BibTex RIS Cite

Functional Properties of Plant Protein Isolates

Year 2016, Volume: 14 Issue: 4, 424 - 430, 01.12.2016

Abstract

In recent years, plant proteins have gained a great importance because of changes in consumer preferences, religious, cultural and individual choices, reduced confidence to animal-derived products and cost-efficient and sustainable production potential. Currently, it has begun to get benefit of plant proteins in food formulations and processing, and scientific studies on plant proteins have increased considerably in recent years. According to the literature, some of the functional properties of plant proteins are comparable to those of commercially available whey protein isolate and/or soy protein isolate. There is a wide plant source diversity in the production of plant protein isolates. The plant source may be various based on the desired functional property. In this study, functional properties of protein isolates from some sources of cereals, leguminous and oil seeds are reviewed. Factors influencing functional properties and methods to develop these properties are presented. Functional properties include solubility, emulsification, foaming and gelling properties

References

  • Boye, J., Zare, F., Pletch, A., 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43(2): 414-431.
  • Kinsella, J., 1982. Relationship between structure and functional properties of food proteins. Food proteins 1: 51-103.
  • Tulbek, M.C., Lam, R.S.H., Wang, Y., Asavajaru, P., Lam, A., 2017. Chapter 9 - Pea: A Sustainable Vegetable Protein Crop A2 - Nadathur, Sudarshan R, In Sustainable Protein Sources, Edited by J.P.D. Wanasundara, L. Scanlin, Academic Press, San Diego, 145p.
  • Hoogenkamp, H., Kumagai, H., Wanasundara, J.P.D., 2017. Rice Protein and Rice Protein Products, In Sustainable Protein Sources, Edited by H. Hoogenkamp, H. Kumagai, J.P.D. Wanasundara, Academic Press, San Diego, 47p.
  • Agyare, K.K., Xiong, Y.L., Addo, K., 2008. Influence of salt and pH on the solubility and structural characteristics of transglutaminase- treated wheat gluten hydrolysate. Food Chemistry 107(3): 1131-1137.
  • Shih, F.F., Daigle, K.W., 2000. Preparation and characterization of rice protein isolates. Journal of the American Oil Chemists' Society 77(8): 885- 889.
  • Scilingo, A.A., Ortiz, S.E.M., Martı́nez, E.N., Añón, M.A.C., 2002. Amaranth protein isolates modified by hydrolytic and thermal treatments. Relationship between structure and solubility. Food Research International 35(9): 855-862.
  • Yin, S.W., Tang, C.H., Cao, J.S., Hu, E.K., Wen, Q.B., Yang, X.Q., 2008. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food Chemistry 106(3): 1004-1013.
  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Millán, F., 2000. Partially hydrolyzed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists' Society 77(4): 447-450.
  • Wang, M., Hettiarachchy, N.S., Qi, M., Burks, W., Siebenmorgen, T., 1999. Preparation and functional properties of rice bran protein isolate. Journal of Agricultural and Food Chemistry 47(2): 411-416.
  • Joshi, M., Adhikari, B., Aldred, P., Panozzo, J.F., Kasapis, S., Barrow, C.J., 2012. Interfacial and emulsifying properties of lentil protein isolate. Food Chemistry 134(3): 1343-1353.
  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., Millan, F., 1999. Production and characterization of an extensive rapeseed protein hydrolysate. Journal of the American Oil Chemists' Society 76(7): 819-823.
  • Abugoch, L.E., Romero, N., Tapia, C.A., Silva, J., Rivera, M., 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa willd) protein isolates. Journal of Agricultural and Food Chemistry 56(12): 4745-4750.
  • Wanasundara, J.P., McIntosh, T.C., Perera, S.P., Withana-Gamage, Canola/rapeseed protein-functionality and nutrition. OCL 23(4): D407. Mitra, P., 2016.
  • Paredes-Lopez, O., Ordorica-Falomir, C., Olivares- Vazquez, M.R., 1991. Chickpea protein isolates: Physicochemical, characterization. Journal of Food Science 56(3): 726-729. and nutritional
  • Karaca, A.C., Nickerson, M.T., Low, N.H., 2011. Lentil and Chickpea Protein-Stabilized Emulsions: Optimization of Emulsion Formulation. Journal of Agricultural and Food Chemistry 59(24): 13203- 13211.
  • Wang, T., Zhang, H., Wang, L., Wang, R., Chen, Z., 2015. Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chemistry 178: 82- 88.
  • Braudo, E., Plashchina, I., Schwenke, K., 2001. Plant protein interactions with polysaccharides and their influence on legume protein functionality A Review. Food/Nahrung 45(6): 382-384.
  • Suliman, M.A., El Tinay, A.H., Elkhalifa, A.E.O., Babiker, E.E., Elkhalil, E.A.I., 2006. Solubility as influenced by pH and NaCl concentaration and functional properties of lentil proteins isolate. Pakistan Journal of Nutrition 5(6): 589-593.
  • Fabian, C., Ju, Y.H., 2011. A review on rice bran protein: Its properties and extraction methods. Critical Reviews in Food Science and Nutrition 51(9): 816-827.
  • Aydemir, L.Y., Yemenicioĝlu, A., 2013. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology 50(2): 686-694.
  • Bildstein, M., Lohmann, M., Hennigs, C., Krause, A., Hilz, H., 2008. An enzyme-based extraction process for the purification and enrichment of vegetable proteins to be applied in bakery products. Technology 228(2): 177-186. Food Research and
  • Wu, Y.V., Sexson, K.R., Cluskey, J.E., Inglett, G.E., 1977. Protein isolate from high-protein oats: Preparation, composition and properties. Journal of Food Science 42(5): 1383-1386.
  • Mohamed, A., Biresaw, G., Xu, J., Hojilla- Evangelista, M.P., Rayas-Duarte, P., 2009. Oats protein isolate: Thermal, rheological, surface and functional properties. Food Research International 42(1): 107-114.
  • Heywood, A., Myers, D., Bailey, T., Johnson, L., 2002. Functional properties of low-fat soy flour produced by an extrusion-expelling system. Journal of the American Oil Chemists Society 79(12): 1249- 1253.
  • Papalamprou, E., Doxastakis, G., Kiosseoglou, V., 2006. Model salad dressing emulsion stability as affected by the type of the lupin seed protein isolate. Journal of the Science of Food and Agriculture 86(12): 1932-1937.
  • Cheung, L., Wanasundara, J., Nickerson, M.T., 2015. Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics 10(1): 30-38.
  • Linarès, E., Larré, C., Lemeste, M., Popineau, Y., 2000. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: role of soluble and insoluble fractions. Cereal Chemistry Journal 77(4): 414-420.
  • Aluko, R.E., Monu, E., 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science 68(4): 1254-1258.
  • Rodríguez Patino, J.M., Rodríguez Niño, M.R., Carrera Sánchez, C., 2007. Physico-chemical properties of surfactant and protein films. Current Opinion in Colloid and Interface Science 12(4-5): 187-195.
  • Periago, M.J., Vidal, M.L., Ros, G., Rincón, F., Martínez, C., López, G., Rodrigo, J., Martínez, I., 1998. Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chemistry 63(1): 71-78.
  • Yin, S.W., Tang, C.H., Wen, Q.B., Yang, X.Q., 2009. Functional and structural properties and in vitro digestibility of acylated hemp (Cannabis sativa L.) protein isolates. International Journal of Food Science & Technology 44(12): 2653-2661.
  • Ma, C.Y., Harwalkar, V.R., Paquet, A., 1990. Physicochemical properties of alkali-treated oat globulin. Journal of Agricultural and Food Chemistry 38(8): 1707-1711.
  • Makri, E., Papalamprou, E., Doxastakis, G., 2005. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids 19(3): 583- 594.
  • Drakos, A., Doxastakis, G., Kiosseoglou, V., 2007. Functional effects of lupin proteins in comminuted meat and emulsion gels. Food Chemistry 100(2): 650-655.
  • Uruakpa, F.O., Arntfield, S.D., 2006. Surface hydrophobicity of commercial canola proteins mixed with kappa-carrageenan or guar gum. Food Chemistry 95(2): 255-263.
  • Krause, J.P., 2002. Comparison of the effect of acylation and phosphorylation on surface pressure, surface potential and foaming properties of protein isolates from rapeseed (Brassica napus). Industrial Crops and Products 15(3): 221-228.
  • Wanasundara, J.P., McIntosh, T.C., 2013. Process of aqueous protein extraction from Brassicaceae oilseeds. US Patent US8557963 B2.
  • Drago, S.R., González, R.J., 2000. Foaming properties of enzymatically hydrolysed wheat gluten. Innovative Food Science & Emerging Technologies 1(4): 269-273.
  • Sun, X.D., Arntfield, S.D., 2011. Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry 124(3): 1011-1016.
  • Berghout, J.A.M., Boom, R.M., van der Goot, A.J., 2015. Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocolloids 43: 465-472.
  • Avanza, M.V., Puppo, M.C., Anon, M.C., 2005. Structural characterization of amaranth protein gels. Journal of Food Science 70(3): 223-229.
  • Rubino, M.I., Arntfield, S.D., Nadon, C.A., Bernatsky, A., 1996. Phenolic protein interactions in relation to the gelation properties of canola protein. Food Research International 29(7): 653- 659.
  • Schwenke, K.D., Dahme, A., Wolter, T.H., 1998. Heat-induced Gelation of Rapeseed Proteins: Implication of Electrostatic Effects, In Plant Proteins from European Crops: Food and Non- Food Applications, Edited by J. Guéguen, Y. Popineau, Springer Berlin Heidelberg, Berlin, Heidelberg, 126p.
  • Ma, C.Y., Rout, M.K., Phillips, D.L., 2003. Study of thermal aggregation and gelation of oat globulin by raman spectroscopy. Spectroscopy 17(2-3): 417- 428.
  • He, R., He, H.Y., Chao, D., Ju, X., Aluko, R., 2014. Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology 7(5): 1344-1353.
  • Pinterits, A., Arntfield, S.D., 2008. Improvement of canola protein gelation properties through enzymatic modification with transglutaminase. LWT - Food Science and Technology 41(1): 128-138.
  • Carrazco-Peña, L., Osuna-Castro, J.A., De León- Rodríguez, A., Maruyama, N., Toro-Vazquez, J.F., Morales-Rueda, J.A., Barba De La Rosa, A.P., 2013. Modification of solubility and heat-induced gelation of Amaranth 11S Globulin by protein engineering. Journal of Agricultural and Food Chemistry 61(14): 3509-3516.

Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri

Year 2016, Volume: 14 Issue: 4, 424 - 430, 01.12.2016

Abstract

Son yıllarda değişen tüketici tercihleri, dini, kültürel veya vejeteryanlık/veganlık gibi kişisel seçimler, hayvansal kaynaklı ürünlere olan güvenin azalması ve de daha düşük maliyetli, sürdürülebilir üretiminin olmasından dolayı bitkisel proteinler büyük önem kazanmıştır. Hâlihazırda, gıda formülasyonlarında ve işlenmesinde bazı bitkisel proteinlerin fonksiyonel özelliklerinden faydalanılmaya başlanmış ve son yıllarda bitkisel proteinler üzerinde yapılan bilimsel çalışmalar artmıştır. Literatüre göre bitkisel proteinler, bazı fonksiyonel özellikler açısından ticari olarak sıklıkla kullanılan peynir altı suyu izolatı ve/veya soya proteini izolatına güçlü bir alternatif oluşturmaktadır. Bitkisel protein izolatları üretiminde oldukça geniş bir yelpazede kaynak çeşitliliği mevcuttur. Üründe istenen bir fonksiyonel özelliği sağlamak için kullanılacak bitkisel kaynak ve bununla beraber uygulanacak ekstraksiyon yöntemi veya diğer işlemler farklılık gösterebilir. Bu açıdan bitkisel proteinlerin fonksiyonel özelliklerinin incelendiği çalışma bulgularının bir araya getirilmesi ve beraber incelenmesi önem arz etmektedir. Bu çalışmada tahıl, baklagil ve yağlı tohum ürün gruplarına ait çeşitli kaynaklardan elde edilen protein izolatlarının bazı fonksiyonel özellikleri incelenmiş; etkili faktörler ve bu özellikleri geliştirmek için kullanılan yöntemler üzerinde durulmuştur. İncelenen fonksiyonel özellikler çözünürlük, emülsifikasyon, köpük bağlama ve jelleşme özellikleridir

References

  • Boye, J., Zare, F., Pletch, A., 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43(2): 414-431.
  • Kinsella, J., 1982. Relationship between structure and functional properties of food proteins. Food proteins 1: 51-103.
  • Tulbek, M.C., Lam, R.S.H., Wang, Y., Asavajaru, P., Lam, A., 2017. Chapter 9 - Pea: A Sustainable Vegetable Protein Crop A2 - Nadathur, Sudarshan R, In Sustainable Protein Sources, Edited by J.P.D. Wanasundara, L. Scanlin, Academic Press, San Diego, 145p.
  • Hoogenkamp, H., Kumagai, H., Wanasundara, J.P.D., 2017. Rice Protein and Rice Protein Products, In Sustainable Protein Sources, Edited by H. Hoogenkamp, H. Kumagai, J.P.D. Wanasundara, Academic Press, San Diego, 47p.
  • Agyare, K.K., Xiong, Y.L., Addo, K., 2008. Influence of salt and pH on the solubility and structural characteristics of transglutaminase- treated wheat gluten hydrolysate. Food Chemistry 107(3): 1131-1137.
  • Shih, F.F., Daigle, K.W., 2000. Preparation and characterization of rice protein isolates. Journal of the American Oil Chemists' Society 77(8): 885- 889.
  • Scilingo, A.A., Ortiz, S.E.M., Martı́nez, E.N., Añón, M.A.C., 2002. Amaranth protein isolates modified by hydrolytic and thermal treatments. Relationship between structure and solubility. Food Research International 35(9): 855-862.
  • Yin, S.W., Tang, C.H., Cao, J.S., Hu, E.K., Wen, Q.B., Yang, X.Q., 2008. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food Chemistry 106(3): 1004-1013.
  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Millán, F., 2000. Partially hydrolyzed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists' Society 77(4): 447-450.
  • Wang, M., Hettiarachchy, N.S., Qi, M., Burks, W., Siebenmorgen, T., 1999. Preparation and functional properties of rice bran protein isolate. Journal of Agricultural and Food Chemistry 47(2): 411-416.
  • Joshi, M., Adhikari, B., Aldred, P., Panozzo, J.F., Kasapis, S., Barrow, C.J., 2012. Interfacial and emulsifying properties of lentil protein isolate. Food Chemistry 134(3): 1343-1353.
  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., Millan, F., 1999. Production and characterization of an extensive rapeseed protein hydrolysate. Journal of the American Oil Chemists' Society 76(7): 819-823.
  • Abugoch, L.E., Romero, N., Tapia, C.A., Silva, J., Rivera, M., 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa willd) protein isolates. Journal of Agricultural and Food Chemistry 56(12): 4745-4750.
  • Wanasundara, J.P., McIntosh, T.C., Perera, S.P., Withana-Gamage, Canola/rapeseed protein-functionality and nutrition. OCL 23(4): D407. Mitra, P., 2016.
  • Paredes-Lopez, O., Ordorica-Falomir, C., Olivares- Vazquez, M.R., 1991. Chickpea protein isolates: Physicochemical, characterization. Journal of Food Science 56(3): 726-729. and nutritional
  • Karaca, A.C., Nickerson, M.T., Low, N.H., 2011. Lentil and Chickpea Protein-Stabilized Emulsions: Optimization of Emulsion Formulation. Journal of Agricultural and Food Chemistry 59(24): 13203- 13211.
  • Wang, T., Zhang, H., Wang, L., Wang, R., Chen, Z., 2015. Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chemistry 178: 82- 88.
  • Braudo, E., Plashchina, I., Schwenke, K., 2001. Plant protein interactions with polysaccharides and their influence on legume protein functionality A Review. Food/Nahrung 45(6): 382-384.
  • Suliman, M.A., El Tinay, A.H., Elkhalifa, A.E.O., Babiker, E.E., Elkhalil, E.A.I., 2006. Solubility as influenced by pH and NaCl concentaration and functional properties of lentil proteins isolate. Pakistan Journal of Nutrition 5(6): 589-593.
  • Fabian, C., Ju, Y.H., 2011. A review on rice bran protein: Its properties and extraction methods. Critical Reviews in Food Science and Nutrition 51(9): 816-827.
  • Aydemir, L.Y., Yemenicioĝlu, A., 2013. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology 50(2): 686-694.
  • Bildstein, M., Lohmann, M., Hennigs, C., Krause, A., Hilz, H., 2008. An enzyme-based extraction process for the purification and enrichment of vegetable proteins to be applied in bakery products. Technology 228(2): 177-186. Food Research and
  • Wu, Y.V., Sexson, K.R., Cluskey, J.E., Inglett, G.E., 1977. Protein isolate from high-protein oats: Preparation, composition and properties. Journal of Food Science 42(5): 1383-1386.
  • Mohamed, A., Biresaw, G., Xu, J., Hojilla- Evangelista, M.P., Rayas-Duarte, P., 2009. Oats protein isolate: Thermal, rheological, surface and functional properties. Food Research International 42(1): 107-114.
  • Heywood, A., Myers, D., Bailey, T., Johnson, L., 2002. Functional properties of low-fat soy flour produced by an extrusion-expelling system. Journal of the American Oil Chemists Society 79(12): 1249- 1253.
  • Papalamprou, E., Doxastakis, G., Kiosseoglou, V., 2006. Model salad dressing emulsion stability as affected by the type of the lupin seed protein isolate. Journal of the Science of Food and Agriculture 86(12): 1932-1937.
  • Cheung, L., Wanasundara, J., Nickerson, M.T., 2015. Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics 10(1): 30-38.
  • Linarès, E., Larré, C., Lemeste, M., Popineau, Y., 2000. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: role of soluble and insoluble fractions. Cereal Chemistry Journal 77(4): 414-420.
  • Aluko, R.E., Monu, E., 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science 68(4): 1254-1258.
  • Rodríguez Patino, J.M., Rodríguez Niño, M.R., Carrera Sánchez, C., 2007. Physico-chemical properties of surfactant and protein films. Current Opinion in Colloid and Interface Science 12(4-5): 187-195.
  • Periago, M.J., Vidal, M.L., Ros, G., Rincón, F., Martínez, C., López, G., Rodrigo, J., Martínez, I., 1998. Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chemistry 63(1): 71-78.
  • Yin, S.W., Tang, C.H., Wen, Q.B., Yang, X.Q., 2009. Functional and structural properties and in vitro digestibility of acylated hemp (Cannabis sativa L.) protein isolates. International Journal of Food Science & Technology 44(12): 2653-2661.
  • Ma, C.Y., Harwalkar, V.R., Paquet, A., 1990. Physicochemical properties of alkali-treated oat globulin. Journal of Agricultural and Food Chemistry 38(8): 1707-1711.
  • Makri, E., Papalamprou, E., Doxastakis, G., 2005. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids 19(3): 583- 594.
  • Drakos, A., Doxastakis, G., Kiosseoglou, V., 2007. Functional effects of lupin proteins in comminuted meat and emulsion gels. Food Chemistry 100(2): 650-655.
  • Uruakpa, F.O., Arntfield, S.D., 2006. Surface hydrophobicity of commercial canola proteins mixed with kappa-carrageenan or guar gum. Food Chemistry 95(2): 255-263.
  • Krause, J.P., 2002. Comparison of the effect of acylation and phosphorylation on surface pressure, surface potential and foaming properties of protein isolates from rapeseed (Brassica napus). Industrial Crops and Products 15(3): 221-228.
  • Wanasundara, J.P., McIntosh, T.C., 2013. Process of aqueous protein extraction from Brassicaceae oilseeds. US Patent US8557963 B2.
  • Drago, S.R., González, R.J., 2000. Foaming properties of enzymatically hydrolysed wheat gluten. Innovative Food Science & Emerging Technologies 1(4): 269-273.
  • Sun, X.D., Arntfield, S.D., 2011. Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry 124(3): 1011-1016.
  • Berghout, J.A.M., Boom, R.M., van der Goot, A.J., 2015. Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocolloids 43: 465-472.
  • Avanza, M.V., Puppo, M.C., Anon, M.C., 2005. Structural characterization of amaranth protein gels. Journal of Food Science 70(3): 223-229.
  • Rubino, M.I., Arntfield, S.D., Nadon, C.A., Bernatsky, A., 1996. Phenolic protein interactions in relation to the gelation properties of canola protein. Food Research International 29(7): 653- 659.
  • Schwenke, K.D., Dahme, A., Wolter, T.H., 1998. Heat-induced Gelation of Rapeseed Proteins: Implication of Electrostatic Effects, In Plant Proteins from European Crops: Food and Non- Food Applications, Edited by J. Guéguen, Y. Popineau, Springer Berlin Heidelberg, Berlin, Heidelberg, 126p.
  • Ma, C.Y., Rout, M.K., Phillips, D.L., 2003. Study of thermal aggregation and gelation of oat globulin by raman spectroscopy. Spectroscopy 17(2-3): 417- 428.
  • He, R., He, H.Y., Chao, D., Ju, X., Aluko, R., 2014. Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology 7(5): 1344-1353.
  • Pinterits, A., Arntfield, S.D., 2008. Improvement of canola protein gelation properties through enzymatic modification with transglutaminase. LWT - Food Science and Technology 41(1): 128-138.
  • Carrazco-Peña, L., Osuna-Castro, J.A., De León- Rodríguez, A., Maruyama, N., Toro-Vazquez, J.F., Morales-Rueda, J.A., Barba De La Rosa, A.P., 2013. Modification of solubility and heat-induced gelation of Amaranth 11S Globulin by protein engineering. Journal of Agricultural and Food Chemistry 61(14): 3509-3516.
There are 48 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Merve Yavuz This is me

Beraat Özçelik This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 14 Issue: 4

Cite

APA Yavuz, M., & Özçelik, B. (2016). Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri. Akademik Gıda, 14(4), 424-430.
AMA Yavuz M, Özçelik B. Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri. Akademik Gıda. December 2016;14(4):424-430.
Chicago Yavuz, Merve, and Beraat Özçelik. “Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri”. Akademik Gıda 14, no. 4 (December 2016): 424-30.
EndNote Yavuz M, Özçelik B (December 1, 2016) Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri. Akademik Gıda 14 4 424–430.
IEEE M. Yavuz and B. Özçelik, “Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri”, Akademik Gıda, vol. 14, no. 4, pp. 424–430, 2016.
ISNAD Yavuz, Merve - Özçelik, Beraat. “Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri”. Akademik Gıda 14/4 (December 2016), 424-430.
JAMA Yavuz M, Özçelik B. Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri. Akademik Gıda. 2016;14:424–430.
MLA Yavuz, Merve and Beraat Özçelik. “Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri”. Akademik Gıda, vol. 14, no. 4, 2016, pp. 424-30.
Vancouver Yavuz M, Özçelik B. Bitkisel Protein İzolatlarının Fonksiyonel Özellikleri. Akademik Gıda. 2016;14(4):424-30.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).