BibTex RIS Cite

High Value Compounds Obtained from Algae and Their Bioactive/Biological Applications

Year 2016, Volume: 14 Issue: 4, 418 - 423, 01.12.2016

Abstract

Algae, which have great importance for protecting the integrity of the ecosystem, are rich in high value bioactive compounds. Fat and fatty acids, proteins, carbohydrates sugars , pigments, minerals, vitamins, sterols, antioxidants and bioactive polyphenols can be produced from algae that show a fast increase in biomass due to multiplying by dividing.These high value compounds are generally used in food, pharmaceutical and cosmetic industry, and their uses increase day by day because of the industrial scale production of these compounds. In this study, high value compounds produced by algae polyunsaturated fatty acids PUFA , polysaccharides, proteins, pigments, sterols, vitamins and other compounds and their uses are reviewed

References

  • El-Sheekh, M.M., Osman, M.E.H., Dyab, M.A., Amer, M.S., 2006. Production and characterization of antimicrobial active substance from the Cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology 21(1): 42–50.
  • Ward, O.P., Singh A., 2005. Omega-3/6 fatty acids: alternative Biochemistry 40: 3627-3652.
  • Kyle, D., 2001. The large-scale production and use of docosahexaenoic acid. ACS Symposium Series 788: 92–107. highly enriched in
  • Bellou, S., Aggelis, G., 2013. Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology 164(2): 318-329.
  • Makri, A., Bellou, S., Birkou, M., Papatrehas, K., Dolapsakis, N. P., Bokas, D., Papanikolaou, S. Aggelis, G., 2011. Lipid synthesized by micro‐algae grown in laboratory and industrial‐scale bioreactors. Engineering in Life Sciences 11(1): 52-58.
  • Cohen, Z., Heimer, Y.M., 1992. Production of polyunsaturated fatty acids (EPA, ARA and GLA) by the microalgae Porphyridium and Spirulina. In: Kyle DJ, Ratledge C, editors. Industrial applications of single cell oils. USA: AOCS Publishing, CRC Press, 243-73p.
  • Bucher, H.C., Hengstler, P., Schindler, C., Meier, G., 2002. N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of rveomized controlled trials. The American Journal of Medicine 112(4): 298-304.
  • Peet, M., Brind, J., Ramchve, C.N., Shah, S., Vankar, G.K., 2001. Two double-blind placebo- controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia Research 49(3): 243-251.
  • Kelley, D.S., Siegel, D., Fedor, D.M., Adkins, Y., Mackey, B.E., 2009. DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. The Journal of Nutrition 139(3): 495-501.
  • Markworth, J.F., Cameron-Smith, D., 2013. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. American Journal of Physiology-Cell Physiology 304(1): C56-C67.
  • Fan, Y.Y., Chapkin, R.S., 1998. Importance of dietary γ-linolenic acid in human health and nutrition. The Journal of Nutrition 128(9): 1411- 1414.
  • Servel, M.O., Claire, C., Derrien, A., Coiffard, L., De Roeck-Holtzhauer, Y., 1994. Fatty acid composition of some marine microalgae. Phytochemistry 36(3): 691-693.
  • D’Souza, F.M.L., Kelly, G.J., 2000. Effects of a diet of a nitrogen limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tigerprawn Aquaculture 181: 311-29. semisulcatus) larvae.
  • Khalil, Z.I., Asker, M.M.S., El-Sayed, S., KobbiaI, A., 2010. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. Biotechnology 26: 1225–31. of Microbiology
  • John R.P., Anisha, G.S., Nampoothiri, K.M., Pveey, A., 2011. Micro and macro algal biomass: a renewable source for bioethanol. Bioresource Technology 102:186–93.
  • McHugh, D.J., 2003. A guide to the seaweed industry. FAO Fish Technology 441: 1-105.
  • Draget, K.I., Smidsrod, O., Skjak-Braek G., 2005. Alginates from algae. In: Biopolymers Online. Wiley- VCH Verlag GmbH & Co. KGa.
  • Yen, H.W., Chiang, W.C., Sun, C.H., 2012. Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. Journal of the Taiwan Institute of Chemical Engineers 43: 53–57.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Bioengineering 101(2): 87-96. of Bioscience and
  • Ahmad, A., Munir, B., Abrar, M., Bashir, S., Adnan, M., Tabassum, T., 2012. Perspective of β-glucan as functional ingredient for food industry. Journal of Nutrition doi:10.4172/2155-9600.1000133. Sciences 2: 133.
  • Koller, M., Muhr, A., Braunegg, G., 2014. Microalgae as versatile cellular factories for valued products. Algal Research 6: 52-63.
  • Sjors, V.I., Alessvero, F., 2010. Algae based biofuels, Applications and co-products. Environment and natural resources management working paper. Environment Climate Change. Bioenergy Monitoring and Assessment. http://www.fao.org/3/a-i1704e.pdf.
  • Becker, E. W., 2007. Micro-algae as a source of protein. Biotechnology Advances 25: 207-210.
  • Glazer, A.N., 1994. Phycobiliproteins a family of valuable, widely used fluorophores. Journal of Applied Phycology 6: 105-112.
  • Eriksen, N.T., 2008. Production of phycocyanin a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology 80: 1-14. [26] Sekar, S., Chandramohan, Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology 20: 113–136. M. 2008.
  • Yaron, A.S., Arad, M.S., 1993. Phycobiliproteins blue and red natural pigments for use in food and cosmetics. In: Food Flavors, Ingredients and Composition. Developments in Food Science (ed. G. Charalambous), Elsevier, London: 835–838.
  • Scotter, M. J., Castle, L., Roberts, D., 2005. Method development and HPLC analysis of retail foods and beverages for copper chlorophyll (E141 [i]) and chlorophyllin (E141 [ii]) food colouring materials. Food Additives and Contaminants 22(12): 1163- 1175.
  • Borowitzka, M.A., 2013. High-value products from microalgae, commercialisation. Journal of Applied Phycology 25(3): 743-756. development and
  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M. S., 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki 21(6): 1-10.
  • Batista, A.P., Gouveia, L., Bvearra, N.M., Franco, J.M., Raymundo, A., 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Resource 2: 164– 73.
  • Chandini, S.K., Ganesan, P., Bhaskar, N., 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry 107(2): 707- 713.
  • Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., Miyashita, K., 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications 332(2): 392-397.
  • Heo, S.J., Yoon, W.J., Kim K.N., Ahn, G.N., Kang, S.M., Kang, D.H., Affan, A., Oh, C., Jung, W.K., Jeon, Y.J., 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated macrophages. Food and Chemical Toxicology 48(8- 9): 2045-2051. RAW 264.7
  • Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., Wright, A.D., 2012. Antioxidant activity of Hawaiian marine algae. Marine Drugs 10: 403–426.
  • Barbara, D.A., William, W.A., 2002. Antioxidants in photosynthesis and human nutrition. Science 298: 2149–2153.
  • Granado, F., Olmedilla, B., Blanco, I., 2003. Nutritional and clinical relevance of lutein in human health. British Journal of Nutrition 90: 487–502.
  • Del Campo, J.A., Moreno, J., Rodrı́guez, H., Vargas, M.A., Rivas, J., Guerrero, M.G., 2000. Carotenoid content of chlorophycean microalgae: factors Muriellopsis Biotechnology 76(1): 51-59. accumulation in of Journal
  • Goodrow, E.F., Wilson, T.A., Houde, S.C., 2006. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. Journal of Nutrition 136: 2519-24.
  • Hernveez-Ledesma, B., Herrero M., 2014. Bioactive Compounds from Marine Foods: Plant and Animal Sources. 1st ed. John Wiley & Sons Ltd; Chichester, UK pp. 173–187.
  • Becker, W., 2004. Microalgae in human and animal nutrition, p. 312–351. In Richmond, A. (ed.), Handbook of Microalgal Culture. Blackwell, Oxford.
  • Abalde, J., Fabregas, J., Herrero, C., 1991. β-carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresource Technology 38: 121–5.
  • Durmaz, Y., 2007. Vitamin E, (α-tocopherol) production Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272: 717–22.
  • Mendiola, J.A., García-Martínez, D., Rupérez, F.J., Martín-Álvarez, P.J., Reglero, G., Cifuentes, A., 2008. Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids 43: 484-9.
  • Ngo, D.H., Wijesekara, I., Vo, T.S., Van, Q., Ta, S., Kim, K., 2010. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International 44: 523-529.
  • Guedes, A., Amaro, H.M., Malcata, F.X., 2011. Microalgae as sources of high added‐value compounds a brief review of recent work. Biotechnology Progress 27(3): 597-613.
  • Plaza, M., Herrero, M., Cifuentes, A., Ibáñez, E., 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry 57(16): 7159-7170.
  • Jüttner, F., 2001. Liberation of 5, 8, 11, 14, 17- eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. Journal of Phycology 37: 744–755.
  • Benkendorff, K., Davis, A.R., Rogers, C.N., Bremner, J.B., 2005. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology 316: 29– 44.
  • Mendiola, J.A., Torres, C.F., Martin-Alvarez, P.J., Santoyo, S., Tore, A., Arredondo, B.O., Senorans, F.J., Cifuentes, A., Ibanez, E., 2007. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology 224: 505-510.
  • Borowitzka, M.A., 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 65–68.
  • Lee, J.B., Hayashi, K., Hirata, M., Kuroda, E., Suzuki, E., Kubo, Y., Hayashi, T., 2006. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin 29: 2135-2139.
  • Choi, Y.E., Yun, Y.S., Park, J.M., 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Journal of Biotechnology 18: 1170–1175.
  • Azamai, E.S.M., Sulaiman, S., Habib, S.H.M., Looi, M.L., Das, S., Hamid, N.A.A., Ngah, W.Z.W., Yusof, Y.A.M., 2009. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats. Journal of Zhejiang University Science B 10: 14–21.
  • Palozza, P., Torelli, C., Boninsegna, A., Simone, R.
  • Catalano, A., Mele, M.C., Picci, N., 2009. Growth- inhibitory effects of the astaxanthin rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Letters 283: 108-117.

Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları

Year 2016, Volume: 14 Issue: 4, 418 - 423, 01.12.2016

Abstract

Ekosistemin bütünlüğünün korunması açısından büyük önem taşıyan algler, yüksek değerlikli biyoaktif bileşikler açısından da oldukça zengindirler. Bölünerek çoğalmaları nedeniyle çok hızlı biyokütle artışı gösteren alglerden yağ ve yağ asitleri, proteinler, karbonhidratlar şekerler , pigmentler, mineraller, vitaminler, steroller, antioksidanlar ve biyoaktif polifenoller gibi metabolitler üretilebilmektedir. Bu bileşikler yüksek değerlikli olup gıda, eczacılık ve kozmetik sektöründe kullanılmaktadırlar. Bu bileşiklerin endüstriyel boyutlarda üretilmeleri ile kullanım alanları her geçen gün genişlemektedir. Bu derleme çalışmasında, alglerin ürettikleri yüksek değerlikli bileşenler çoklu doymamış yağ asitleri PUFA , polisakkarit, protein, pigment, sterol, vitamin ve diğer bileşikler ve bunların kullanım alanları incelenmiştir

References

  • El-Sheekh, M.M., Osman, M.E.H., Dyab, M.A., Amer, M.S., 2006. Production and characterization of antimicrobial active substance from the Cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology 21(1): 42–50.
  • Ward, O.P., Singh A., 2005. Omega-3/6 fatty acids: alternative Biochemistry 40: 3627-3652.
  • Kyle, D., 2001. The large-scale production and use of docosahexaenoic acid. ACS Symposium Series 788: 92–107. highly enriched in
  • Bellou, S., Aggelis, G., 2013. Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology 164(2): 318-329.
  • Makri, A., Bellou, S., Birkou, M., Papatrehas, K., Dolapsakis, N. P., Bokas, D., Papanikolaou, S. Aggelis, G., 2011. Lipid synthesized by micro‐algae grown in laboratory and industrial‐scale bioreactors. Engineering in Life Sciences 11(1): 52-58.
  • Cohen, Z., Heimer, Y.M., 1992. Production of polyunsaturated fatty acids (EPA, ARA and GLA) by the microalgae Porphyridium and Spirulina. In: Kyle DJ, Ratledge C, editors. Industrial applications of single cell oils. USA: AOCS Publishing, CRC Press, 243-73p.
  • Bucher, H.C., Hengstler, P., Schindler, C., Meier, G., 2002. N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of rveomized controlled trials. The American Journal of Medicine 112(4): 298-304.
  • Peet, M., Brind, J., Ramchve, C.N., Shah, S., Vankar, G.K., 2001. Two double-blind placebo- controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia Research 49(3): 243-251.
  • Kelley, D.S., Siegel, D., Fedor, D.M., Adkins, Y., Mackey, B.E., 2009. DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. The Journal of Nutrition 139(3): 495-501.
  • Markworth, J.F., Cameron-Smith, D., 2013. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. American Journal of Physiology-Cell Physiology 304(1): C56-C67.
  • Fan, Y.Y., Chapkin, R.S., 1998. Importance of dietary γ-linolenic acid in human health and nutrition. The Journal of Nutrition 128(9): 1411- 1414.
  • Servel, M.O., Claire, C., Derrien, A., Coiffard, L., De Roeck-Holtzhauer, Y., 1994. Fatty acid composition of some marine microalgae. Phytochemistry 36(3): 691-693.
  • D’Souza, F.M.L., Kelly, G.J., 2000. Effects of a diet of a nitrogen limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tigerprawn Aquaculture 181: 311-29. semisulcatus) larvae.
  • Khalil, Z.I., Asker, M.M.S., El-Sayed, S., KobbiaI, A., 2010. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. Biotechnology 26: 1225–31. of Microbiology
  • John R.P., Anisha, G.S., Nampoothiri, K.M., Pveey, A., 2011. Micro and macro algal biomass: a renewable source for bioethanol. Bioresource Technology 102:186–93.
  • McHugh, D.J., 2003. A guide to the seaweed industry. FAO Fish Technology 441: 1-105.
  • Draget, K.I., Smidsrod, O., Skjak-Braek G., 2005. Alginates from algae. In: Biopolymers Online. Wiley- VCH Verlag GmbH & Co. KGa.
  • Yen, H.W., Chiang, W.C., Sun, C.H., 2012. Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. Journal of the Taiwan Institute of Chemical Engineers 43: 53–57.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Bioengineering 101(2): 87-96. of Bioscience and
  • Ahmad, A., Munir, B., Abrar, M., Bashir, S., Adnan, M., Tabassum, T., 2012. Perspective of β-glucan as functional ingredient for food industry. Journal of Nutrition doi:10.4172/2155-9600.1000133. Sciences 2: 133.
  • Koller, M., Muhr, A., Braunegg, G., 2014. Microalgae as versatile cellular factories for valued products. Algal Research 6: 52-63.
  • Sjors, V.I., Alessvero, F., 2010. Algae based biofuels, Applications and co-products. Environment and natural resources management working paper. Environment Climate Change. Bioenergy Monitoring and Assessment. http://www.fao.org/3/a-i1704e.pdf.
  • Becker, E. W., 2007. Micro-algae as a source of protein. Biotechnology Advances 25: 207-210.
  • Glazer, A.N., 1994. Phycobiliproteins a family of valuable, widely used fluorophores. Journal of Applied Phycology 6: 105-112.
  • Eriksen, N.T., 2008. Production of phycocyanin a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology 80: 1-14. [26] Sekar, S., Chandramohan, Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology 20: 113–136. M. 2008.
  • Yaron, A.S., Arad, M.S., 1993. Phycobiliproteins blue and red natural pigments for use in food and cosmetics. In: Food Flavors, Ingredients and Composition. Developments in Food Science (ed. G. Charalambous), Elsevier, London: 835–838.
  • Scotter, M. J., Castle, L., Roberts, D., 2005. Method development and HPLC analysis of retail foods and beverages for copper chlorophyll (E141 [i]) and chlorophyllin (E141 [ii]) food colouring materials. Food Additives and Contaminants 22(12): 1163- 1175.
  • Borowitzka, M.A., 2013. High-value products from microalgae, commercialisation. Journal of Applied Phycology 25(3): 743-756. development and
  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M. S., 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki 21(6): 1-10.
  • Batista, A.P., Gouveia, L., Bvearra, N.M., Franco, J.M., Raymundo, A., 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Resource 2: 164– 73.
  • Chandini, S.K., Ganesan, P., Bhaskar, N., 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry 107(2): 707- 713.
  • Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., Miyashita, K., 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications 332(2): 392-397.
  • Heo, S.J., Yoon, W.J., Kim K.N., Ahn, G.N., Kang, S.M., Kang, D.H., Affan, A., Oh, C., Jung, W.K., Jeon, Y.J., 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated macrophages. Food and Chemical Toxicology 48(8- 9): 2045-2051. RAW 264.7
  • Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., Wright, A.D., 2012. Antioxidant activity of Hawaiian marine algae. Marine Drugs 10: 403–426.
  • Barbara, D.A., William, W.A., 2002. Antioxidants in photosynthesis and human nutrition. Science 298: 2149–2153.
  • Granado, F., Olmedilla, B., Blanco, I., 2003. Nutritional and clinical relevance of lutein in human health. British Journal of Nutrition 90: 487–502.
  • Del Campo, J.A., Moreno, J., Rodrı́guez, H., Vargas, M.A., Rivas, J., Guerrero, M.G., 2000. Carotenoid content of chlorophycean microalgae: factors Muriellopsis Biotechnology 76(1): 51-59. accumulation in of Journal
  • Goodrow, E.F., Wilson, T.A., Houde, S.C., 2006. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. Journal of Nutrition 136: 2519-24.
  • Hernveez-Ledesma, B., Herrero M., 2014. Bioactive Compounds from Marine Foods: Plant and Animal Sources. 1st ed. John Wiley & Sons Ltd; Chichester, UK pp. 173–187.
  • Becker, W., 2004. Microalgae in human and animal nutrition, p. 312–351. In Richmond, A. (ed.), Handbook of Microalgal Culture. Blackwell, Oxford.
  • Abalde, J., Fabregas, J., Herrero, C., 1991. β-carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresource Technology 38: 121–5.
  • Durmaz, Y., 2007. Vitamin E, (α-tocopherol) production Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272: 717–22.
  • Mendiola, J.A., García-Martínez, D., Rupérez, F.J., Martín-Álvarez, P.J., Reglero, G., Cifuentes, A., 2008. Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids 43: 484-9.
  • Ngo, D.H., Wijesekara, I., Vo, T.S., Van, Q., Ta, S., Kim, K., 2010. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International 44: 523-529.
  • Guedes, A., Amaro, H.M., Malcata, F.X., 2011. Microalgae as sources of high added‐value compounds a brief review of recent work. Biotechnology Progress 27(3): 597-613.
  • Plaza, M., Herrero, M., Cifuentes, A., Ibáñez, E., 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry 57(16): 7159-7170.
  • Jüttner, F., 2001. Liberation of 5, 8, 11, 14, 17- eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. Journal of Phycology 37: 744–755.
  • Benkendorff, K., Davis, A.R., Rogers, C.N., Bremner, J.B., 2005. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology 316: 29– 44.
  • Mendiola, J.A., Torres, C.F., Martin-Alvarez, P.J., Santoyo, S., Tore, A., Arredondo, B.O., Senorans, F.J., Cifuentes, A., Ibanez, E., 2007. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology 224: 505-510.
  • Borowitzka, M.A., 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 65–68.
  • Lee, J.B., Hayashi, K., Hirata, M., Kuroda, E., Suzuki, E., Kubo, Y., Hayashi, T., 2006. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin 29: 2135-2139.
  • Choi, Y.E., Yun, Y.S., Park, J.M., 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Journal of Biotechnology 18: 1170–1175.
  • Azamai, E.S.M., Sulaiman, S., Habib, S.H.M., Looi, M.L., Das, S., Hamid, N.A.A., Ngah, W.Z.W., Yusof, Y.A.M., 2009. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats. Journal of Zhejiang University Science B 10: 14–21.
  • Palozza, P., Torelli, C., Boninsegna, A., Simone, R.
  • Catalano, A., Mele, M.C., Picci, N., 2009. Growth- inhibitory effects of the astaxanthin rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Letters 283: 108-117.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Saniye Akyıl This is me

Işıl İlter This is me

Mehmet Koç This is me

Figen Kaymak-ertekin This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 14 Issue: 4

Cite

APA Akyıl, S., İlter, I., Koç, M., Kaymak-ertekin, F. (2016). Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda, 14(4), 418-423.
AMA Akyıl S, İlter I, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda. December 2016;14(4):418-423.
Chicago Akyıl, Saniye, Işıl İlter, Mehmet Koç, and Figen Kaymak-ertekin. “Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları”. Akademik Gıda 14, no. 4 (December 2016): 418-23.
EndNote Akyıl S, İlter I, Koç M, Kaymak-ertekin F (December 1, 2016) Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda 14 4 418–423.
IEEE S. Akyıl, I. İlter, M. Koç, and F. Kaymak-ertekin, “Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları”, Akademik Gıda, vol. 14, no. 4, pp. 418–423, 2016.
ISNAD Akyıl, Saniye et al. “Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları”. Akademik Gıda 14/4 (December 2016), 418-423.
JAMA Akyıl S, İlter I, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda. 2016;14:418–423.
MLA Akyıl, Saniye et al. “Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları”. Akademik Gıda, vol. 14, no. 4, 2016, pp. 418-23.
Vancouver Akyıl S, İlter I, Koç M, Kaymak-ertekin F. Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda. 2016;14(4):418-23.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).