Hydrocolloids, 22(5), 854-861.
  • [66] Kaur, L., Singh, J., Singh, N. (2005). Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19(5), 839-849.
  • [67] Dexter, J.E., Matsuo, R.R., Morgan, B.C. (1983). Spaghetti stickiness: Some factors influencing stickiness and relationship to other quality factors. Journal of Food Science and Technology International, 48, 1545-1551,1559.
  • [68] Udachan, I.S., Sahoo, A.K. (2017). Effect of hydrocolloids in the development of gluten free brown rice pasta. International Journal of ChemTech Research, 10(6), 407-415.

Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi

Year 2020, Volume: 18 Issue: 1, 45 - 63, 30.04.2020
https://doi.org/10.24323/akademik-gida.730113

Abstract

Çölyak hastalığı, kalıcı gluten toleranssızlığı olduğu için hastaların yeme alışkanlıklarını degiştirmesi gerekmektedir. Bu nedenle günümüzde, glutensiz makarna gibi yüksek kaliteli glutensiz ürünlere karşı talep artmıştır. Çalışmamızın amacı, hidrokolloid, emülgatör ve proteinlerin eklenmesiyle oluşan pirinç bazlı makarnanın reolojik ve tekstürel özelliklerini değerlendirmektir. Yüzde 60, 80 ve 100 jelatinize edilmiş pirinç (JP) içeren hamurlara eklenen proteinlerin ve hidrokolloidlerin etkisi, reolojik ve renk ölçümleri ile belirlenmiştir. Çalışmalarda, karboksimetil selüloz (KMS), ksantan gam (XG), guar gam (GG), karagenan gam (KG), keçiboynuzu gamı (KBG), kazein (KZN), yumurta akı (YA) ve gliserin monostearat (GMS) kullanılmıştır. Hamurlar, hidrokolloid (%2 g/g) veya hidrokolloid+protein (farklı miktarlarda, toplam %2 g/g ) karışımları ile hazırlanmıştır. Hamurların reolojik davranış çalışması; Reometre, Dinamik Mekanik Analiz (DMA) ve Tekstür Analiz cihazlarıyla yapılmıştır. Hamurun deformasyona karşı direnci ve elastikliği, sürünme-geri kazanım ve dinamik viskoelastik ölçümleriyle belirlenmiştir. Sürünme test sonuçları 4 parametreli Burger denklemiyle modellenmiştir. Eklenen hidrokolloidler arasında en düşük sürünme komplians değerlerini XG ve KMS gamlarının gösterdiği bulunmuştur. Pirinç hamurunun elastik davranışı KZN eklendiğinde artmıştır. %100 JP hamuruna gam olarak KMS ve XG eklendiğinde geri kazanım sonuçlarının daha iyi olduğu ve en yüksek geri kazanım değerinin ise %80 JP ve KMS içeren hamur karışımının gösterdiği belirlenmiştir. Üretilen makarna örneklerine pişirme sonrası uygulanan Tekstür Profil Analizi (TPA) sonuçları %80 ve %100 JP hamuruna XG, KZN ve GMS beraber eklendiğinde yapışkanlığın azaldığı ve sertlik değerinin arttığı görülmüştür.

References

  • [1] Hall, N.J., Rubin, G., Charnock, A. (2009). Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacololy Therapeutics, 30(4), 315-330.
  • [2] Mirhosseini, H., Rashid, N.F.A., Amid, B.T., Cheong, K.W., Kazemi, M. Zulkurnain, M. (2015). Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. Lwt-Food Science and Technology, 63(1), 184-190.
  • [3] Attenburrow, G., Barnes, D.J., Davies, A.P., Ingman, S.J. (1990). Rheological properties of wheat gluten. Journal of Cereal Science, 12(1–14).
  • [4] Hibberd, G.E., Parker, N.S., (1975). Measurement of the fundamental rheological properties of wheat-flour doughs. Cereal Chemistry, 52, 1–23.
  • [5] Mills, E.N.C., Burgess, S.R., Tahtam, A.S., Shewry, P.R., Chan, H.W.S., Morgan, M.R.A. (1990). Characterization of a panel of monoclonal anti-gliadin antibodies. Journal of Cereal Science, 11, 89-101.
  • [6] Matsuo, R.R., Irvine, G.N. (1970). Effect of gluten on the cooking properties of spaghetti. Cereal Chemistry, 47, 173–180.
  • [7] Ciaffi, M., Tozzi, L., Lafiandra, D. (1996). Relationship between flour protein composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chemistry, 73, 346–351.
  • [8] Wall, J.S. (1979). Recent advances in biochemistry of cereals. Academic Press, London.
  • [9] Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849-855.
  • [10] Mariotti, M., Iametti, S., Cappa, C., Rasmussen, P., Lucisano, M. (2011). Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. Journal of Cereal Science, 53(3), 319-327.
  • [11] Larrosa, V., Lorenzo, G., Zaritzky, N.E., Califano, A. (2012). Effect of the addition of proteins and hydrocolloids on the water mobility in gluten-free pasta formulations. Water Journal, 4, 1-17.
  • [12] Arendt, E.K., Morrissey, A., Moore, M. M., Dal Bello, F. (2008). Gluten-free cereal products and beverages. Ireland Academic Press.
  • [13] Chillo, S., Laverse, J., Falcone, P. M., Del Nobile, M. A. (2008). Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. Journal of Food Engineering, 84(1), 101-107.
  • [14] Fiorda, F.A., Soares, M.S., da Silva, F.A., Grosmann, M.V.E., Souto, L.R.F. (2013). Microestructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. Lwt-Food Science and Technology, 54(1), 132-138.
  • [15] Huang, J.C., Knight, S., Goad, C. (2001). Model prediction for sensory attributes of nongluten pasta. Journal of Food Quality, 24(6), 495-511.
  • [16] Marti, A., Barbiroli, A., Marengo, M., Fongaro, L., Iametti, S., Pagani, M.A. (2014). Structuring and texturing gluten-free pasta: egg albumen or whey proteins? European Food Research and Technology, 238(2), 217-224.
  • [17] Cureton, P., Fasano, A. (2009). The increasing incidence of celiac disease and the range of gluten-free products in the market place. Gluten Free Food Science and Technology. Wiley-Blackwell, Oxford, UK.
  • [18] Eliasson, A., Larsson, K. (1993). In Cereals in breadmaking. Newyork: Marcel Dekker.
  • [19] Sivaramakrishnan, H.P., Senge, B., Chattopadhyay, P.K. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62(1), 37-45.
  • [20] Rosell, C.M., Collar, C., Haros, M. (2007). Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids, 21(3), 452-462.
  • [21] Marco, C., Rosell, C.M. (2008). Breadmaking performance of protein enriched, gluten-free breads. European Food Research and Technology, 227(4), 1205-1213.
  • [22] Lyon, B.G., Champagne, E.T., Vinyard, B.T., Windham, W.R., Barton, F.E., Webb, B.D., McClung, A.M., Moldenhauer, K.A., Linscombe, S., McKenzie, K.S., Kohlwey, D.E. (1999). Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice. Cereal Chemistry, 76(1), 56-62.
  • [23] Heo, S., Jeon, S., Lee, S. (2014). Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles. LWT - Food Science and Technology, 55(2), 627-631.
  • [24] Lai, H.M. (2002). Effects of rice properties and emulsifiers on the quality of rice pasta. Journal of the Science of Food and Agriculture. 82(2), 203-216.
  • [25] Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C.G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3),1033-1047.
  • [26] Cunin, C. (1999). Xanthan gum-a food stabiliser of choice. Innovations in Food Technology, 5, 13-15.
  • [27] Larrosa, V., Lorenzo, G., Zaritzky, N., Califano, A. (2016). Improvement of the texture and quality of cooked gluten-free pasta. LWT - Food Science and Technology, 70, 96-103.
  • [28] Chaisawang, M., Suphantharika, M. (2005). Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch. Carbohydrate Polymers, 61(3), 288–295.
  • [29] Kim, C., Yoo, B. (2006). Rheological properties of rice starch–xanthan gum mixtures. Journal of Food Engineering, 75(1), 120-128.
  • [30] Mandala, I.G., Savvas, T.P., Kostaropoulos, A.E. (2004). Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Journal of Food Engineering, 64(3), 335-342.
  • [31] Nussinovitch, A., (1997). Hydrocolloid Applications. ed. G.T.i.t.F.a.O. Industries. London: Blackie Academic & Professional.
  • [32] Kulicke, W.M., Eidam, D., Kath, F., Kix, M., Kull, A.H. (1996). Hydrocolloids and rheology: Regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch-Starke, 48(3), 105-114.
  • [33] Rosell, C.M., Rojas, J.A., de Barber, C.B. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81.
  • [34] Ylimaki, G., Hawrysh, Z.J., Hardin, R.T., Thomson, A.B.R. (1991). Response-Surface methodology in the development of rice flour yeast breads - sensory evaluation. Journal of Food Science, 56(3), 751.
  • [35] Cato, L., Rafael, L.G.B., Gan, J., Small, D.M. (2002). The use of rice flour and hydrocolloid gums for gluten-free breads, in Proceedings of The 51st Australian Cereal Chemistry Conference, 304-308p.
  • [36] Alamprese, C., Casiraghi, E., Pagani, M. (2007). Development of gluten-free fresh egg pasta analogues containing buckwheat. European Food Research and Technology, 225 (2), 205-213.
  • [37] Alamprese, C., Casiraghi, E., Rossi, M. (2009). Modeling of fresh egg pasta characteristics for egg content and albumen to yolk ratio. Journal of Food Engineering, 93, 302-307.
  • [38] Yu, L.J., Ngadi, M.O. (2004). Textural and other quality properties of instant fried noodles as affected by some ingredients. Cereal Chemistry, 81(6), 772-776.
  • [39] Lee, J.M., Lee, M.K., Lee ,S.K., Cho, N.J., Cha, W.J., Park, J.K. (2000). Effect of gums on the characteristics of the dough in making frozen dough. . Korean Journal of Food Science and Technology,.32, 604-609.
  • [40] Raina, C.S., Singh, S., Bawa, A.S., Saxena, D.C. (2005). Textural characteristics of pasta made from rice flour supplemented with proteins and hydrocolloids. Journal of Texture Studies, 36(4), 402-420.
  • [41] Matsuo, R.R., Bradley, J.W., Irvine, G.N. (1972). Effect of protein content on the cooking quality of spaghetti. Cereal Chemistry, 49, 707-777.
  • [42] Plancken van der, I., Loey van, A., Hendrickx, M.E. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science and Emerging Technologies, 6, 11-20.
  • [43] Chuang, G.C., Yeh, A. (2006). Rheological characteristics and texture attributes of glutinous rice cakes (mochi). Journal of Food Engineering, 74, 314–323.
  • [44] AOAC, Official Methods of Analysis: Official Method for Moisture. Method No. 925.10. Association of Official Analytical Chemists, Washington DC. 1995.
  • [45] Malcolmson, L.J., Matsuo, R.R. (1993). Effects of Cooking Water Composition on Stickiness and Cooking Loss of Spaghetti. Cereal Chemistry, 70(3), 272-275.
  • [46] Ndife, M., Sumnu, G., Bayındırlı, L. (1998). Differential scanning calorimetry determination of gelatinization rates in different starches due to microwave heating. Lebensmittel-Wissenschaft und-Technologie, 31, 484-488.
  • [47] Spigno, G., De Faveri, D.M. (2004). Gelatinization kinetics of rice starch studied by non-isothermal calorimetric technique: influence of extraction method, water concentration and heating rate. Journal of Food Engineering, 62(4), 337-344.
  • [48] Dexter, J.E., Matsuo, R.R. (1979). Effect of starch on pasta dough rheology and spaghetti cooking quality. Cereal Chemistry. 56(3), 190-195.
  • [49] Eerlingen, R.C., Delcour, J.A. (1995). Formation, Analysis, Structure and Properties of Type-III Enzyme Resistant Starch. Journal of Cereal Science, 22(2), 129-138.
  • [50] Steffe, J.F. (1996). Rheological Methods in Food Process Engineering (2nd edition). Freeman Press, East Lansing, MI, USA.
  • [51] Edwards, N.M., Dexter, J.E., Scanlon, M.G., Cenkowski, S. (1999). Relationship of creep-recovery and dynamic oscillatory measurements to durum wheat physical dough properties. Cereal Chemistry, 76(5), 638-645.
  • [52] Wang, F.C., Sun, X.S. (2002). Creep-recovery of wheat flour doughs and relationship to other physical dough tests and breadmaking performance. Cereal Chemistry 79(4), 567-571.
  • [53] Dobraszczyk, B.J., Morgenstern, M. (2003). Rheology and the breadmaking process. Journal of Cereal Science, 38(3), 229-245.
  • [54] Weipert, D. (1990). The Benefits of Basic Rheometry in Studying Dough Rheology. Cereal Chemistry, 67, 311-317.
  • [55] Mandala, I.G., Bayas, E. (2004). Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids, 18(2), 191-201.
  • [56] Keller, J.D. (1982). Sodium Carboxymethylcellulose (CMC). In Food Hydrocolloids,, ed. M. G. Vol. 3. CRC Press, Inc: Florida. 43-104p.
  • [57] Chaudemanche, C., Budtova,T. (2008). Mixtures of pregelatinised maize starch and -carrageenan: Compatibility, rheology and gelation. Carbohydrate Polymers, 72, 579–589.
  • [58] Jack, F.R., Paterson, A. (1992). Texture of hard cheeses. Trends in Food Science & Technology, 3, 160-164.
  • [59] Yang, H., Irudayaraj, J., Otgonchimeg, S., Walsh, M. (2004). Rheological study of starch and dairy ingredient-based food systems. Food Chemistry, 86(4), 571-578.
  • [60] Chan, P.S., Chen, J., Ettelaie, R., Law, Z., Alevisopoulos, S., Day, E., Smith, S. (2007). Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures. Food Hydrocolloids, 21, 716-725.
  • [61] Stadelman, W.J., Olson, V.M., Shemwell, G.A., Posch, S. (1988). Egg and Poultry Meat Processing: Ellis Harword Ltd. Chiester, England.
  • [62] Spagnuolo, P.A., Dalgleish, D.G., Goff, H.D., Morris, E.R. (2005). Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocolloids, 19, 371-377.
  • [63] Everett, D.W., McLeod, R.E. (2005). Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. International Dairy Journal, 15(11), 1175-1183.
  • [64] Hemar, Y., Tamehana, M., Munro, P.A., Singh, H. (2001). Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocolloids, 15(4-6), 565-574.
  • [65] Mavrakis, C., Kiosseoglou, V. (2008). The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food Hydrocolloids, 22(5), 854-861.
  • [66] Kaur, L., Singh, J., Singh, N. (2005). Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19(5), 839-849.
  • [67] Dexter, J.E., Matsuo, R.R., Morgan, B.C. (1983). Spaghetti stickiness: Some factors influencing stickiness and relationship to other quality factors. Journal of Food Science and Technology International, 48, 1545-1551,1559.
  • [68] Udachan, I.S., Sahoo, A.K. (2017). Effect of hydrocolloids in the development of gluten free brown rice pasta. International Journal of ChemTech Research, 10(6), 407-415.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Dilek Büyükbeşe This is me 0000-0002-2344-8663

Emine Elçin Emre This is me 0000-0001-6840-9660

Ahmet Kaya This is me 0000-0001-6960-3780

Publication Date April 30, 2020
Submission Date July 12, 2019
Published in Issue Year 2020 Volume: 18 Issue: 1

Cite

APA Büyükbeşe, D., Emre, E. E., & Kaya, A. (2020). Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi. Akademik Gıda, 18(1), 45-63. https://doi.org/10.24323/akademik-gida.730113
AMA Büyükbeşe D, Emre EE, Kaya A. Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi. Akademik Gıda. April 2020;18(1):45-63. doi:10.24323/akademik-gida.730113
Chicago Büyükbeşe, Dilek, Emine Elçin Emre, and Ahmet Kaya. “Farklı Oranlarda Gam, Protein Ve Emülgatör Kullanımı Ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi”. Akademik Gıda 18, no. 1 (April 2020): 45-63. https://doi.org/10.24323/akademik-gida.730113.
EndNote Büyükbeşe D, Emre EE, Kaya A (April 1, 2020) Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi. Akademik Gıda 18 1 45–63.
IEEE D. Büyükbeşe, E. E. Emre, and A. Kaya, “Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi”, Akademik Gıda, vol. 18, no. 1, pp. 45–63, 2020, doi: 10.24323/akademik-gida.730113.
ISNAD Büyükbeşe, Dilek et al. “Farklı Oranlarda Gam, Protein Ve Emülgatör Kullanımı Ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi”. Akademik Gıda 18/1 (April 2020), 45-63. https://doi.org/10.24323/akademik-gida.730113.
JAMA Büyükbeşe D, Emre EE, Kaya A. Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi. Akademik Gıda. 2020;18:45–63.
MLA Büyükbeşe, Dilek et al. “Farklı Oranlarda Gam, Protein Ve Emülgatör Kullanımı Ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi”. Akademik Gıda, vol. 18, no. 1, 2020, pp. 45-63, doi:10.24323/akademik-gida.730113.
Vancouver Büyükbeşe D, Emre EE, Kaya A. Farklı Oranlarda Gam, Protein ve Emülgatör Kullanımı ve Jelatinizasyonun Pirinç Makarnası Kalitesine Etkisi. Akademik Gıda. 2020;18(1):45-63.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).