BibTex RIS Cite

Microbial Xylanases and Their Applications in Food Industry

Year 2015, Volume: 13 Issue: 4, 317 - 326, 01.12.2015

Abstract

Xylanases are the enzymes that are responsible for the hydrolysis of xylans existing in the plant cell wall. These enzymes, which are having widespread applications, are also very important for food and feed industries. Industrial production of xylanase is carried out by the microbial bioprocesses. The biosynthesis level and the biochemical and technological properties of these enzymes are influenced by the microbial strain chosen and the features of the bioprocess. In recent years, several studies have been conducted on the production, purification and characterization of these enzymes. However, today there is still a need for novel and versatile enzymes for the development of sustainable, environmentally friendly and economically feasible processes. This review emphasizes on the bioprocess routes to obtain high enzyme titer, the purification and characterization of xylanases and the industrial applications of xylanases with the focus on food industry

References

  • Claassen, P.A.M., van Lier, J.B., Lopez-Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., de Vries, S.S., Weusthuis, R.A., 1999. Utilization of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology 52: 741-755.
  • Paës, G., Berrin, J.G., Beaugrand, J., 2012. GH11 xylanases: relationships and applications. Biotechnology Advances 30: 564-592.
  • Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56: 326-338.
  • Ruanglek, V., Sriprang, R., Ratanaphan, N., Tirawongsaroj, P., Chantasigh, D., Tanapongpipat, S., Pootanakit, K., Eurwilaichitr, L., 2007. Cloning, expression, characterization, and high cell-density production of recombinant endo-1, 4-β-xylanase from Aspergillus niger in Pichia pastoris. Enzyme and Microbial Technology, 41: 19-25.
  • Bajpai, P,. 2014. Xylanolytic enzymes, New York, Academic Press.
  • Puls, J., Schuseil, J., 1993. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzyme required for hydrolysis: Hemicellulose and Hemicellulases, Edited by M.P. Coughlan, G.P. Hazlewood, London, Oortland Press.
  • Collins, T., Gerday, C., Feller, G., 2005. Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiology Reviews 29: 3-23.
  • Wong, K.K.Y., Tan, L.U.L., Saddler, J.N., 1988. Multiplicity microorganisms: Microbiological Reviews 52: 305-317. and functions applications.
  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., Derewenda, Z.S., 1994. Crystal structure, at 2.6-A˚ resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. Journal of Biological Chemistry 269: 20811-20814.
  • Flint, H.J., Martin, J., McPherson, C.A., Daniel, A.S., Zhang, J.X., 1993. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. Journal of Bacteriology 175: 2943-2951.
  • Whistler, R.L., Masak, E., 1955. Enzymatic hydrolysis of xylan. Journal of the American Chemical Society 77: 1241-1243.
  • Frederick, M.M., Kiang, C., Frederick, J.R., Reilly P.J., 1985. Purification and characterization of endo-xylanases from Aspergillus niger, I. Two isozymes active on xylan backbones near branch points. Biotechnology Bioengineering 27: 525-532.
  • Belancic, A., Scarpa, J., Peirano, A., Diaz, R., Steiner, J., Eyzayuirre, J., 1995. Penicillium purpurogenum purification and properties of two of the enzymes. Journal of Biotechnology 41: 71-79. several xylanases
  • Sa-Pereira, P., Sofia, A., Carvalho Costa-Ferreira, L.M., 2004. Thermostabilization of Bacillus subtillis CCMI. Enzyme and Microbial Technology 34: 278- 282.
  • Xiong, H., Weymarn, N., von Leisola, M., Turunen, O., 2004. Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochemistry 39: 731-736.
  • Wang, S.L., Yen, Y.H., Shih, I.L., Chang, A.C. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme and Microbial Technology 33: 917-925.
  • Suchita, N., Mukesh, K., Ramesh, C.K. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology 99 (5): 1252-1258.
  • Fengxia, L., Mei, L., Zhaoxin, L., Xiaomei, B., Haizhen, Z., Yi, W., 2008. Purification and characterization of xylanase from Aspergillus ficuum AF-98, Bioresource Technology 99: 5938-5941.
  • Stewart, E.J., Aslund, F., Beckwith, J., 1998. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins, EMBO Journal 17: 5543-5550.
  • Messner, P. 2009. Prokaryotic protein glycosylation is rapidly expanding from curiosity to ubiquity. Chembiochem 10: 2151-2514.
  • Teng, C., Jia, H., Yan, Q., Zhou, P., Jiang, Z., 2011. High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. BioresourceTechnology 102: 1822-1830.
  • Juturu, V., Wu J.C. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances 30: 1219-1277.
  • Jia, H., Fan, G., Yan, Q., Liu, Y., Yan, Y., Jiang, Z., 2012. High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. Journal of Molecular Catalysis B: Enzymatic 78: 72-77.
  • Li, Y., Zhong, K., Hu, A., Liu, D., Chen, L., Xu, S. 2015. High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expression and Purification 108: 90-96.
  • Nevalainen, K.M.H., Te'o, V.S.J., Bergquist, P.L. Heterologous protein expression in filamentous fungi. Trends in Biotechnology 23: 468- 474.
  • Polizeli, M. L. T. M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S., 2005. Xylanases from fungi: properties and industrial applications. Biotechnology 67: 577-591. Microbiology and
  • Yegin, S., Fernandez-Lahore, M., Gama-Salgado, A. J., Guvenc, U., Goksungur, Y., Tari, C., 2011. Aspartic proteinases from Mucor spp. in cheese manufacturing. Applied Microbiology Biotechnology 89: 949–960.
  • Aguilar, C. N., Gutiérrez-Sánchez, G., Rado- Barragán, P. A., Rodríguez-Herrera, R., Martínez- Hernandez, J. L., Contreras-Esquivel, J.C., 2008. Perspectives of solid state fermentation for production of food enzymes. American Journal of Biochemistry and Biotechnology 4 (4): 354-366
  • Nagar, S., Mittal, A., Kumar, D., Kumar, L., Kuhad, R.C., Gupta, V.K., 2012. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. New Biotechnology 28(6): 581-587.
  • Yegin, S., Sargın, S., Goksungur, Y., 2014. Bioprocess strategies for production of xylanase on agro-residual pullulans. New Biotechnology 32: S62. with Aureobasidium
  • Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Silvia Zupancic, S., 1996. Production of fungal xylanase. Bioresource Technology 58: 137-161.
  • Ncube, T., Howard, R.L., Abotsi, E.K., Jansen van Rensburg, E.L., Ncube, I., 2012. Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Industrial Crops and Products 37: 118-123.
  • Shah, A.R., Madamwar, D., 2005. Xylanase production by a newly isolated Aspergillus foetidus strain Biochemistry 40: 1763-1771. Process
  • Farani de Souza, D., Marques de Souza, C.G., Peralta, R.M., (2001). Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid-state fermentation. Process Biochemistry, 36: 835-838.
  • Archana, A., Satyanarana, T., 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme and Microbial Technology 21: 12-17.
  • Gessesse, A., Mamo, G., 1999. High-level xylanase production by an alkaliphic Bacillus sp. using solid state Technology 25: 68-72. and Microbial
  • Gomes, D. J., Gomes, J., Steiner, W., 1994. Production of highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. Journal of Biotechnology 37: 11-22.
  • Sugden, C., Bhat, M. K., 1994. Cereal straw and pure cellulose as carbon sources for growth and production of plant cell-wall degrading enzymes by Sporotrichum thermophile. World Journal of Microbiology and Biotechnology 10: 444-451.
  • Purkarthofer, H., Sinner, M., Steiner, W., 1993. Cellulase- free xylanase from Thermomyces lanuginosus: submerged and solid-state culture. Enzyme and Microbial Technology 15: 677-682. production in
  • Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N. R., 2009. Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus methodology. Biochemical Engineering Journal 48: 28-35. response surface
  • Kumar, K.S., Manimaran, A., Permaul, K., Singh, S., 2009. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering, 107: 494-498.
  • Saha, S.P., Ghosh, S., 2014. Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatalysis and Agricultural Biotechnology 3: 188- 196.
  • Adhyaru, D.N., Bhatt, N.S., Modi, H.A., 2014. Enhanced production of cellulase-free, thermo- alkali-solvent-stable altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatalysis and Agricultural Biotechnology 3: 182-190. Bacillus
  • Haapala, R., Linko, S., Parkkinen, E., Suominen, P., 1994. Production of endo-l,4-β-glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam. Biotechnology Techniques 8: 401-406.
  • Fontes, CMGA, Gilbert, H.J., Hazlewood, G.P., Clarke, J.H., Prates, J.A.M., McKie, V.A., Nagy, T., Fernandes, T.H., Ferreira, L. M. A., 2000. A novel cell vibrio mixtus family 10 xylanase that is both intracellular and expressed under noninducing conditions. Microbiology 146: 1959-1967.
  • Teplitsky, A., Shulami, S., Moryles, S., Shoham, G., 2000. Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus crystallographica.Section Crystallography 56: 181-186. T-6. D: Biological
  • Rodrigues, E.M.G., Tambourgi, E.B., 2001. Continuous extraction of xylanase from Penicillium janthinellum experimental Biotechnology Letters 56: 765-766. using model. design mathematical
  • Chapla, D., Patel, H., Singh, A., Madamwar, D., Shah, A., 2012. Production, purification and properties of a cellulase-free thermostable endoxylanase from newly isolated Paenibacillus sp. ASCD2. Annals of Microbiology 62: 825–834.
  • Chanwicha, N., Katekaew, S., Aimi, T., Boonlue, S., 2015. Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. Mycoscience 56, 309-318.
  • Rizzatti, A.C.S., Jorge, J.A., Terenzi, H.F., Rechia, C.G.V., Polizeli, M.L.T.L., 2001. Purification and properties of a thermostable extracellular beta-D- xylosidase Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology 26: 156-160.
  • Cardoso, O.A.V., Filho, E.X.F., 2003. Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiology Letters 223: 309-314.
  • Li, X.T., Jiang, Z.Q., Li, L.T., Yang, S.Q., Feng, W.Y., Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresource Technology 96: 1370-1379.
  • Li, L., Tian, H., Cheng, Y., Jiang, Z., Yang, S., 2006. Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila. Enzyme and Microbial Technology 38: 780-787.
  • Ninawe, S., Kapoor, M., Kuhad, R.C., 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology 99: 1252-1258.
  • Jiang, Z., Cong, Q., Yan, Q., Kumar, N., Du, X., 2010. Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chemistry 120: 457-462.
  • Shrinivas, D., Savitha, G., Raviranjan, K., Naik, G.R., 2010.A Highly thermostable alkaline cellulase- free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification Biochemistry and Biotechnology 162: 2049-2057.
  • Knob, A., Carmona, E.C., 2010. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Applied Biochemistry and Biotechnology 162: 429-443.
  • Pal, A., Khanum, F., 2011. Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochemistry 46: 879-887.
  • Hung, K.S., Liu, S.M., Tzou, W.S., Lin, F.P., Pan, C.L., Fang, T.Y., Sun, K.H., Tang, S.J. 2011. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochemistry 46: 1257-1263.
  • Silva, L.A.O., Terrasan, C.R.F., Carmona, E. C., 2015. Purification and characterization of xylanases from Trichoderma inhamatum. Electronic Journal of Biotechnology, http://dx.doi.org/10.1016/j.ejbt.2015.06.001
  • Winterhalter, C., Liebel, W., 1995. Two extremely thermostable xylanases of the hyperthermo philic bacterium Thermotoga maritama MSB8. Applied and Environmental Microbioogy 61: 1810-1815.
  • Lin, J., Ndlovu, L.M., Singh, S., Pillay, B.,1999. Purification and biochemical characteristics of β-D- xylanase from a thermophilic fungus, Thermomyces lanuginosus SSBP. Biotechnology and Applied Biochemistry 30: 73-79.
  • Driss, D., Bhiri, F., Elleuch, L., Bouly, N., Stals, I., Miled, N., Blibech, M., Ghorbel, R., Chaabouni, S.E., 2011. Purification and properties of an extracellular naturally deleted in the “thumb”, from Penicillium occitanis Pol6. Process Biochemistry 46: 1299- 1306.
  • endo-1,4-β-xylanase
  • Gessesse, A., Mamo, G., 1998. Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. Journal of Industrial Microbiology and Biotechnology 20: 210- 214.
  • Li, X.L., Zhang, Z.Q., Dean, J.F.D., Eriksson, K.E.L., Ljungdahl, L.G., 1993. Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Applied and Environmental Microbiology 59: 3212- 3218.
  • Sargın, S., Öngen G., 2003. Kanatlı yemi katkısı olarak kullanılan ksilanaz enziminin katı kültür fermantasyon yöntemi ile üretiminde ölçek büyütme çalışmaları. E.Ü. Ziraat Fakültesi Dergisi 40(3): 145
  • Campenhout, L.V., Somers, I., Van de Craen, S., Adams, C., 2003. In vitro test to evaluate protein degradation by feed enzymes: Recent Advances in Enzymes in Grain Processing, Edited by C.M Courtin, W.S., Veraverbeke, J.A., Delcour, Leuven.
  • Poldermans, B., Schoppnik, P., 1999. Contolling the baking process and product quality with enzymes. Cereal Foods World 44: 132-135.
  • Dhiman, S.S., Garg, G., Sharma, J., Mahajan, R., Methoxy, R., 2011. Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnology 28(6): 746- 755.

Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları

Year 2015, Volume: 13 Issue: 4, 317 - 326, 01.12.2015

Abstract

Ksilanazlar, doğada bitki hücre duvarının yapısında bulunan ksilanın hidrolizini sağlayan enzimlerdir. Çok yaygın kullanım alanı bulunan bu enzimler gıda ve yem sektörü açısından da büyük önem taşımaktadırlar. Endüstriyel ksilanaz üretimi mikrobiyal biyoproseslerle gerçekleştirilmektedir. Söz konusu enzimlerin biyosentez düzeyi, biyokimyasal ve teknolojik özellikleri, üretimde kullanılan mikroorganizma ve biyoproses koşullarına göre farklılık göstermektedir. Son zamanlarda ksilanazların üretim düzeylerinin arttırılması, saflaştırılması ve karakterizasyonu üzerinde çok sayıda çalışma yapılmıştır. Ancak günümüzde sürdürülebilir, çevreci ve ekonomik proseslerin geliştirilmesi adına alışılmışın dışında ve çok yönlü kullanılabilen yeni enzim sistemlerine ihtiyaç vardır. Bu derlemede, ksilanın yapısı, ksilanaz grubu enzimlerin sınıflandırılması, mikrobiyal ksilanaz üretimi, saflaştırılması, karakterizasyonu ve gıda sektöründe uygulamaları üzerinde durulmuştur

References

  • Claassen, P.A.M., van Lier, J.B., Lopez-Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., de Vries, S.S., Weusthuis, R.A., 1999. Utilization of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology 52: 741-755.
  • Paës, G., Berrin, J.G., Beaugrand, J., 2012. GH11 xylanases: relationships and applications. Biotechnology Advances 30: 564-592.
  • Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56: 326-338.
  • Ruanglek, V., Sriprang, R., Ratanaphan, N., Tirawongsaroj, P., Chantasigh, D., Tanapongpipat, S., Pootanakit, K., Eurwilaichitr, L., 2007. Cloning, expression, characterization, and high cell-density production of recombinant endo-1, 4-β-xylanase from Aspergillus niger in Pichia pastoris. Enzyme and Microbial Technology, 41: 19-25.
  • Bajpai, P,. 2014. Xylanolytic enzymes, New York, Academic Press.
  • Puls, J., Schuseil, J., 1993. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzyme required for hydrolysis: Hemicellulose and Hemicellulases, Edited by M.P. Coughlan, G.P. Hazlewood, London, Oortland Press.
  • Collins, T., Gerday, C., Feller, G., 2005. Xylanases, xylanase families and extremophilic xylanase. FEMS Microbiology Reviews 29: 3-23.
  • Wong, K.K.Y., Tan, L.U.L., Saddler, J.N., 1988. Multiplicity microorganisms: Microbiological Reviews 52: 305-317. and functions applications.
  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., Derewenda, Z.S., 1994. Crystal structure, at 2.6-A˚ resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. Journal of Biological Chemistry 269: 20811-20814.
  • Flint, H.J., Martin, J., McPherson, C.A., Daniel, A.S., Zhang, J.X., 1993. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. Journal of Bacteriology 175: 2943-2951.
  • Whistler, R.L., Masak, E., 1955. Enzymatic hydrolysis of xylan. Journal of the American Chemical Society 77: 1241-1243.
  • Frederick, M.M., Kiang, C., Frederick, J.R., Reilly P.J., 1985. Purification and characterization of endo-xylanases from Aspergillus niger, I. Two isozymes active on xylan backbones near branch points. Biotechnology Bioengineering 27: 525-532.
  • Belancic, A., Scarpa, J., Peirano, A., Diaz, R., Steiner, J., Eyzayuirre, J., 1995. Penicillium purpurogenum purification and properties of two of the enzymes. Journal of Biotechnology 41: 71-79. several xylanases
  • Sa-Pereira, P., Sofia, A., Carvalho Costa-Ferreira, L.M., 2004. Thermostabilization of Bacillus subtillis CCMI. Enzyme and Microbial Technology 34: 278- 282.
  • Xiong, H., Weymarn, N., von Leisola, M., Turunen, O., 2004. Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochemistry 39: 731-736.
  • Wang, S.L., Yen, Y.H., Shih, I.L., Chang, A.C. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme and Microbial Technology 33: 917-925.
  • Suchita, N., Mukesh, K., Ramesh, C.K. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology 99 (5): 1252-1258.
  • Fengxia, L., Mei, L., Zhaoxin, L., Xiaomei, B., Haizhen, Z., Yi, W., 2008. Purification and characterization of xylanase from Aspergillus ficuum AF-98, Bioresource Technology 99: 5938-5941.
  • Stewart, E.J., Aslund, F., Beckwith, J., 1998. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins, EMBO Journal 17: 5543-5550.
  • Messner, P. 2009. Prokaryotic protein glycosylation is rapidly expanding from curiosity to ubiquity. Chembiochem 10: 2151-2514.
  • Teng, C., Jia, H., Yan, Q., Zhou, P., Jiang, Z., 2011. High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. BioresourceTechnology 102: 1822-1830.
  • Juturu, V., Wu J.C. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances 30: 1219-1277.
  • Jia, H., Fan, G., Yan, Q., Liu, Y., Yan, Y., Jiang, Z., 2012. High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. Journal of Molecular Catalysis B: Enzymatic 78: 72-77.
  • Li, Y., Zhong, K., Hu, A., Liu, D., Chen, L., Xu, S. 2015. High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expression and Purification 108: 90-96.
  • Nevalainen, K.M.H., Te'o, V.S.J., Bergquist, P.L. Heterologous protein expression in filamentous fungi. Trends in Biotechnology 23: 468- 474.
  • Polizeli, M. L. T. M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S., 2005. Xylanases from fungi: properties and industrial applications. Biotechnology 67: 577-591. Microbiology and
  • Yegin, S., Fernandez-Lahore, M., Gama-Salgado, A. J., Guvenc, U., Goksungur, Y., Tari, C., 2011. Aspartic proteinases from Mucor spp. in cheese manufacturing. Applied Microbiology Biotechnology 89: 949–960.
  • Aguilar, C. N., Gutiérrez-Sánchez, G., Rado- Barragán, P. A., Rodríguez-Herrera, R., Martínez- Hernandez, J. L., Contreras-Esquivel, J.C., 2008. Perspectives of solid state fermentation for production of food enzymes. American Journal of Biochemistry and Biotechnology 4 (4): 354-366
  • Nagar, S., Mittal, A., Kumar, D., Kumar, L., Kuhad, R.C., Gupta, V.K., 2012. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. New Biotechnology 28(6): 581-587.
  • Yegin, S., Sargın, S., Goksungur, Y., 2014. Bioprocess strategies for production of xylanase on agro-residual pullulans. New Biotechnology 32: S62. with Aureobasidium
  • Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Silvia Zupancic, S., 1996. Production of fungal xylanase. Bioresource Technology 58: 137-161.
  • Ncube, T., Howard, R.L., Abotsi, E.K., Jansen van Rensburg, E.L., Ncube, I., 2012. Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Industrial Crops and Products 37: 118-123.
  • Shah, A.R., Madamwar, D., 2005. Xylanase production by a newly isolated Aspergillus foetidus strain Biochemistry 40: 1763-1771. Process
  • Farani de Souza, D., Marques de Souza, C.G., Peralta, R.M., (2001). Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid-state fermentation. Process Biochemistry, 36: 835-838.
  • Archana, A., Satyanarana, T., 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme and Microbial Technology 21: 12-17.
  • Gessesse, A., Mamo, G., 1999. High-level xylanase production by an alkaliphic Bacillus sp. using solid state Technology 25: 68-72. and Microbial
  • Gomes, D. J., Gomes, J., Steiner, W., 1994. Production of highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. Journal of Biotechnology 37: 11-22.
  • Sugden, C., Bhat, M. K., 1994. Cereal straw and pure cellulose as carbon sources for growth and production of plant cell-wall degrading enzymes by Sporotrichum thermophile. World Journal of Microbiology and Biotechnology 10: 444-451.
  • Purkarthofer, H., Sinner, M., Steiner, W., 1993. Cellulase- free xylanase from Thermomyces lanuginosus: submerged and solid-state culture. Enzyme and Microbial Technology 15: 677-682. production in
  • Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N. R., 2009. Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus methodology. Biochemical Engineering Journal 48: 28-35. response surface
  • Kumar, K.S., Manimaran, A., Permaul, K., Singh, S., 2009. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. Journal of Bioscience and Bioengineering, 107: 494-498.
  • Saha, S.P., Ghosh, S., 2014. Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatalysis and Agricultural Biotechnology 3: 188- 196.
  • Adhyaru, D.N., Bhatt, N.S., Modi, H.A., 2014. Enhanced production of cellulase-free, thermo- alkali-solvent-stable altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatalysis and Agricultural Biotechnology 3: 182-190. Bacillus
  • Haapala, R., Linko, S., Parkkinen, E., Suominen, P., 1994. Production of endo-l,4-β-glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam. Biotechnology Techniques 8: 401-406.
  • Fontes, CMGA, Gilbert, H.J., Hazlewood, G.P., Clarke, J.H., Prates, J.A.M., McKie, V.A., Nagy, T., Fernandes, T.H., Ferreira, L. M. A., 2000. A novel cell vibrio mixtus family 10 xylanase that is both intracellular and expressed under noninducing conditions. Microbiology 146: 1959-1967.
  • Teplitsky, A., Shulami, S., Moryles, S., Shoham, G., 2000. Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus crystallographica.Section Crystallography 56: 181-186. T-6. D: Biological
  • Rodrigues, E.M.G., Tambourgi, E.B., 2001. Continuous extraction of xylanase from Penicillium janthinellum experimental Biotechnology Letters 56: 765-766. using model. design mathematical
  • Chapla, D., Patel, H., Singh, A., Madamwar, D., Shah, A., 2012. Production, purification and properties of a cellulase-free thermostable endoxylanase from newly isolated Paenibacillus sp. ASCD2. Annals of Microbiology 62: 825–834.
  • Chanwicha, N., Katekaew, S., Aimi, T., Boonlue, S., 2015. Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. Mycoscience 56, 309-318.
  • Rizzatti, A.C.S., Jorge, J.A., Terenzi, H.F., Rechia, C.G.V., Polizeli, M.L.T.L., 2001. Purification and properties of a thermostable extracellular beta-D- xylosidase Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology 26: 156-160.
  • Cardoso, O.A.V., Filho, E.X.F., 2003. Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiology Letters 223: 309-314.
  • Li, X.T., Jiang, Z.Q., Li, L.T., Yang, S.Q., Feng, W.Y., Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresource Technology 96: 1370-1379.
  • Li, L., Tian, H., Cheng, Y., Jiang, Z., Yang, S., 2006. Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila. Enzyme and Microbial Technology 38: 780-787.
  • Ninawe, S., Kapoor, M., Kuhad, R.C., 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology 99: 1252-1258.
  • Jiang, Z., Cong, Q., Yan, Q., Kumar, N., Du, X., 2010. Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chemistry 120: 457-462.
  • Shrinivas, D., Savitha, G., Raviranjan, K., Naik, G.R., 2010.A Highly thermostable alkaline cellulase- free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification Biochemistry and Biotechnology 162: 2049-2057.
  • Knob, A., Carmona, E.C., 2010. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Applied Biochemistry and Biotechnology 162: 429-443.
  • Pal, A., Khanum, F., 2011. Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochemistry 46: 879-887.
  • Hung, K.S., Liu, S.M., Tzou, W.S., Lin, F.P., Pan, C.L., Fang, T.Y., Sun, K.H., Tang, S.J. 2011. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochemistry 46: 1257-1263.
  • Silva, L.A.O., Terrasan, C.R.F., Carmona, E. C., 2015. Purification and characterization of xylanases from Trichoderma inhamatum. Electronic Journal of Biotechnology, http://dx.doi.org/10.1016/j.ejbt.2015.06.001
  • Winterhalter, C., Liebel, W., 1995. Two extremely thermostable xylanases of the hyperthermo philic bacterium Thermotoga maritama MSB8. Applied and Environmental Microbioogy 61: 1810-1815.
  • Lin, J., Ndlovu, L.M., Singh, S., Pillay, B.,1999. Purification and biochemical characteristics of β-D- xylanase from a thermophilic fungus, Thermomyces lanuginosus SSBP. Biotechnology and Applied Biochemistry 30: 73-79.
  • Driss, D., Bhiri, F., Elleuch, L., Bouly, N., Stals, I., Miled, N., Blibech, M., Ghorbel, R., Chaabouni, S.E., 2011. Purification and properties of an extracellular naturally deleted in the “thumb”, from Penicillium occitanis Pol6. Process Biochemistry 46: 1299- 1306.
  • endo-1,4-β-xylanase
  • Gessesse, A., Mamo, G., 1998. Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. Journal of Industrial Microbiology and Biotechnology 20: 210- 214.
  • Li, X.L., Zhang, Z.Q., Dean, J.F.D., Eriksson, K.E.L., Ljungdahl, L.G., 1993. Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Applied and Environmental Microbiology 59: 3212- 3218.
  • Sargın, S., Öngen G., 2003. Kanatlı yemi katkısı olarak kullanılan ksilanaz enziminin katı kültür fermantasyon yöntemi ile üretiminde ölçek büyütme çalışmaları. E.Ü. Ziraat Fakültesi Dergisi 40(3): 145
  • Campenhout, L.V., Somers, I., Van de Craen, S., Adams, C., 2003. In vitro test to evaluate protein degradation by feed enzymes: Recent Advances in Enzymes in Grain Processing, Edited by C.M Courtin, W.S., Veraverbeke, J.A., Delcour, Leuven.
  • Poldermans, B., Schoppnik, P., 1999. Contolling the baking process and product quality with enzymes. Cereal Foods World 44: 132-135.
  • Dhiman, S.S., Garg, G., Sharma, J., Mahajan, R., Methoxy, R., 2011. Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnology 28(6): 746- 755.
There are 70 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Sırma Yeğin This is me

Ali Oğuz Büyükkilleci This is me

Publication Date December 1, 2015
Published in Issue Year 2015 Volume: 13 Issue: 4

Cite

APA Yeğin, S., & Büyükkilleci, A. O. (2015). Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları. Akademik Gıda, 13(4), 317-326.
AMA Yeğin S, Büyükkilleci AO. Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları. Akademik Gıda. December 2015;13(4):317-326.
Chicago Yeğin, Sırma, and Ali Oğuz Büyükkilleci. “Mikrobiyal Ksilanazlar Ve Gıda Endüstrisinde Kullanım Alanları”. Akademik Gıda 13, no. 4 (December 2015): 317-26.
EndNote Yeğin S, Büyükkilleci AO (December 1, 2015) Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları. Akademik Gıda 13 4 317–326.
IEEE S. Yeğin and A. O. Büyükkilleci, “Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları”, Akademik Gıda, vol. 13, no. 4, pp. 317–326, 2015.
ISNAD Yeğin, Sırma - Büyükkilleci, Ali Oğuz. “Mikrobiyal Ksilanazlar Ve Gıda Endüstrisinde Kullanım Alanları”. Akademik Gıda 13/4 (December 2015), 317-326.
JAMA Yeğin S, Büyükkilleci AO. Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları. Akademik Gıda. 2015;13:317–326.
MLA Yeğin, Sırma and Ali Oğuz Büyükkilleci. “Mikrobiyal Ksilanazlar Ve Gıda Endüstrisinde Kullanım Alanları”. Akademik Gıda, vol. 13, no. 4, 2015, pp. 317-26.
Vancouver Yeğin S, Büyükkilleci AO. Mikrobiyal Ksilanazlar ve Gıda Endüstrisinde Kullanım Alanları. Akademik Gıda. 2015;13(4):317-26.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).