BibTex RIS Cite

Computational Fluid Dynamics Applications in Food Engineering

Year 2016, Volume: 14 Issue: 4, 465 - 471, 01.12.2016

Abstract

Computational fluid dynamics CFD analyses systems including heat transfer, fluid flow and chemical reactions by means of computer based simulations. CFD codes have been developed within the scope of numerical algorithms for solving nonlinear partial differential equations. Experimental data are generally used to validate CFD solutions through comparing magnitudes that are found experimentally and numerically. CFD analysis is completed with drawing images, lines, vectors and/or animations after creating geometry and mesh grid , customizing physical model, determining boundary counditions and increasing the model accuracy by numerical options stages. Today, CFD applications have become indispensable in system design in food industry because of having advantages for both consumers and environment. Various processes e.g. packaging, cold storage, freezing, baking, sterilization, drying and designing and analyses of systems e.g. heat exchanger and agitated vessel have been already benefited from CFD technology

References

  • Parviz, M., John, K., 1997. Tackling turbulence with supercomputers. Scientific American 1: 276.
  • Schaldach, G., Berger, L., Razilov, I., Berndt, H., 2000. Computer simulation for fundamental studies and optimisation of ICP spray chambers. ISAS (Institute Spectroscopy) Current Research Reports, Berlin, Germany. and Applied
  • Mills, D., 1998–1999. Development and validation of a preliminary model for optimisation of baking ovens. The Food and Packaging Cooperative Research Centre Annual Report, Australia.
  • Cortella, G., Manzan, M., Comini, G., 1998. Computation of air velocity and temperature distributions in open display cabinets. In: Advanced in the Refrigeration Systems, Food Technologies and Cold Chain. International Institute of Refrigeration, Paris, France, pp. 617–625.
  • Sahu, A.K., Kumar, P., Patwardhan, A.W., Joshi, J.B., 1999. CFD modelling and mixing in stirred tanks. Chemical Engineering Science 54(13–14): 2285–2293.
  • Kieviet, F.G., Van, R.J., De Moor, P.P.E.A., Kerkhof, P.J.A.M., 1997. Measurement and modelling of the air flow pattern in a pilot-plant spray dryer. Chemical Engineering Research and Design 75(A3): 321–328.
  • Kumar, A., 1995. Numerical investigation of secondary flows in helical heat exchangers. Institute of Food Technologists Annual Meeting. Anaheim, CA, USA. pp. 148.
  • Xia, B., Sun, D-W., 2002. Applications of Computational Fluid Dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture 34: 5-24.
  • Bakker, A., Ahmad, H.H., Lanre, M.O., 2001. Realize greater benefits from CFD. Fluid/Solids Handling March, pp. 45–53.
  • Wanot, J., 1996. Computational fluid dynamics methods in ship design. R&D projects, Germany.
  • Süfer, Ö., 2012. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dynamics) Uygulamaları. Yüksek Lisans Semineri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İzmir. Fluid
  • Sun, D.-W., 2007. Computational Fluid Dynamics (CFD) in Food Processing. CRC Press, Taylor & Francis Group, 776p.
  • Foster, A.M., Madge, M., Evans, J.A., 2005. The use of CFD to improve the performance of a chilled multi-deck retail display cabinet. International Journal of Refrigeration 28: 698-705.
  • D’Agaro, P., Cortella, G., Croce, G., 2006. Two- and three dimensional CFD applied to vertical display cabinets simulation. International Journal of Refrigeration 29: 178-190.
  • Norton, T., Sun, D.-W., 2006. Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology 17: 600-620.
  • Fernandes, C.S, Dias, R.P., Nobrega, J.M., Afonso, I.M., Melo, L.F., Maia, J.M., 2006. Thermal behaviour of stirred yoghurt during cooling in plate heat exchangers. Journal of Food Engineering 76: 433-439.
  • Wang, L., Sun, D.-W., 2003. Recent developments in numerical modeling of heating and cooling processes in the food industry—a review. Trends in Food Science and Technology 14: 408–423.
  • Friedrich, R., Huttl, T.J., Manhart, M., Wagner, C., 2001. Direct numerical simulation of incompressible turbulent flows. Computers and Fluids 30: 555-579.
  • Hoang, M.L., Verboven, P., De Baerdemaeker, J., Nicolai, B.M., 2000. Analysis of the air flow in a cold store by means of computational fluid dynamics: Analyse du de´bit d’air dans un entrepoˆ t frigorifique a` l’aide de la dynamique des fluides informatise´e. International Journal of Refrigeration 23: 127–140.
  • Verboven P., Hoang, M.L., Baelmans, M., Nicolai, B.M., 2004. Airflow through beds of apples and chicory roots. Biosystems Engineering 88: 117–125.
  • Liu S., Hrymak, A.N., Wood, P.E., 2006. Laminar mixing of shear thinning fluids in a SMX static mixer. Chemical Engineering Science 61: 1753–1759.
  • Foster, A.M., Barrett, R., James, S.J., Swain, M.J., 2002. Measurement and prediction of air movement through International Journal of Refrigeration 25: 1102– 1109. refrigerated rooms.
  • Aubin, J., Fletcher, D.F., Xuereb, C., 2004. Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science 28: 431–445.
  • Wong S., Zhou, Y.W., Hua, J., 2007. CFD modeling of an industrial continuous bread-baking process involving U-movement. Journal of Food Engineering 78(3): 888–896.
  • Gosman A.G., 1998. Developments in industrial computational fluid dynamics. Transactions of the Institution of Chemical Engineers 76: 153–160.
  • Verboven, P., Datta, A.K., Anh, N.T., Scheerlinck, N., Nicolai, B., 2003. Computation of airflow effects on heat and mass transfer in a microwave oven. Journal of Food Engineering 59: 181–190.
  • Richardson L.F., 1910. arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London, Series A 210: 307–357. approximate
  • Roache P.J., 1998. Verification and Validation in Computational Albuquerque, New Mexico: Hermosa. and Engineering.
  • Sorensen D.N., Nielsen, P.V., 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air 13: 2–17.
  • Slater, J.W., 2006. Examining spatial (grid) convergence. Public tutorial on CFD verification and validation, NASA Glenn Research Centre, MS 86 and 21000 Brookpark Road, Cleveland, Ohio, 44135.
  • Oakley, D.E., 1994. Scale-up of spray dryers with the aid of computational fluid dynamics. Drying Technology 12(1-2): 217–233.
  • Mathioulakis, E., Karathanos, V.T., Belessiotis, V.G., 1998. Simulation of air movement in a dryer by computational fluid dynamics: application for the drying of fruits. Journal of Food Engineering 36(2): 183–200.
  • Mirade, P.S., Daudin, J.D., 2000. A numerical study of the airflow patterns in a sausage dryer. Drying Technology 18(1–2): 81–97.
  • Langrish, T.A.G., Fletcher, D.F., 2001. Spray drying of food ingredients and applications of CFD in spray drying. Chemical Engineering and Processing 40(4): 345–354.
  • Kieviet, F.G., Van, R.J., de Moor, P.P.E.A., Kerkhof, P.J.A.M., 1997. Measurement and modelling of the air flow pattern in a pilot-plant spray dryer. Chemical Engineering Research and Design 75 (A3): 321– 328.
  • Langrish, T.A.G., Zbicinski, I., 1994. Effects of air inlet geometry and spray cone angle on the wall deposition rate in spray dryers. Chemical Engineering Research and Design 72(A3): 420– 430.
  • Datta, A.K., Teixeira, A.A., 1987. Numerical modelling of natural convection heating in canned liquid foods. Transactions of the ASAE 30(5): 1542– 1551.
  • Akterian, S.G., Fikiin, K.A., 1994. Numerical simulation of unsteady heat conduction in arbitrary shaped canned foods during sterilisation processes. Journal of Food Engineering 21(3): 343–354.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 1999a. Numerical simulation of natural convection heating of canned food by computational fluid dynamics. Journal of Food Engineering 41(1): 55–64.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 1999b. An investigation of deactivation of bacteria in a canned liquid food during sterilisation using computational fluid dynamics (CFD). Journal of Food Engineering 42(4): 207– 214.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 2001. Thermal sterilisation of canned food in a 3-D pouch using computational fluid dynamics. Journal of Food Engineering 48(2): 147– 156.
  • Delaplace, G., Torrez, C., Andre, C., Leuliet, J.C., Fillaudeau, L., 2000. CFD simulation of foodstuff flows in an agitated vessel. In: Proceedings of the 1st International Conference on Simulation in Food and Bio-industries. Society of Computer Simulation International, The Netherlands, 179–186.
  • Sahu, A.K., Kumar, P., Patwardhan, A.W., Joshi, J.B., 1999. CFD modelling and mixing in stirred tanks. Chemical Engineering Science 54: 2285– 2293.
  • Rousseaux, J.M., Vial, C., Muhr, H., Plasari, E., 2001. CFD simulation of precipitation in the sliding- surface mixing device. Chemical Engineering Science 56(4): 1677–1685.
  • Ranade, V.V., Tayalia, Y., 2001. Modelling of fluid dynamics and mixing in shallow bubble column reactors: influence of sparger design. Chemical Engineering Science 56(4): 1667–1675.
  • Hu, Z., Sun, D.-W., 2000. CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process. Journal of Food Engineering 46(3): 189– 197.
  • Hu, Z., Sun, Da-Wen, 2001. Effect of fluctuation in inlet airflow temperature on CFD simulation of air- blast chilling process. Journal of Food Engineering 48(4): 311–316.
  • Mirade, P.S., Daudin, J.D., 1995. Two-dimensional simulation of the airflow in two industrial meat chillers. International Journal of Refrigeration 18(6): 403–412.
  • Moureh, J., Derens, E., 2000. Numerical modelling of the temperature increase in frozen food packaged in pallets in the distribution chain. International Journal of Refrigeration 23(7): 540– 552.
  • Foster, A., James, S.J., 1996. Using CFD in the design of food cooking, cooling and display plant equipment. Paper presented in Second European Symposium on Sous Vide, Belgium.
  • Cortella, G., Manzan, M., Comini, G., 2001. CFD simulation of International Journal of Refrigeration 24(3): 250– 260. display cabinets.
  • Tassou, S.A., Xiang, W., 1998. Modelling the environment within a wet air-cooled vegetable store. Journal of Food Engineering 38: 169–187.

Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları

Year 2016, Volume: 14 Issue: 4, 465 - 471, 01.12.2016

Abstract

Hesaplamalı akışkanlar dinamiği HAD , bilgisayar temelli simülasyonlar sayesinde ısı transferi, akışkan akışı ve kimyasal reaksiyonlar içeren sistemleri analiz eder. HAD kodları lineer olmayan kısmi diferansiyel denklemleri çözen nümerik algoritmalar çerçevesinde geliştirilmiştir. Sayısal ve deneysel olarak bulunan genel büyüklüklerin karşılaştırılması yoluyla HAD çözümlerini doğrulamak için çoğunlukla deneysel veriler kullanılır. Geometri ve meş ağ oluşturma, fiziksel modeli özelleştirme, sınır koşullarını belirleme, nümerik seçeneklerle modelin kesinliğini arttırma aşamalarından sonra çözüme geçilir ve şekil, doğru, vektör çizimi ve/veya animasyonlarla HAD analizi tamamlanmış olur. Günümüzde hem tüketiciler hem de çevre için bilinen yararlarından ötürü HAD uygulamaları, gıda endüstrisinde sistem tasarımında vazgeçilmez hale gelmiştir. Hâlihazırda, gıda maddelerinin ambalajlanması, soğukta depolanması, dondurulması, fırında pişirilmesi, sterilizasyon ve kurutma gibi pek çok proses ile ısı değiştirici, karıştırmalı kazan gibi sistemlerin tasarım ve analizinde hesaplamalı akışkanlar dinamiği teknolojisinden yararlanılmaktadır

References

  • Parviz, M., John, K., 1997. Tackling turbulence with supercomputers. Scientific American 1: 276.
  • Schaldach, G., Berger, L., Razilov, I., Berndt, H., 2000. Computer simulation for fundamental studies and optimisation of ICP spray chambers. ISAS (Institute Spectroscopy) Current Research Reports, Berlin, Germany. and Applied
  • Mills, D., 1998–1999. Development and validation of a preliminary model for optimisation of baking ovens. The Food and Packaging Cooperative Research Centre Annual Report, Australia.
  • Cortella, G., Manzan, M., Comini, G., 1998. Computation of air velocity and temperature distributions in open display cabinets. In: Advanced in the Refrigeration Systems, Food Technologies and Cold Chain. International Institute of Refrigeration, Paris, France, pp. 617–625.
  • Sahu, A.K., Kumar, P., Patwardhan, A.W., Joshi, J.B., 1999. CFD modelling and mixing in stirred tanks. Chemical Engineering Science 54(13–14): 2285–2293.
  • Kieviet, F.G., Van, R.J., De Moor, P.P.E.A., Kerkhof, P.J.A.M., 1997. Measurement and modelling of the air flow pattern in a pilot-plant spray dryer. Chemical Engineering Research and Design 75(A3): 321–328.
  • Kumar, A., 1995. Numerical investigation of secondary flows in helical heat exchangers. Institute of Food Technologists Annual Meeting. Anaheim, CA, USA. pp. 148.
  • Xia, B., Sun, D-W., 2002. Applications of Computational Fluid Dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture 34: 5-24.
  • Bakker, A., Ahmad, H.H., Lanre, M.O., 2001. Realize greater benefits from CFD. Fluid/Solids Handling March, pp. 45–53.
  • Wanot, J., 1996. Computational fluid dynamics methods in ship design. R&D projects, Germany.
  • Süfer, Ö., 2012. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dynamics) Uygulamaları. Yüksek Lisans Semineri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İzmir. Fluid
  • Sun, D.-W., 2007. Computational Fluid Dynamics (CFD) in Food Processing. CRC Press, Taylor & Francis Group, 776p.
  • Foster, A.M., Madge, M., Evans, J.A., 2005. The use of CFD to improve the performance of a chilled multi-deck retail display cabinet. International Journal of Refrigeration 28: 698-705.
  • D’Agaro, P., Cortella, G., Croce, G., 2006. Two- and three dimensional CFD applied to vertical display cabinets simulation. International Journal of Refrigeration 29: 178-190.
  • Norton, T., Sun, D.-W., 2006. Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology 17: 600-620.
  • Fernandes, C.S, Dias, R.P., Nobrega, J.M., Afonso, I.M., Melo, L.F., Maia, J.M., 2006. Thermal behaviour of stirred yoghurt during cooling in plate heat exchangers. Journal of Food Engineering 76: 433-439.
  • Wang, L., Sun, D.-W., 2003. Recent developments in numerical modeling of heating and cooling processes in the food industry—a review. Trends in Food Science and Technology 14: 408–423.
  • Friedrich, R., Huttl, T.J., Manhart, M., Wagner, C., 2001. Direct numerical simulation of incompressible turbulent flows. Computers and Fluids 30: 555-579.
  • Hoang, M.L., Verboven, P., De Baerdemaeker, J., Nicolai, B.M., 2000. Analysis of the air flow in a cold store by means of computational fluid dynamics: Analyse du de´bit d’air dans un entrepoˆ t frigorifique a` l’aide de la dynamique des fluides informatise´e. International Journal of Refrigeration 23: 127–140.
  • Verboven P., Hoang, M.L., Baelmans, M., Nicolai, B.M., 2004. Airflow through beds of apples and chicory roots. Biosystems Engineering 88: 117–125.
  • Liu S., Hrymak, A.N., Wood, P.E., 2006. Laminar mixing of shear thinning fluids in a SMX static mixer. Chemical Engineering Science 61: 1753–1759.
  • Foster, A.M., Barrett, R., James, S.J., Swain, M.J., 2002. Measurement and prediction of air movement through International Journal of Refrigeration 25: 1102– 1109. refrigerated rooms.
  • Aubin, J., Fletcher, D.F., Xuereb, C., 2004. Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science 28: 431–445.
  • Wong S., Zhou, Y.W., Hua, J., 2007. CFD modeling of an industrial continuous bread-baking process involving U-movement. Journal of Food Engineering 78(3): 888–896.
  • Gosman A.G., 1998. Developments in industrial computational fluid dynamics. Transactions of the Institution of Chemical Engineers 76: 153–160.
  • Verboven, P., Datta, A.K., Anh, N.T., Scheerlinck, N., Nicolai, B., 2003. Computation of airflow effects on heat and mass transfer in a microwave oven. Journal of Food Engineering 59: 181–190.
  • Richardson L.F., 1910. arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London, Series A 210: 307–357. approximate
  • Roache P.J., 1998. Verification and Validation in Computational Albuquerque, New Mexico: Hermosa. and Engineering.
  • Sorensen D.N., Nielsen, P.V., 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air 13: 2–17.
  • Slater, J.W., 2006. Examining spatial (grid) convergence. Public tutorial on CFD verification and validation, NASA Glenn Research Centre, MS 86 and 21000 Brookpark Road, Cleveland, Ohio, 44135.
  • Oakley, D.E., 1994. Scale-up of spray dryers with the aid of computational fluid dynamics. Drying Technology 12(1-2): 217–233.
  • Mathioulakis, E., Karathanos, V.T., Belessiotis, V.G., 1998. Simulation of air movement in a dryer by computational fluid dynamics: application for the drying of fruits. Journal of Food Engineering 36(2): 183–200.
  • Mirade, P.S., Daudin, J.D., 2000. A numerical study of the airflow patterns in a sausage dryer. Drying Technology 18(1–2): 81–97.
  • Langrish, T.A.G., Fletcher, D.F., 2001. Spray drying of food ingredients and applications of CFD in spray drying. Chemical Engineering and Processing 40(4): 345–354.
  • Kieviet, F.G., Van, R.J., de Moor, P.P.E.A., Kerkhof, P.J.A.M., 1997. Measurement and modelling of the air flow pattern in a pilot-plant spray dryer. Chemical Engineering Research and Design 75 (A3): 321– 328.
  • Langrish, T.A.G., Zbicinski, I., 1994. Effects of air inlet geometry and spray cone angle on the wall deposition rate in spray dryers. Chemical Engineering Research and Design 72(A3): 420– 430.
  • Datta, A.K., Teixeira, A.A., 1987. Numerical modelling of natural convection heating in canned liquid foods. Transactions of the ASAE 30(5): 1542– 1551.
  • Akterian, S.G., Fikiin, K.A., 1994. Numerical simulation of unsteady heat conduction in arbitrary shaped canned foods during sterilisation processes. Journal of Food Engineering 21(3): 343–354.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 1999a. Numerical simulation of natural convection heating of canned food by computational fluid dynamics. Journal of Food Engineering 41(1): 55–64.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 1999b. An investigation of deactivation of bacteria in a canned liquid food during sterilisation using computational fluid dynamics (CFD). Journal of Food Engineering 42(4): 207– 214.
  • Abdul Ghania, A.G., Farid, M.M., Chen, X.D., Richards, P., 2001. Thermal sterilisation of canned food in a 3-D pouch using computational fluid dynamics. Journal of Food Engineering 48(2): 147– 156.
  • Delaplace, G., Torrez, C., Andre, C., Leuliet, J.C., Fillaudeau, L., 2000. CFD simulation of foodstuff flows in an agitated vessel. In: Proceedings of the 1st International Conference on Simulation in Food and Bio-industries. Society of Computer Simulation International, The Netherlands, 179–186.
  • Sahu, A.K., Kumar, P., Patwardhan, A.W., Joshi, J.B., 1999. CFD modelling and mixing in stirred tanks. Chemical Engineering Science 54: 2285– 2293.
  • Rousseaux, J.M., Vial, C., Muhr, H., Plasari, E., 2001. CFD simulation of precipitation in the sliding- surface mixing device. Chemical Engineering Science 56(4): 1677–1685.
  • Ranade, V.V., Tayalia, Y., 2001. Modelling of fluid dynamics and mixing in shallow bubble column reactors: influence of sparger design. Chemical Engineering Science 56(4): 1667–1675.
  • Hu, Z., Sun, D.-W., 2000. CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process. Journal of Food Engineering 46(3): 189– 197.
  • Hu, Z., Sun, Da-Wen, 2001. Effect of fluctuation in inlet airflow temperature on CFD simulation of air- blast chilling process. Journal of Food Engineering 48(4): 311–316.
  • Mirade, P.S., Daudin, J.D., 1995. Two-dimensional simulation of the airflow in two industrial meat chillers. International Journal of Refrigeration 18(6): 403–412.
  • Moureh, J., Derens, E., 2000. Numerical modelling of the temperature increase in frozen food packaged in pallets in the distribution chain. International Journal of Refrigeration 23(7): 540– 552.
  • Foster, A., James, S.J., 1996. Using CFD in the design of food cooking, cooling and display plant equipment. Paper presented in Second European Symposium on Sous Vide, Belgium.
  • Cortella, G., Manzan, M., Comini, G., 2001. CFD simulation of International Journal of Refrigeration 24(3): 250– 260. display cabinets.
  • Tassou, S.A., Xiang, W., 1998. Modelling the environment within a wet air-cooled vegetable store. Journal of Food Engineering 38: 169–187.
There are 52 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Özge Süfer This is me

Seher Kumcuoğlu This is me

Şebnem Tavman This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 14 Issue: 4

Cite

APA Süfer, Ö., Kumcuoğlu, S., & Tavman, Ş. (2016). Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda, 14(4), 465-471.
AMA Süfer Ö, Kumcuoğlu S, Tavman Ş. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda. December 2016;14(4):465-471.
Chicago Süfer, Özge, Seher Kumcuoğlu, and Şebnem Tavman. “Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları”. Akademik Gıda 14, no. 4 (December 2016): 465-71.
EndNote Süfer Ö, Kumcuoğlu S, Tavman Ş (December 1, 2016) Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda 14 4 465–471.
IEEE Ö. Süfer, S. Kumcuoğlu, and Ş. Tavman, “Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları”, Akademik Gıda, vol. 14, no. 4, pp. 465–471, 2016.
ISNAD Süfer, Özge et al. “Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları”. Akademik Gıda 14/4 (December 2016), 465-471.
JAMA Süfer Ö, Kumcuoğlu S, Tavman Ş. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda. 2016;14:465–471.
MLA Süfer, Özge et al. “Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları”. Akademik Gıda, vol. 14, no. 4, 2016, pp. 465-71.
Vancouver Süfer Ö, Kumcuoğlu S, Tavman Ş. Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda. 2016;14(4):465-71.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).