BibTex RIS Cite

Liposomes as an Encapsulation Agent for Food Applications: Structure, Characterization, Manufacture and Stability

Year 2014, Volume: 12 Issue: 4, 41 - 57, 01.12.2014

Abstract

Liposomes are polar lipid bilayers vesicles used in pharmaceutical applications for years. These spherical vesicles are manufactured from natural phospholipid compositions known as lecithins. Their utilization in foods have recently attracted some interest. Using liposomes as encapsulating agents in foods provides a number of advantages like increased stability for the active agent and minimized interaction of capsuled material with the surrounding medium. However, what sets liposomes apart from other encapsulation agents is the ease of capsulation and its natural composition. Nevertheless, the fragile nature of liposomes poses some challenges with their use under extremes of temperature, pH or pressure. Studies have shown that a number of methods could help to increase liposomes’ stability. This review is written with the purpose of providing food scientists, who plan to use liposomes as an encapsulation agent, with a Turkish source covering the chemical and physical structure of liposomes, the advantages they provide, production and characterization methods, stability issues, and their use in food related applications

References

  • Taylor, T.M., P.M., Davidson, B.D., Bruce, Weiss, J., 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition 45(7-8): 587-605.
  • Gibis, M., Vogt, E., Weiss, J., 2012. Encapsulation of polyphenolic grape seed extract in polymer- coated liposomes. Food & Function 3(3): 246-254.
  • Laye, C., McClements, D.J., Weiss, J., 2008. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. Journal of Food Science 73(5): N7-N15.
  • Administration, U.S.F.a.D., 2006. Guidance for industry: Guidance on the labeling of certain uses of lecithin derived from soy under section 403(w) of the federal food, drug, and cosmetic act.
  • Chun, J.Y., Choi, M.J., Min, S.G., Weiss, J., 2013. Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids 30(1): 249-257.
  • Taylor, K.M.G., Morris, R.M., 1995. Thermal- analysis of phase-transition behavior in liposomes. Thermochimica Acta 248: 289-301.
  • Lasic, D.D., 1998. Novel applications of liposomes. Trends in Biotechnology 16(7): 307-321.
  • Gabizon, A., Shmeeda, H., Horowitz, A.T., Zalipsky, S., 2004. Tumor cell targeting of liposome- entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Advanced Drug Delivery Reviews 56(8): 1177-1192.
  • Jain, P.T., Seth, P., Gewirtz, D.A.,1999. Estradiol enhances liposome-mediated uptake, preferential nuclear accumulation and functional expression of exogenous genes in MDA-MB231 breast tumor cells. Biochimica Et Biophysica Acta-Molecular Cell Research 1451(2-3): 224-232.
  • Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N., 1999. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition 50(3): 213-224.
  • Chonn, A., Cullis, P.R., 1998. Recent advances in liposome technologies and their applications for systemic gene delivery. Advanced Drug Delivery Reviews 30(1-3): 73-83.
  • Chai, R., Zhang, G., Sun, Q., Zhang, M.Y., Zhao, S.J., Qiu, L.Y., 2013. Liposome-mediated mycelial transformation of filamentous fungi. Fungal Biology 117(9): 577-583.
  • Benech, R.O., Kheadr, E.E., Lacroix, C., Fliss, I., 2003. Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese. Journal of Dairy Science 86(6): 1895-1909.
  • Wechtersbach, L., Ulrih, N.P., Cigic, B., 2012. Liposomal stabilization of ascorbic acid in model systems and in food matrices. LWT-Food Science and Technology 45(1): 43-49.
  • Hideshima, T., Kato, Y., 2006. Oscillatory reaction of catalase wrapped by liposome. Biophysical Chemistry 124(2):100-105.
  • Barenholz, Y., 2001. Liposome application: problems and prospects. Current Opinion in Colloid & Interface Science 6(1): 66-77.
  • Hsieh, Y.F., Chen, T.L. Wang, Y.T., Chang, J.H., Chang, H.M., 2002. Properties of liposomes prepared with various lipids. Journal of Food Science 67(8): 2808-2813.
  • Picon, A., Gaya, P., Medina, M., Nunez, M., 1994. The effect of liposome encapsulation of chymosin derived by fermentation on Manchego cheese ripening. Journal of Dairy Science 77(1): 16-23.
  • Malheiros, P.D., Daroit, D.J., Brandelli, A., 2010. Food antimicrobial peptides. Trends in Food Science & Technology 21(6): 284-292.
  • Thanonkaew, A., Benjakul, S., Visessanguan, W., Decker, E.A., 2007. Yellow discoloration of the liposome system of cuttlefish (Sepia pharaonis) as influenced by lipid oxidation. Food Chemistry 102(1): 219-224.
  • Rasti, B., S. Jinap, M.R. Mozafari, and A.M. Yazid, 2012. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated conventional and Mozafari methods. Food Chemistry 135(4): 2761-2770. prepared with
  • Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Cleymand, F., Linder, M., 2012. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine. Food Chemistry 134(2): 632-640.
  • Mozafari, M.R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z.E., Singh, H., 2006. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture 86(13): 2038-2045.
  • Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A., Yurdugul, S., 2008. Encapsulation Nanoliposome Technology. International Journal of Food Properties 11(4): 833-844. Using
  • Singh, A.K., Das, J., 1998. Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophysical Chemistry 73(1-2): 155-162.
  • Zhang, X.X., Guo, S.Y., Fan, R., Yu, M.R., Li, F.F., Zhu, C.L., Gan, Y., 2012. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 33(29): 7103-7114.
  • Hickey, S.R., Roberts, H.J., Miller, N.J., 2008. Pharmacokinetics of oral vitamin C. Journal of Nutritional and Environmental Medicine 17(3): 169- 177.
  • Marsanasco, M., Marquez, A.L., Wagner, J.R., Alonso, S.D., Chiaramoni, N.S., 2011. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International 44(9): 3039-3046.
  • Fennema, O.R., 1996. Food Chemistry, Third Edition. 1996: Taylor & Francis.
  • Grit, M. and J.A. Crommelin, 1993. Chemical- stability of liposomes - implications for their physical stability. Chemistry and Physics of Lipids 64(1-3): 3- 18.
  • Reineccius, G.A., 1995. Liposomes for controlled- release in the food-industry. Encapsulation and Controlled Release of Food Ingredients 590: 113- 131.
  • Meisner, D., Mezei, M., 1995. Liposome ocular delivery systems. Advanced Drug Delivery Reviews 16(1): 75-93.
  • Torchilin, V.P., Weissig, V., 2003. Liposomes: A Practical Approach. 2003: OUP Oxford.
  • Fang, Z.X., Bhandari, B., 2010. Encapsulation of polyphenols - a review. Trends in Food Science & Technology 21(10): 510-523.
  • Lasch, J., Berdichevsky, V.R., Torchilin, V.P., Koelsch, R., Kretschmer, K., 1983. A method to measure critical detergent parameters - preparation of liposomes. Analytical Biochemistry 133(2): 486- 491.
  • W.W., C. 2013. Phosphatidylcholine and related lipids structure, occurrence, biochemistry and analysis. 2013 [October 10, 2013]; Available from: http://lipidlibrary.aocs.org/Lipids/pc/index.htm.
  • Koynova, R., Caffrey, M., 1998. Phases and phase transitions of the phosphatidylcholines. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1376(1): 91-145.
  • Sulkowski, W.W., Pentak, D., Nowak, K., Sulkowska, A., 2005. The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure 744: 737-747.
  • Barenholz, Y., Gibbes, D., Litman, B.J., Goll, J., Thompson, T.E., Carlson, F.D., 1977. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12): 2806- 2810.
  • Woodle, M.C., Papahadjopoulos, D., 1989. Liposome preparation and size characterization. Methods in Enzymology 171: 193-217.
  • Payne, N.I., Browning, I., Hynes, C.A., 1986. Characterization of proliposomes. Journal of Pharmaceutical Sciences 75(4): 330-333.
  • Rodriguez, R.B., Xamani, M.S., 2003. Liposomes prepared Liposomes: Part A 367: 28-46. homogenizers.
  • Memoli, A., Palermiti, L.G., Travagli, V., Alhaique, F., 1995. Egg and soya phospholipids - sonication and dialysis - a study on liposome characterization. International Journal of Pharmaceutics 117(2): 159- 163.
  • Barnadas-Rodriguez, R., Sabes, M., 2001. Factors involved in the production of liposomes with a high- pressure homogenizer. International Journal of Pharmaceutics 213(1-2): 175-186.
  • Kulshreshtha, A.K., Singh, O.N., Wall, G.M., 2009. Pharmaceutical Suspensions: From Formulation Development to Manufacturing. 2009: Springer.
  • Cho, E.C., Lim, H.J., Shim, J., Kim, J., Chang, I.S., 2007. Improved stability of liposome in oil/water emulsion by association of amphiphilic polymer with liposome and its effect on bioactive skin permeation. Physicochemical and Engineering Aspects 299(1- 3): 160-168. and Surfaces a
  • Foradada, M., Pujol, M.D., Bermudez, J., Estelrich, J., 2000. Chemical degradation of liposomes by serum components detected by NMR. Chemistry and Physics of Lipids 104(2): 133-148.
  • Wang, T., Deng, Y.J., Geng, Y.H., Gao, Z.B., Zou, H.P., Wang, Z.Z., 2006. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochimica Et Biophysica Acta- Biomembranes 1758(2): 222-231.
  • Gregoriadis, G., Bacon, A., Caparros-Wanderley, W., and McCormack, B., 2003. Plasmid DNA vaccines: dehydration-rehydration. Liposomes: Part A 367: 70-80. into liposomes by Colloids and Surfaces B
  • Makino, K., Yamada, T., Kimura, M., Oka, T., Ohshima, H., Kondo, T., 1991. Temperature- induced and ionic strength-induced conformational- changes in the lipid head group region of liposomes as suggested by zeta-potential data. Biophysical Chemistry 41(2): 175-183.
  • Angelini, G., Boncompagni, S., De Maria, P., De Nardi, M., Fontana, A., Gasbarri, C., Menna, E., 2007. Layer-by-layer deposition of shortened nanotubes or polyethylene glycol-derivatized nanotubes on liposomes: A tool for increasing liposome stability. Carbon 45(13): 2479-2485.
  • Volodkin, D.V., Michel, M., Schaaf, P., Voegel, J.C., Möhwald, H., Ball, V., 2008. Chapter 1 Liposome Embedding into Polyelectrolyte Multilayers: A New Way to Create Drug Reservoirs at Solid‐Liquid Interfaces, in Advances in Planar Lipid Bilayers and Liposomes, A.L.L. Professor Dr, Editor. 2008, Academic Press. p. 1-25.
  • Blomberg, E., Claesson, P.M., Warnheim, T., 1999. Surface interactions in emulsions and liposome solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 159(1): 149-157.
  • Guo, J., Ping, Q., Jiang, G., Huang, L., Tong, Y., 2003. Chitosan-coated liposomes: characterization and interaction with leuprolide. International Journal of Pharmaceutics 260(2): 167-173.
  • Masterjohn, C., 2005. Cholesterol's Importance to the Cell Membrane. http://www.cholesterol-and- health.com/Cholesterol-Cell-Membrane.html
  • Fridjonsson, E.O., Flux, L.S., Johns, M.L., 2012. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument. Journal of Magnetic Resonance 221: 97-102.
  • Denkova, P.S., Tcholakova, S., Denkov, N.D., Danov, K.D., Campbell, B., Shawl, C., Kim, D., 2004. Evaluation of the precision of drop-size determination in oil/water emulsions by low- resolution NMR spectroscopy. Langmuir 20(26): 11402-11413.
  • Shimanouchi, T., Ishii, H., Yoshimoto, N., Umakoshi, H., Kuboi, R., 2009. Calcein permeation across phosphatidylcholine bilayer membrane: Effects of membrane fluidity, liposome size, and immobilization. Biointerfaces 73(1): 156-160. and Surfaces B
  • Berger, N., Sachse, A., Bender, J., Schubert, R., Brandl, M., 2001. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation characteristics. Pharmaceutics 223(1-2): 55-68. and process Journal of
  • Cho, E.C., Lim, H.J., Kim, H.J., Son, E.D., Choi, H.J., Park, J.H., Kim, J.W., Kim, J., 2009. Role of pH-sensitive enhancing cellular uptake of biologically active drugs. Materials Science & Engineering C- Biomimetic and Supramolecular Systems 29(3): 774-778. complex in
  • Sroda, K., Michalak, K., Maniewska, J., Grynkiewicz, G., Szeja, W., Zawisza, J., Hendrich, A.B., 2008. Genistein derivatives decrease liposome membrane integrity - Calcein release and molecular modeling study. Biophysical Chemistry 138(3): 78-82.
  • Castile, J.D., Taylor, K.M.G., Buckton, G., 1999. A high sensitivity differential scanning calorimetry study of the interaction between poloxamers and dimyristoylphosphatidylcholine dipalmitoylphosphatidylcholine International Journal of Pharmaceutics 182(1): 101- 110. and liposomes.
  • Voinova, M.V., Galkin, V.L., Kosevich, A.M., 1990. Kinetics of liposome volume and permeability changes during the lipid phase-transitions. Bioelectrochemistry and Bioenergetics 24(2): 143- 154.
  • Lundahl, P., Beigi, F., 1997. Immobilized liposome chromatography of drugs for model analysis of drug-membrane interactions. Advanced Drug Delivery Reviews 23(1-3): 221-227.
  • Min, B., Nam, K.C., Ahn, D.U., 2010. Catalytic mechanisms of metmyoglobin on the oxidation of lipids in phospholipid liposome model system. Food Chemistry 123(2): 231-236.
  • Yu, H.Y., Liao, H.M., 1996. Triamcinolone permeation from different liposome formulations through rat skin in vitro. International Journal of Pharmaceutics 127(1): 1-7.
  • Betz, G., Aeppli, A., Menshutina, N., Leuenberger, H., 2005. In vivo comparison of various liposome formulations for cosmetic application. International Journal of Pharmaceutics 296(1-2): 44-54.
  • Yarosh, D., Klein, J., 1996. The role of liposomal delivery in cutaneous DNA repair. Advanced Drug Delivery Reviews 18(3): 325-333.
  • Tseng, W.C., Huang, L., 1998. Liposome-based gene Technology Today 1(5): 206-213. Science &
  • Law, B.A., King, J.S., 1985. Use of liposomes for proteinase addition to cheddar cheese. Journal of Dairy Research 52(1): 183-188.
  • Kirby, C.J., Brooker, B.E., Law, B.A., 1987. Accelerated ripening of cheese using liposome- encapsulated enzyme. International Journal of Food Science and Technology 22(4): 355-375.
  • Kheadr, E.E., Vuillemard, J.C., El-Deeb, S.A., 2003. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Research International 36(3): 241-252.
  • Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., Mortazavian, A.M., 2013. Stability and catalytic kinetics of protease loaded liposomes. Biochemical Engineering Journal 72: 11- 17.
  • Picon, A., Gaya, P., Medina, M., Nunez, M., 1997. Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnology Letters 19(4): 345-348.
  • Kheadr, E.E., Vuillemard, L.C., El-Deeb, S.A., 2002. Acceleration of cheddar cheese lipolysis by using liposome-entrapped lipases. Journal of Food Science 67(2): 485-492.
  • Banville, C., Vuillemard, J.C., Lacroix, C., 2000. Comparison of different methods for fortifying Cheddar cheese with vitamin D. International Dairy Journal 10(5-6): 375-382.
  • Matsuzaki, M., Mccafferty, F., Karel, M., 1989. The effect of cholesterol content of phospholipid- vesicles on the encapsulation and acid resistance of beta-galactosidase from Escherichia coli. International Journal of Food Science and Technology 24(4): 451-460.
  • Rao, D.R., Chawan, C.B., Veeramachaneni, R., 1995. galactosidase - comparison of 2 methods of encapsulation and in-vitro lactose digestibility. Journal of Food Biochemistry 18(4): 239-251.
  • Niu, Y.M., Ke, D., Yang, Q.Q., Wang, X.Y., Chen, Z.Y., An, X.Q., Shen, W.G., 2012. Temperature- dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chemistry 135(3): 1377-1382.
  • Ngo, K.X., Umakoshi, H., Shimanouchi, T., Sugaya, H., Kuboi, R., 2010. Chitosanase displayed on liposome can increase its activity and stability. Journal of Biotechnology 146(3): 105-113.
  • Degnan, A.J., Luchansky, J.B., 1992. Influence of beef tallow and muscle on the antilisterial activity of pediocin ach and liposome-encapsulated pediocin ach. Journal of Food Protection 55(7): 552-554.
  • Degnan, A.J., Buyong, N., Luchansky, J.B., 1993. Antilisterial activity of pediocin ach in model food systems in the presence of an emulsifier or encapsulated within liposomes. International Journal of Food Microbiology 18(2): 127-138.
  • Hansen, J.N., 1994. Nisin as a model food preservative. Critical Reviews in Food Science and Nutrition 34(1): 69-93.
  • Devos, W.M., Mulders, J.W.M., Siezen, R.J., Hugenholtz, J., Kuipers, O.P., 1993. Properties of nisin-Z and Distribution of its gene, nisz, in Lactococcus lactis. Applied and Environmental Microbiology 59(1): 213-218.
  • Laridi, R., Kheadr, E.E., Benech, R.O., Vuillemard, J.C., Lacroix, C., Fliss, I., 2003. Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal 13(4): 325-336.
  • Were, L.M., Bruce, B.D., Davidson, P.M., Weiss, J., 2003. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. Journal of Agricultural and Food Chemistry 51(27): 8073-8079.
  • Malheiros, P.D., Sant'Anna, V., Barbosa, M.D., Brandelli, A., Franco, B.D.G.D., 2012. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth
  • in Minas frescal cheese. International Journal of
  • Food Microbiology 156(3): 272-277.

Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi

Year 2014, Volume: 12 Issue: 4, 41 - 57, 01.12.2014

Abstract

Lipozomlar farmasötik uygulamalar başta olmak üzere yıllardır birçok uygulamada kapsülasyon maddesi olarak kullanılan çift katmanlı polar lipitlerden oluşan keseciklerdir. Doğal fosfolipit kompozisyonları olan lesitinlerden elde edilen bu keseciklerin gıdalarda kullanımı son yıllarda artış göstermiştir. Lipozomların gıdalarda kullanımı sonucunda kapsüllenmiş maddenin stabilitesini arttırması ve bu maddenin bulunduğu ortamdaki diğer maddelerle etkileşimini minimize etmesi gibi faydalarının yanı sıra; diğer kapsülasyon maddelerine kıyasla oluşturulma metotlarının basitliği, tamamen doğal bileşiklerden oluşturulması gibi özellikleri, lipozomları birçok enkapsülasyon sisteminden ayıran belirgin özelliklerdir. Ancak lipozomların gıda uygulamalarında kullanılan yüksek sıcaklık, basınç, pH ekstremleri ve fiziksel karıştırma gibi stres koşulları karşısında stabilitesini koruyabilmesi zordur. Bu konuda süregelen araştırmalar, lipozom stabilitesinin artırılması için uygulanabilecek metotların varlığını göstermiştir. Bu derleme, gıda bilimi konusunda çalışan araştırmacılara, lipozomların yapısı, kullanımının sağladığı avantajlar, oluşturma metotları, karakterizasyonu, stabilite sorunları ve gıdalarda uygulama alanlarıyla ilgili bilgi vermek ve lipozomları bir kapsülasyon maddesi olarak kullanmak amacında olan araştırmacılara da yol gösterecek bir kaynak olmayı hedeflemiştir

References

  • Taylor, T.M., P.M., Davidson, B.D., Bruce, Weiss, J., 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition 45(7-8): 587-605.
  • Gibis, M., Vogt, E., Weiss, J., 2012. Encapsulation of polyphenolic grape seed extract in polymer- coated liposomes. Food & Function 3(3): 246-254.
  • Laye, C., McClements, D.J., Weiss, J., 2008. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. Journal of Food Science 73(5): N7-N15.
  • Administration, U.S.F.a.D., 2006. Guidance for industry: Guidance on the labeling of certain uses of lecithin derived from soy under section 403(w) of the federal food, drug, and cosmetic act.
  • Chun, J.Y., Choi, M.J., Min, S.G., Weiss, J., 2013. Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids 30(1): 249-257.
  • Taylor, K.M.G., Morris, R.M., 1995. Thermal- analysis of phase-transition behavior in liposomes. Thermochimica Acta 248: 289-301.
  • Lasic, D.D., 1998. Novel applications of liposomes. Trends in Biotechnology 16(7): 307-321.
  • Gabizon, A., Shmeeda, H., Horowitz, A.T., Zalipsky, S., 2004. Tumor cell targeting of liposome- entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Advanced Drug Delivery Reviews 56(8): 1177-1192.
  • Jain, P.T., Seth, P., Gewirtz, D.A.,1999. Estradiol enhances liposome-mediated uptake, preferential nuclear accumulation and functional expression of exogenous genes in MDA-MB231 breast tumor cells. Biochimica Et Biophysica Acta-Molecular Cell Research 1451(2-3): 224-232.
  • Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N., 1999. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition 50(3): 213-224.
  • Chonn, A., Cullis, P.R., 1998. Recent advances in liposome technologies and their applications for systemic gene delivery. Advanced Drug Delivery Reviews 30(1-3): 73-83.
  • Chai, R., Zhang, G., Sun, Q., Zhang, M.Y., Zhao, S.J., Qiu, L.Y., 2013. Liposome-mediated mycelial transformation of filamentous fungi. Fungal Biology 117(9): 577-583.
  • Benech, R.O., Kheadr, E.E., Lacroix, C., Fliss, I., 2003. Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese. Journal of Dairy Science 86(6): 1895-1909.
  • Wechtersbach, L., Ulrih, N.P., Cigic, B., 2012. Liposomal stabilization of ascorbic acid in model systems and in food matrices. LWT-Food Science and Technology 45(1): 43-49.
  • Hideshima, T., Kato, Y., 2006. Oscillatory reaction of catalase wrapped by liposome. Biophysical Chemistry 124(2):100-105.
  • Barenholz, Y., 2001. Liposome application: problems and prospects. Current Opinion in Colloid & Interface Science 6(1): 66-77.
  • Hsieh, Y.F., Chen, T.L. Wang, Y.T., Chang, J.H., Chang, H.M., 2002. Properties of liposomes prepared with various lipids. Journal of Food Science 67(8): 2808-2813.
  • Picon, A., Gaya, P., Medina, M., Nunez, M., 1994. The effect of liposome encapsulation of chymosin derived by fermentation on Manchego cheese ripening. Journal of Dairy Science 77(1): 16-23.
  • Malheiros, P.D., Daroit, D.J., Brandelli, A., 2010. Food antimicrobial peptides. Trends in Food Science & Technology 21(6): 284-292.
  • Thanonkaew, A., Benjakul, S., Visessanguan, W., Decker, E.A., 2007. Yellow discoloration of the liposome system of cuttlefish (Sepia pharaonis) as influenced by lipid oxidation. Food Chemistry 102(1): 219-224.
  • Rasti, B., S. Jinap, M.R. Mozafari, and A.M. Yazid, 2012. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated conventional and Mozafari methods. Food Chemistry 135(4): 2761-2770. prepared with
  • Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Cleymand, F., Linder, M., 2012. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine. Food Chemistry 134(2): 632-640.
  • Mozafari, M.R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z.E., Singh, H., 2006. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture 86(13): 2038-2045.
  • Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A., Yurdugul, S., 2008. Encapsulation Nanoliposome Technology. International Journal of Food Properties 11(4): 833-844. Using
  • Singh, A.K., Das, J., 1998. Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophysical Chemistry 73(1-2): 155-162.
  • Zhang, X.X., Guo, S.Y., Fan, R., Yu, M.R., Li, F.F., Zhu, C.L., Gan, Y., 2012. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 33(29): 7103-7114.
  • Hickey, S.R., Roberts, H.J., Miller, N.J., 2008. Pharmacokinetics of oral vitamin C. Journal of Nutritional and Environmental Medicine 17(3): 169- 177.
  • Marsanasco, M., Marquez, A.L., Wagner, J.R., Alonso, S.D., Chiaramoni, N.S., 2011. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International 44(9): 3039-3046.
  • Fennema, O.R., 1996. Food Chemistry, Third Edition. 1996: Taylor & Francis.
  • Grit, M. and J.A. Crommelin, 1993. Chemical- stability of liposomes - implications for their physical stability. Chemistry and Physics of Lipids 64(1-3): 3- 18.
  • Reineccius, G.A., 1995. Liposomes for controlled- release in the food-industry. Encapsulation and Controlled Release of Food Ingredients 590: 113- 131.
  • Meisner, D., Mezei, M., 1995. Liposome ocular delivery systems. Advanced Drug Delivery Reviews 16(1): 75-93.
  • Torchilin, V.P., Weissig, V., 2003. Liposomes: A Practical Approach. 2003: OUP Oxford.
  • Fang, Z.X., Bhandari, B., 2010. Encapsulation of polyphenols - a review. Trends in Food Science & Technology 21(10): 510-523.
  • Lasch, J., Berdichevsky, V.R., Torchilin, V.P., Koelsch, R., Kretschmer, K., 1983. A method to measure critical detergent parameters - preparation of liposomes. Analytical Biochemistry 133(2): 486- 491.
  • W.W., C. 2013. Phosphatidylcholine and related lipids structure, occurrence, biochemistry and analysis. 2013 [October 10, 2013]; Available from: http://lipidlibrary.aocs.org/Lipids/pc/index.htm.
  • Koynova, R., Caffrey, M., 1998. Phases and phase transitions of the phosphatidylcholines. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1376(1): 91-145.
  • Sulkowski, W.W., Pentak, D., Nowak, K., Sulkowska, A., 2005. The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure 744: 737-747.
  • Barenholz, Y., Gibbes, D., Litman, B.J., Goll, J., Thompson, T.E., Carlson, F.D., 1977. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 16(12): 2806- 2810.
  • Woodle, M.C., Papahadjopoulos, D., 1989. Liposome preparation and size characterization. Methods in Enzymology 171: 193-217.
  • Payne, N.I., Browning, I., Hynes, C.A., 1986. Characterization of proliposomes. Journal of Pharmaceutical Sciences 75(4): 330-333.
  • Rodriguez, R.B., Xamani, M.S., 2003. Liposomes prepared Liposomes: Part A 367: 28-46. homogenizers.
  • Memoli, A., Palermiti, L.G., Travagli, V., Alhaique, F., 1995. Egg and soya phospholipids - sonication and dialysis - a study on liposome characterization. International Journal of Pharmaceutics 117(2): 159- 163.
  • Barnadas-Rodriguez, R., Sabes, M., 2001. Factors involved in the production of liposomes with a high- pressure homogenizer. International Journal of Pharmaceutics 213(1-2): 175-186.
  • Kulshreshtha, A.K., Singh, O.N., Wall, G.M., 2009. Pharmaceutical Suspensions: From Formulation Development to Manufacturing. 2009: Springer.
  • Cho, E.C., Lim, H.J., Shim, J., Kim, J., Chang, I.S., 2007. Improved stability of liposome in oil/water emulsion by association of amphiphilic polymer with liposome and its effect on bioactive skin permeation. Physicochemical and Engineering Aspects 299(1- 3): 160-168. and Surfaces a
  • Foradada, M., Pujol, M.D., Bermudez, J., Estelrich, J., 2000. Chemical degradation of liposomes by serum components detected by NMR. Chemistry and Physics of Lipids 104(2): 133-148.
  • Wang, T., Deng, Y.J., Geng, Y.H., Gao, Z.B., Zou, H.P., Wang, Z.Z., 2006. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochimica Et Biophysica Acta- Biomembranes 1758(2): 222-231.
  • Gregoriadis, G., Bacon, A., Caparros-Wanderley, W., and McCormack, B., 2003. Plasmid DNA vaccines: dehydration-rehydration. Liposomes: Part A 367: 70-80. into liposomes by Colloids and Surfaces B
  • Makino, K., Yamada, T., Kimura, M., Oka, T., Ohshima, H., Kondo, T., 1991. Temperature- induced and ionic strength-induced conformational- changes in the lipid head group region of liposomes as suggested by zeta-potential data. Biophysical Chemistry 41(2): 175-183.
  • Angelini, G., Boncompagni, S., De Maria, P., De Nardi, M., Fontana, A., Gasbarri, C., Menna, E., 2007. Layer-by-layer deposition of shortened nanotubes or polyethylene glycol-derivatized nanotubes on liposomes: A tool for increasing liposome stability. Carbon 45(13): 2479-2485.
  • Volodkin, D.V., Michel, M., Schaaf, P., Voegel, J.C., Möhwald, H., Ball, V., 2008. Chapter 1 Liposome Embedding into Polyelectrolyte Multilayers: A New Way to Create Drug Reservoirs at Solid‐Liquid Interfaces, in Advances in Planar Lipid Bilayers and Liposomes, A.L.L. Professor Dr, Editor. 2008, Academic Press. p. 1-25.
  • Blomberg, E., Claesson, P.M., Warnheim, T., 1999. Surface interactions in emulsions and liposome solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 159(1): 149-157.
  • Guo, J., Ping, Q., Jiang, G., Huang, L., Tong, Y., 2003. Chitosan-coated liposomes: characterization and interaction with leuprolide. International Journal of Pharmaceutics 260(2): 167-173.
  • Masterjohn, C., 2005. Cholesterol's Importance to the Cell Membrane. http://www.cholesterol-and- health.com/Cholesterol-Cell-Membrane.html
  • Fridjonsson, E.O., Flux, L.S., Johns, M.L., 2012. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument. Journal of Magnetic Resonance 221: 97-102.
  • Denkova, P.S., Tcholakova, S., Denkov, N.D., Danov, K.D., Campbell, B., Shawl, C., Kim, D., 2004. Evaluation of the precision of drop-size determination in oil/water emulsions by low- resolution NMR spectroscopy. Langmuir 20(26): 11402-11413.
  • Shimanouchi, T., Ishii, H., Yoshimoto, N., Umakoshi, H., Kuboi, R., 2009. Calcein permeation across phosphatidylcholine bilayer membrane: Effects of membrane fluidity, liposome size, and immobilization. Biointerfaces 73(1): 156-160. and Surfaces B
  • Berger, N., Sachse, A., Bender, J., Schubert, R., Brandl, M., 2001. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation characteristics. Pharmaceutics 223(1-2): 55-68. and process Journal of
  • Cho, E.C., Lim, H.J., Kim, H.J., Son, E.D., Choi, H.J., Park, J.H., Kim, J.W., Kim, J., 2009. Role of pH-sensitive enhancing cellular uptake of biologically active drugs. Materials Science & Engineering C- Biomimetic and Supramolecular Systems 29(3): 774-778. complex in
  • Sroda, K., Michalak, K., Maniewska, J., Grynkiewicz, G., Szeja, W., Zawisza, J., Hendrich, A.B., 2008. Genistein derivatives decrease liposome membrane integrity - Calcein release and molecular modeling study. Biophysical Chemistry 138(3): 78-82.
  • Castile, J.D., Taylor, K.M.G., Buckton, G., 1999. A high sensitivity differential scanning calorimetry study of the interaction between poloxamers and dimyristoylphosphatidylcholine dipalmitoylphosphatidylcholine International Journal of Pharmaceutics 182(1): 101- 110. and liposomes.
  • Voinova, M.V., Galkin, V.L., Kosevich, A.M., 1990. Kinetics of liposome volume and permeability changes during the lipid phase-transitions. Bioelectrochemistry and Bioenergetics 24(2): 143- 154.
  • Lundahl, P., Beigi, F., 1997. Immobilized liposome chromatography of drugs for model analysis of drug-membrane interactions. Advanced Drug Delivery Reviews 23(1-3): 221-227.
  • Min, B., Nam, K.C., Ahn, D.U., 2010. Catalytic mechanisms of metmyoglobin on the oxidation of lipids in phospholipid liposome model system. Food Chemistry 123(2): 231-236.
  • Yu, H.Y., Liao, H.M., 1996. Triamcinolone permeation from different liposome formulations through rat skin in vitro. International Journal of Pharmaceutics 127(1): 1-7.
  • Betz, G., Aeppli, A., Menshutina, N., Leuenberger, H., 2005. In vivo comparison of various liposome formulations for cosmetic application. International Journal of Pharmaceutics 296(1-2): 44-54.
  • Yarosh, D., Klein, J., 1996. The role of liposomal delivery in cutaneous DNA repair. Advanced Drug Delivery Reviews 18(3): 325-333.
  • Tseng, W.C., Huang, L., 1998. Liposome-based gene Technology Today 1(5): 206-213. Science &
  • Law, B.A., King, J.S., 1985. Use of liposomes for proteinase addition to cheddar cheese. Journal of Dairy Research 52(1): 183-188.
  • Kirby, C.J., Brooker, B.E., Law, B.A., 1987. Accelerated ripening of cheese using liposome- encapsulated enzyme. International Journal of Food Science and Technology 22(4): 355-375.
  • Kheadr, E.E., Vuillemard, J.C., El-Deeb, S.A., 2003. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Research International 36(3): 241-252.
  • Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., Mortazavian, A.M., 2013. Stability and catalytic kinetics of protease loaded liposomes. Biochemical Engineering Journal 72: 11- 17.
  • Picon, A., Gaya, P., Medina, M., Nunez, M., 1997. Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnology Letters 19(4): 345-348.
  • Kheadr, E.E., Vuillemard, L.C., El-Deeb, S.A., 2002. Acceleration of cheddar cheese lipolysis by using liposome-entrapped lipases. Journal of Food Science 67(2): 485-492.
  • Banville, C., Vuillemard, J.C., Lacroix, C., 2000. Comparison of different methods for fortifying Cheddar cheese with vitamin D. International Dairy Journal 10(5-6): 375-382.
  • Matsuzaki, M., Mccafferty, F., Karel, M., 1989. The effect of cholesterol content of phospholipid- vesicles on the encapsulation and acid resistance of beta-galactosidase from Escherichia coli. International Journal of Food Science and Technology 24(4): 451-460.
  • Rao, D.R., Chawan, C.B., Veeramachaneni, R., 1995. galactosidase - comparison of 2 methods of encapsulation and in-vitro lactose digestibility. Journal of Food Biochemistry 18(4): 239-251.
  • Niu, Y.M., Ke, D., Yang, Q.Q., Wang, X.Y., Chen, Z.Y., An, X.Q., Shen, W.G., 2012. Temperature- dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chemistry 135(3): 1377-1382.
  • Ngo, K.X., Umakoshi, H., Shimanouchi, T., Sugaya, H., Kuboi, R., 2010. Chitosanase displayed on liposome can increase its activity and stability. Journal of Biotechnology 146(3): 105-113.
  • Degnan, A.J., Luchansky, J.B., 1992. Influence of beef tallow and muscle on the antilisterial activity of pediocin ach and liposome-encapsulated pediocin ach. Journal of Food Protection 55(7): 552-554.
  • Degnan, A.J., Buyong, N., Luchansky, J.B., 1993. Antilisterial activity of pediocin ach in model food systems in the presence of an emulsifier or encapsulated within liposomes. International Journal of Food Microbiology 18(2): 127-138.
  • Hansen, J.N., 1994. Nisin as a model food preservative. Critical Reviews in Food Science and Nutrition 34(1): 69-93.
  • Devos, W.M., Mulders, J.W.M., Siezen, R.J., Hugenholtz, J., Kuipers, O.P., 1993. Properties of nisin-Z and Distribution of its gene, nisz, in Lactococcus lactis. Applied and Environmental Microbiology 59(1): 213-218.
  • Laridi, R., Kheadr, E.E., Benech, R.O., Vuillemard, J.C., Lacroix, C., Fliss, I., 2003. Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. International Dairy Journal 13(4): 325-336.
  • Were, L.M., Bruce, B.D., Davidson, P.M., Weiss, J., 2003. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. Journal of Agricultural and Food Chemistry 51(27): 8073-8079.
  • Malheiros, P.D., Sant'Anna, V., Barbosa, M.D., Brandelli, A., Franco, B.D.G.D., 2012. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth
  • in Minas frescal cheese. International Journal of
  • Food Microbiology 156(3): 272-277.
There are 89 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Emrah Kırtıl

Mecit H Öztop This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 12 Issue: 4

Cite

APA Kırtıl, E., & Öztop, M. H. (2014). Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi. Akademik Gıda, 12(4), 41-57.
AMA Kırtıl E, Öztop MH. Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi. Akademik Gıda. December 2014;12(4):41-57.
Chicago Kırtıl, Emrah, and Mecit H Öztop. “Enkapsülasyon Maddesi Olarak Lipozom Ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi Ve Stabilitesi”. Akademik Gıda 12, no. 4 (December 2014): 41-57.
EndNote Kırtıl E, Öztop MH (December 1, 2014) Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi. Akademik Gıda 12 4 41–57.
IEEE E. Kırtıl and M. H. Öztop, “Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi”, Akademik Gıda, vol. 12, no. 4, pp. 41–57, 2014.
ISNAD Kırtıl, Emrah - Öztop, Mecit H. “Enkapsülasyon Maddesi Olarak Lipozom Ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi Ve Stabilitesi”. Akademik Gıda 12/4 (December 2014), 41-57.
JAMA Kırtıl E, Öztop MH. Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi. Akademik Gıda. 2014;12:41–57.
MLA Kırtıl, Emrah and Mecit H Öztop. “Enkapsülasyon Maddesi Olarak Lipozom Ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi Ve Stabilitesi”. Akademik Gıda, vol. 12, no. 4, 2014, pp. 41-57.
Vancouver Kırtıl E, Öztop MH. Enkapsülasyon Maddesi Olarak Lipozom ve Gıdalarda Kullanımı: Yapısı, Karakterizasyonu, Üretimi ve Stabilitesi. Akademik Gıda. 2014;12(4):41-57.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).