BibTex RIS Cite

General Characteristics and Current Classification of Gram-Positive Bacteriocins

Year 2012, Volume: 10 Issue: 4, 91 - 101, 01.12.2012

Abstract

Some bacteria including lactic acid bacteria LAB family synthesize antimicrobial agents whose property is to inhibit the growth of other competitive species that would occupy and grow in the same environment. One of the best known of these substances is bacteriocins. Especially, occurrence of bacteriocin-producing bacteria in food is quite common. Until now, it has not been easy to formulate a general and coherent classification models that encompasses all of the existing bacteriocins. In this review, in addition to classical classification models for Gram-positive bacteriocins in the literature, new classification schemes generated by structure-based sequence fingerprint was mentioned. Information on bacteriocins, which are promising anti-infective agents and used in food preservation, food safety or for improving new drugs for medical use, has been developing day by day as a result of the current models put forward by the classification methods. Establishment of sufficient and consistent classification model for classification is very important for researchers especially working in the field of bacteriocins

References

  • Mills, S., Stanton, C., Hill, C., Ross, R.P., 2011. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology 2: 299-329.
  • Nes, I.F., Yoon, S., Diep, D.B., 2007. Ribozomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria. Food Scince and Biotechnology 16(5): 675-690.
  • De Martinis, E.C.P., Alves, V.F., Franco, B.D.G.M., 2002. Fundamentals and perspectives for use of bacterocins produced by lactic acid bacteria in meat products. Food Review International 18: 191-208.
  • Pasteur, L., Joubert, J., 1877. Charbon et septicemic. Les Comptes rendus de l'Académie des Sciences 85: 101-115.
  • Gratia, A., 1925. Sur un remarquable exemple d'antagonisms entre souches de colibacile. In Bacteriocins of lactic acid bacteria, Edited by L. De Vuyst, E. J.,Vandamme, Blackie Academic and Professional, England, 6-7p.
  • Gratia, A., Fredericq, P., 1946. Diversité des souches antibiotiques de E. coli et étendue variable de leur champs d'action. Comptes Rendus des Seances de la Societe de Biologie 140: 1032-1033.
  • Jacob, F., Lwoff, A., Siminovitch, A. and Wollman, E.L., 1953. Definition de quelques terms relatifs a la lysogenie. In Bacteriocins of lactic acid bacteria. Edited by L. De Vuyst, E. J.,Vandamme, Blackie Academic and Professional, England, 6-7p.
  • Tagg, J.R., Dajani, A.S., Wannamaker, L.W., 1976. Bacteriocins of Gram-positive bacteria. Bacteriology Reviews 40: 722-756.
  • Klaenhammer, T.R., 1988. Bacteriocins of lactic acid bacteria. Biochemistry 70: 337-349.
  • Jack, R.W., Tagg, J.R., Ray, B, 1995. Bacteriocins of Gram-positive bacteria. Microbiology Reviews 59: 171-200.
  • Kiran, F., 2012. Bir laktik asit bakterisi olan Pediococcus endüstriyel yaklaşımlar,Doktora tezi, 190p. suşu açısından farklı
  • Cuesta, M.C.M., Kok, J., Herranz, E., Pelaez, C., Requena, T., Buist, G., 2000. Requirement of autolytic activity for bacteriocin-induced lysis. Applied and Environmental Microbiology 66(8): 3174-3179.
  • Hechard, Y., Sahl, H.G., 2002. Mode of action of modified and unmodified bacteriocins from Gram- positive bacteria. Biochimie 84: 545-557.
  • Hsu Hsu, S.T., Breukink, E., de Kruijff, B., Kaptain, R., Bonvin, A. M., Nuland, N.A., 2002. Mapping the targeted membrane pore formation mechanism by solition NMR: the nisin Z end lipid II interaction in SDS micelles. Biochemistry 41: 7670-7676.
  • Kumar, B., Balgir, P.P., Kaur, B., Garg, N., 2011. Cloning and expression of bacteriocins of Pediococcus spp.: A review. Archieves of Clinical Microbiology 2(3): 1-18.
  • Engelke, G., Gutowski-Eckel, Z., Hammelmann, M., Entian, K.D., 1992. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the nisB protein. Applied and Environmental Microbiology 8(11): 3730-3743.
  • Nishie, M., Nagao, J., Sonomoto, K., 2012. Antibacterial peptides “ bacteriocins” an overview of their diverse characteristics and applications. Biocontrol Science 17(1): 1-16
  • Delves-Broughton, J., 1990. Nisin and its application as a food preservative. Journal of the Society of Dairy Technology 43 (3): 73-76.
  • O’Sullivan, L., Ross, R.P., Hill, C., 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84: 593-604.
  • Eijsink, V.G.H., Skeie, M., Middelhoven, H.P., Brurberg, M.B., Nes, I.F., 1998. Comparative studies of class IIa bacterocins of lactic acid bacteria. Applied and Environmental Microbiology 9: 3275- 3281.
  • Papagianni, M., Anastasiadou, S., 2009. Pediocins: The production, properties and applications. Microbial Cell Factories 8 (3): 1-16. Pediococci. Sources
  • Geis, AA., Singh, J., Teuber, M., 1983. Potential of lactic Streptococci to produce bacteriocin. Applied and Environmental Microbiology 45: 205- 211.
  • Kozak, W., Bardowski, J., Dobrzanski, W.T., 1978. Lacto-strpcins-acid bacteriocins produced by lactic streptococci. Journal of Dairy Researches 45: 247- 257.
  • Klaenhammer, T.R., 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12: 39-85.
  • Cotter, P.D., Hill, C. and Ross, R.P., 2005. Bacteriocins: developing innate immunity for food. Nature Reviews of Microbiology 3: 777-788.
  • Rea, M.C., Ross, R.P., Cotter, P.D., Hill, C. 2011. Classification of bacteriocins from Gram-positive bacteria. In Prokaryotic antimicrobial peptides from genes to applications, Edited by D. Drider, S. Rebuffat, Springer, USA, 29-53p.
  • Jeevaratnam, K., Jamuna, M., Bawa A.S., 2005. Biological preservation of foods-Bacteriocin of lactic acid bacteria. Indian Journal of Biotechnology 4: 446-454.
  • Twomey, D., Ross, R.P., Ryan, M., Meaney, B., Hill, C., 2002. Lantibiotics produced by lactic acid bacteria: structure, function and applications. In Lactic acid bacteria: genetics, metabolism and applications, Edited by R.J. Sizezen, J. Kok, T. Abee, G. Schaafsma, Kluwer Academic Publishers, Dordrecht, 165-185p.
  • Oscariz, J.C., Pisabarro, A.G., 2001. Classification and mode of action of membrane-active bacteriocins produced by Gram positive bacteria. International Microbiology 4: 13-19.
  • Wiley, J.M., Van der , W.A., 2007. Lantibiotics: peptides of diverse structure and function. Annual Reviews of Microbiology 61: 477-501.
  • Heng, N.C.K., Wescobre, P.A., Burton, J.P., Jack, R.W., Tang, J.R., 2007. The diversity of bacteriocins Bacteriocins: Ecology and Evolution, Edited by M.A. Riley, M.A. Chavan, Springer, Berlin, 39-63p.
  • Pag, U., Sahl, H.G., 2002. Multiple activities in lantibiotics–models for the design of novel antibiotics? Current Pharmaceutical Design 8: 815- 833.
  • Wescombe, P.A., Upton, M., Dierksen, K.P., Ragland, N.L., Sivabalan, S., Wirawan, R.E., Inglis, M.A., Moore, C.J., Walker, G.V., Chilcott, C.N., Jenkinson, H.F., Tagg, J.R., 2006. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Applied and Environmental Microbiology 72: 1459-1466.
  • Ross, K.F., Ronson, C.W., Tagg, J.R., 1993. Isolation and characterizationof the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Applied and Environmental Microbiology 59: 2014-2021.
  • Krull, R.E., Chen, P., Novak, J., Kirk, M., Barnes, S., Baker, J., Krishna, N.R., Caufield, P.W., 2000. Biochemical structural analysis of the lantibiotic mutacin II. Journal of Biology and Chemistry 275: 15845-15850.
  • Georgalaki, M.D., Van Den Berghe, E., Kritikos, D., Devreese, B., Van Beeumen, J., Kalantzopoulos, G., De Vuyst, L., Tsakalidou, E., 2002. Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus Environmental Microbiology 68: 5891-5903. 198. Applied and
  • Leuconostoc mesenteroides. Journal of General
  • Microbiology 138: 2725-2731.
  • Henderson, J.T., Chopko, A.L., Van Wasserman, P.D., 1992. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0. Archives of Biochemistry and Biophysics 295: 5-12.
  • Nieto-Lozano, J.C., Reguera-Useros, J.I., Pelaez- Martinez, M.C., Sacristan-Perez-Minayo, G., Gutierrez-Fernandez, A.J., De La Torre, A.H., 2010. The effect of the pediocin PA-1 produced by Pediococcus monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21: 679-685. against Listeria
  • Tichaczek, P.S., Nissenmeyer, J., Nes, I.F., Vogel, R.F., Hammes, W.P., 1992. Characterization of the bacteriocins curvacin a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Systematic and Applied Microbiology 15: 460-468.
  • Aymerich, T., Holo, H., Havarstein, L.S., Hugas, M., Garriga, M., Nes, I.F., 1996. Biochemical and genetic characterization of enterocin A from Enterococcus bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology 62: 1676- 1682. a new antilisterial
  • Motlagh, A.M., Hola, S., Johnson, M.C., Ray, B., Field R.A., 1992. Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. Journal of Food Protection 55(5): 337-343.
  • Vanderbergh, P.A., 1991. Pediocin PA-1 produced by Pediococcus acidilactici. Annual Meeting: Society for Industrial Microbiology, August 4-9, 1991, Philadelphia, PA, Book of Proceedings, Abstract S101p.
  • Hill, C., Nes, I.N., Ross, R.P. 2011. Bacteriocins. The 10th LAB Symposium: Thirty years of Research on Lactic acid bacteria, August 28- September, 2011, Netherlands, 37-56p.
  • Papagianni, M., 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology Advance 21: 465-499.
  • Derksen, D.J., Boudreau, M.A., Vederas, J.C., 2008. Hydrophobic interactions as substitutes for a conserved disulfide linkage in the type IIa bacteriocins, leucocin A and pediocin PA-1. Chemistry and Biochemistry 9: 1898-1901.
  • Nes, I.F., Holo, H., Fimland, G., Hauge, H.H., Nissen-Meyer, J., 2002. Unmodified peptide- bacteriocins (Class II) produced by lactic acid bacteria. In Peptide antibiotics: discovery, modes of action and applications, Edited by C.J. Dutton, M.A. Haxel, H.A.I McArthur, R.G. Wax, Marcel Dekker, New York, 81-115p.
  • Mogi, T., Kita, K., 2009. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cellular and Molecular Life Science 66: 3821-3826.
  • Jimenez, M.A, Barrachi-Saccilotto, A.C., Valdivia, E., Maqueda, M., Rico, M., 2005. Design, NMR characterization and activityof a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. Journal of Peptide Science 11: 29-36.
  • Van Belkum, M.J., Martin-Visscher, L.A., Vederas, J.C., 2011. Structure and genetics of circular bacteriocins. Trends in Microbiology 19(8): 411- 418.
  • Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., Kok, J., 2003. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied and Environmental Microbiology 69: 1589-1597. [63] Joerger, M.C.
  • Klaenhammer, T.R., 1986.
  • Characterization and purification of helveticin J and
  • evidence for a chromosomally determined
  • bacteriocin produced by Lactobacillus helveticus
  • Journal of Bacteriology 167: 439-446.
  • Valdes-Stauber, N., Scherer, S., 1994. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Applied and Environmental Microbiology 60: 3809-3814.
  • Simmonds, R.S., Simpson, W.J., Tagg, J.R. 1997. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189: 255-261.
  • Beukes, M., Bierbaum, G., Sahl, H.G, Hastings, J.W., 2000. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Applied and Environmental Microbiology 66: 23-28.
  • Hickey, R.M., Twomey, D.P., Ross, R.P., Hill, C., 2003. Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149: 655-664.
  • Axelsson, L.T. 1993. Lactic acid bacteria: classification and physiology. In lactic acid bacteria, Edited by S. Salminen, A. Vonwright, Marcel Dekker Inc., Newyork, 433p.
  • Eijsink, V.G.H., Axelsson, L., Diep, D.B., Havarstein, L.S., Holo, H., Nes, I.F., 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81: 639-654.
  • Hammami, R., Zouhir, A., Ben Hamida, J., Fliss, I., 2007. BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiology 7: 8-9.
  • Hammami, R., Zouhir, A., Naghmouchi, K., Ben Hamida, J., Fliss, I., 2007. SciDBMaker: new software for computer-aided design of specialized biological databases. BMC Bioinformatics 9: 121.
  • Zouhir, A., Hammami, R., Fliss, I., Hamida, J.B., 2010. A new structure-based classification of Gram- positive bacteriocins. Protein Journal 29: 432-439.
  • http://bactibase.pfba-lab-tun.org/main.php, BACTIBASE, erişim tarihi:01.05.2012
  • Larsen, A.G., Vogensen, F.K., Josephsen, J., 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Journal of Applied Bacteriology 75: 113-122.
  • Kaiser, A.L., Montville, T.J., 1996. Purification of the
  • bacteriocin bavaricin MN and characterization of its
  • mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Applied and Environmental
  • Microbiology 62: 4529-4535.

Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması

Year 2012, Volume: 10 Issue: 4, 91 - 101, 01.12.2012

Abstract

Laktik asit bakteri LAB familyası bazı üyelerinin de dahil olduğu bakteriler, aynı çevrede yaşayan ya da o çevreyi işgal eden diğer yarışmacı bakterilerin gelişimini engelleme özelliğine sahip antimikrobiyal maddeler sentezlemektedirler. Bu maddelerden en iyi bilineni bakteriyosinlerdir. Özellikle bakteriyosin üreten bakterilerin gıdalardaki varlığı son derece yaygındır. Mevcut tüm bakteriyosinleri kapsayan genel ve tutarlı bir sınıflandırma modeli formüle etmek bugüne kadar kolay olmamıştır. Bu derleme çalışmasında, Gram-pozitif bakteriyosinler için literatürde yer alan güncel klasik sınıflandırma sistemlerine ilaveten, yapı-temelli dizi parmak izi yöntemi ile oluşturulan yeni sınıflandırma modellerinden bahsedilmiştir. Gıda korunmasında, gıda güvenliğinde ve yeni ilaçlar geliştirmek amacıyla tıp alanında kullanılan ve anti-enfektif ajanlar olarak umut vaat eden bakteriyosinlerle ilgili bilgiler, sınıflandırma yöntemlerinin ortaya koyduğu güncel modeller neticesinde gün geçtikçe gelişme göstermektedir. Sınıflandırma için tutarlı ve yeterli bir sınıflandırma modelinin oluşturulması ise özellikle bakteriyosin alanında çalışan araştırmacılar için oldukça önemlidir

References

  • Mills, S., Stanton, C., Hill, C., Ross, R.P., 2011. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology 2: 299-329.
  • Nes, I.F., Yoon, S., Diep, D.B., 2007. Ribozomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria. Food Scince and Biotechnology 16(5): 675-690.
  • De Martinis, E.C.P., Alves, V.F., Franco, B.D.G.M., 2002. Fundamentals and perspectives for use of bacterocins produced by lactic acid bacteria in meat products. Food Review International 18: 191-208.
  • Pasteur, L., Joubert, J., 1877. Charbon et septicemic. Les Comptes rendus de l'Académie des Sciences 85: 101-115.
  • Gratia, A., 1925. Sur un remarquable exemple d'antagonisms entre souches de colibacile. In Bacteriocins of lactic acid bacteria, Edited by L. De Vuyst, E. J.,Vandamme, Blackie Academic and Professional, England, 6-7p.
  • Gratia, A., Fredericq, P., 1946. Diversité des souches antibiotiques de E. coli et étendue variable de leur champs d'action. Comptes Rendus des Seances de la Societe de Biologie 140: 1032-1033.
  • Jacob, F., Lwoff, A., Siminovitch, A. and Wollman, E.L., 1953. Definition de quelques terms relatifs a la lysogenie. In Bacteriocins of lactic acid bacteria. Edited by L. De Vuyst, E. J.,Vandamme, Blackie Academic and Professional, England, 6-7p.
  • Tagg, J.R., Dajani, A.S., Wannamaker, L.W., 1976. Bacteriocins of Gram-positive bacteria. Bacteriology Reviews 40: 722-756.
  • Klaenhammer, T.R., 1988. Bacteriocins of lactic acid bacteria. Biochemistry 70: 337-349.
  • Jack, R.W., Tagg, J.R., Ray, B, 1995. Bacteriocins of Gram-positive bacteria. Microbiology Reviews 59: 171-200.
  • Kiran, F., 2012. Bir laktik asit bakterisi olan Pediococcus endüstriyel yaklaşımlar,Doktora tezi, 190p. suşu açısından farklı
  • Cuesta, M.C.M., Kok, J., Herranz, E., Pelaez, C., Requena, T., Buist, G., 2000. Requirement of autolytic activity for bacteriocin-induced lysis. Applied and Environmental Microbiology 66(8): 3174-3179.
  • Hechard, Y., Sahl, H.G., 2002. Mode of action of modified and unmodified bacteriocins from Gram- positive bacteria. Biochimie 84: 545-557.
  • Hsu Hsu, S.T., Breukink, E., de Kruijff, B., Kaptain, R., Bonvin, A. M., Nuland, N.A., 2002. Mapping the targeted membrane pore formation mechanism by solition NMR: the nisin Z end lipid II interaction in SDS micelles. Biochemistry 41: 7670-7676.
  • Kumar, B., Balgir, P.P., Kaur, B., Garg, N., 2011. Cloning and expression of bacteriocins of Pediococcus spp.: A review. Archieves of Clinical Microbiology 2(3): 1-18.
  • Engelke, G., Gutowski-Eckel, Z., Hammelmann, M., Entian, K.D., 1992. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the nisB protein. Applied and Environmental Microbiology 8(11): 3730-3743.
  • Nishie, M., Nagao, J., Sonomoto, K., 2012. Antibacterial peptides “ bacteriocins” an overview of their diverse characteristics and applications. Biocontrol Science 17(1): 1-16
  • Delves-Broughton, J., 1990. Nisin and its application as a food preservative. Journal of the Society of Dairy Technology 43 (3): 73-76.
  • O’Sullivan, L., Ross, R.P., Hill, C., 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84: 593-604.
  • Eijsink, V.G.H., Skeie, M., Middelhoven, H.P., Brurberg, M.B., Nes, I.F., 1998. Comparative studies of class IIa bacterocins of lactic acid bacteria. Applied and Environmental Microbiology 9: 3275- 3281.
  • Papagianni, M., Anastasiadou, S., 2009. Pediocins: The production, properties and applications. Microbial Cell Factories 8 (3): 1-16. Pediococci. Sources
  • Geis, AA., Singh, J., Teuber, M., 1983. Potential of lactic Streptococci to produce bacteriocin. Applied and Environmental Microbiology 45: 205- 211.
  • Kozak, W., Bardowski, J., Dobrzanski, W.T., 1978. Lacto-strpcins-acid bacteriocins produced by lactic streptococci. Journal of Dairy Researches 45: 247- 257.
  • Klaenhammer, T.R., 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12: 39-85.
  • Cotter, P.D., Hill, C. and Ross, R.P., 2005. Bacteriocins: developing innate immunity for food. Nature Reviews of Microbiology 3: 777-788.
  • Rea, M.C., Ross, R.P., Cotter, P.D., Hill, C. 2011. Classification of bacteriocins from Gram-positive bacteria. In Prokaryotic antimicrobial peptides from genes to applications, Edited by D. Drider, S. Rebuffat, Springer, USA, 29-53p.
  • Jeevaratnam, K., Jamuna, M., Bawa A.S., 2005. Biological preservation of foods-Bacteriocin of lactic acid bacteria. Indian Journal of Biotechnology 4: 446-454.
  • Twomey, D., Ross, R.P., Ryan, M., Meaney, B., Hill, C., 2002. Lantibiotics produced by lactic acid bacteria: structure, function and applications. In Lactic acid bacteria: genetics, metabolism and applications, Edited by R.J. Sizezen, J. Kok, T. Abee, G. Schaafsma, Kluwer Academic Publishers, Dordrecht, 165-185p.
  • Oscariz, J.C., Pisabarro, A.G., 2001. Classification and mode of action of membrane-active bacteriocins produced by Gram positive bacteria. International Microbiology 4: 13-19.
  • Wiley, J.M., Van der , W.A., 2007. Lantibiotics: peptides of diverse structure and function. Annual Reviews of Microbiology 61: 477-501.
  • Heng, N.C.K., Wescobre, P.A., Burton, J.P., Jack, R.W., Tang, J.R., 2007. The diversity of bacteriocins Bacteriocins: Ecology and Evolution, Edited by M.A. Riley, M.A. Chavan, Springer, Berlin, 39-63p.
  • Pag, U., Sahl, H.G., 2002. Multiple activities in lantibiotics–models for the design of novel antibiotics? Current Pharmaceutical Design 8: 815- 833.
  • Wescombe, P.A., Upton, M., Dierksen, K.P., Ragland, N.L., Sivabalan, S., Wirawan, R.E., Inglis, M.A., Moore, C.J., Walker, G.V., Chilcott, C.N., Jenkinson, H.F., Tagg, J.R., 2006. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Applied and Environmental Microbiology 72: 1459-1466.
  • Ross, K.F., Ronson, C.W., Tagg, J.R., 1993. Isolation and characterizationof the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Applied and Environmental Microbiology 59: 2014-2021.
  • Krull, R.E., Chen, P., Novak, J., Kirk, M., Barnes, S., Baker, J., Krishna, N.R., Caufield, P.W., 2000. Biochemical structural analysis of the lantibiotic mutacin II. Journal of Biology and Chemistry 275: 15845-15850.
  • Georgalaki, M.D., Van Den Berghe, E., Kritikos, D., Devreese, B., Van Beeumen, J., Kalantzopoulos, G., De Vuyst, L., Tsakalidou, E., 2002. Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus Environmental Microbiology 68: 5891-5903. 198. Applied and
  • Leuconostoc mesenteroides. Journal of General
  • Microbiology 138: 2725-2731.
  • Henderson, J.T., Chopko, A.L., Van Wasserman, P.D., 1992. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0. Archives of Biochemistry and Biophysics 295: 5-12.
  • Nieto-Lozano, J.C., Reguera-Useros, J.I., Pelaez- Martinez, M.C., Sacristan-Perez-Minayo, G., Gutierrez-Fernandez, A.J., De La Torre, A.H., 2010. The effect of the pediocin PA-1 produced by Pediococcus monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21: 679-685. against Listeria
  • Tichaczek, P.S., Nissenmeyer, J., Nes, I.F., Vogel, R.F., Hammes, W.P., 1992. Characterization of the bacteriocins curvacin a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Systematic and Applied Microbiology 15: 460-468.
  • Aymerich, T., Holo, H., Havarstein, L.S., Hugas, M., Garriga, M., Nes, I.F., 1996. Biochemical and genetic characterization of enterocin A from Enterococcus bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology 62: 1676- 1682. a new antilisterial
  • Motlagh, A.M., Hola, S., Johnson, M.C., Ray, B., Field R.A., 1992. Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. Journal of Food Protection 55(5): 337-343.
  • Vanderbergh, P.A., 1991. Pediocin PA-1 produced by Pediococcus acidilactici. Annual Meeting: Society for Industrial Microbiology, August 4-9, 1991, Philadelphia, PA, Book of Proceedings, Abstract S101p.
  • Hill, C., Nes, I.N., Ross, R.P. 2011. Bacteriocins. The 10th LAB Symposium: Thirty years of Research on Lactic acid bacteria, August 28- September, 2011, Netherlands, 37-56p.
  • Papagianni, M., 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology Advance 21: 465-499.
  • Derksen, D.J., Boudreau, M.A., Vederas, J.C., 2008. Hydrophobic interactions as substitutes for a conserved disulfide linkage in the type IIa bacteriocins, leucocin A and pediocin PA-1. Chemistry and Biochemistry 9: 1898-1901.
  • Nes, I.F., Holo, H., Fimland, G., Hauge, H.H., Nissen-Meyer, J., 2002. Unmodified peptide- bacteriocins (Class II) produced by lactic acid bacteria. In Peptide antibiotics: discovery, modes of action and applications, Edited by C.J. Dutton, M.A. Haxel, H.A.I McArthur, R.G. Wax, Marcel Dekker, New York, 81-115p.
  • Mogi, T., Kita, K., 2009. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cellular and Molecular Life Science 66: 3821-3826.
  • Jimenez, M.A, Barrachi-Saccilotto, A.C., Valdivia, E., Maqueda, M., Rico, M., 2005. Design, NMR characterization and activityof a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. Journal of Peptide Science 11: 29-36.
  • Van Belkum, M.J., Martin-Visscher, L.A., Vederas, J.C., 2011. Structure and genetics of circular bacteriocins. Trends in Microbiology 19(8): 411- 418.
  • Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., Kok, J., 2003. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied and Environmental Microbiology 69: 1589-1597. [63] Joerger, M.C.
  • Klaenhammer, T.R., 1986.
  • Characterization and purification of helveticin J and
  • evidence for a chromosomally determined
  • bacteriocin produced by Lactobacillus helveticus
  • Journal of Bacteriology 167: 439-446.
  • Valdes-Stauber, N., Scherer, S., 1994. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Applied and Environmental Microbiology 60: 3809-3814.
  • Simmonds, R.S., Simpson, W.J., Tagg, J.R. 1997. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189: 255-261.
  • Beukes, M., Bierbaum, G., Sahl, H.G, Hastings, J.W., 2000. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Applied and Environmental Microbiology 66: 23-28.
  • Hickey, R.M., Twomey, D.P., Ross, R.P., Hill, C., 2003. Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149: 655-664.
  • Axelsson, L.T. 1993. Lactic acid bacteria: classification and physiology. In lactic acid bacteria, Edited by S. Salminen, A. Vonwright, Marcel Dekker Inc., Newyork, 433p.
  • Eijsink, V.G.H., Axelsson, L., Diep, D.B., Havarstein, L.S., Holo, H., Nes, I.F., 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81: 639-654.
  • Hammami, R., Zouhir, A., Ben Hamida, J., Fliss, I., 2007. BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiology 7: 8-9.
  • Hammami, R., Zouhir, A., Naghmouchi, K., Ben Hamida, J., Fliss, I., 2007. SciDBMaker: new software for computer-aided design of specialized biological databases. BMC Bioinformatics 9: 121.
  • Zouhir, A., Hammami, R., Fliss, I., Hamida, J.B., 2010. A new structure-based classification of Gram- positive bacteriocins. Protein Journal 29: 432-439.
  • http://bactibase.pfba-lab-tun.org/main.php, BACTIBASE, erişim tarihi:01.05.2012
  • Larsen, A.G., Vogensen, F.K., Josephsen, J., 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. Journal of Applied Bacteriology 75: 113-122.
  • Kaiser, A.L., Montville, T.J., 1996. Purification of the
  • bacteriocin bavaricin MN and characterization of its
  • mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Applied and Environmental
  • Microbiology 62: 4529-4535.
There are 72 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Fadime Kıran This is me

Özlem Osmanağaoğlu This is me

Publication Date December 1, 2012
Published in Issue Year 2012 Volume: 10 Issue: 4

Cite

APA Kıran, F., & Osmanağaoğlu, Ö. (2012). Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması. Akademik Gıda, 10(4), 91-101.
AMA Kıran F, Osmanağaoğlu Ö. Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması. Akademik Gıda. December 2012;10(4):91-101.
Chicago Kıran, Fadime, and Özlem Osmanağaoğlu. “Gram-Pozitif Bakteriyosinlerin Genel Özellikleri Ve Güncel Sınıflandırılması”. Akademik Gıda 10, no. 4 (December 2012): 91-101.
EndNote Kıran F, Osmanağaoğlu Ö (December 1, 2012) Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması. Akademik Gıda 10 4 91–101.
IEEE F. Kıran and Ö. Osmanağaoğlu, “Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması”, Akademik Gıda, vol. 10, no. 4, pp. 91–101, 2012.
ISNAD Kıran, Fadime - Osmanağaoğlu, Özlem. “Gram-Pozitif Bakteriyosinlerin Genel Özellikleri Ve Güncel Sınıflandırılması”. Akademik Gıda 10/4 (December 2012), 91-101.
JAMA Kıran F, Osmanağaoğlu Ö. Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması. Akademik Gıda. 2012;10:91–101.
MLA Kıran, Fadime and Özlem Osmanağaoğlu. “Gram-Pozitif Bakteriyosinlerin Genel Özellikleri Ve Güncel Sınıflandırılması”. Akademik Gıda, vol. 10, no. 4, 2012, pp. 91-101.
Vancouver Kıran F, Osmanağaoğlu Ö. Gram-Pozitif Bakteriyosinlerin Genel Özellikleri ve Güncel Sınıflandırılması. Akademik Gıda. 2012;10(4):91-101.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).