BibTex RIS Cite

Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves

Year 2009, Volume: 7 Issue: 6, 29 - 40, 01.12.2009

Abstract

Tea has been consumed literally for thousands of years and is recognized as a major source of polyphenols in human diet. Polyphenols comprising 20-40% of dry matter in young tea shoots are very important constituents of tea from an intrinsic quality point of view. They are responsible for the colour, flavour and brightness of tea. Recently, tea polyphenols have become a subject of intense studies by scientists throughout the world because of their health beneficial effects and potential uses. On the other hand, there are numerous factors affecting polyphenol structure of tea leaves, such as tea leaf variety, harvesting season, climate, processing method and analytical method. This review is presenting factors affecting polyphenol content and composition of in fresh and processed tea leaves, i.e., green and black teas

References

  • [1] Benzie, I.F.F., Szeto, Y.T., 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 47: 633-636.
  • [2] Rio, D.D., Stewart, A.J., Mullen, W., Burns, J., Lean, M.E.J., Brighenti, F., Crozier, A., 2004. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 52: 2807-2815.
  • [3] Bronner, W.E., Beecher, G.R., 1998. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromat. A. 805: 137-142.
  • [4] Liebert, M., Licht, U., Böhm, V., Bitsch, R., 1999. Antioxidant properties and total phenolics content of green and black tea under different brewing conditions. Z. Lebensm. Unters-Forsch. 208: 217- 220.
  • [5] Kilmartin, P.A., Hsu, C.F., 2003. Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry. Food Chem. 82: 501-512.
  • [6] Kuroda, Y., Hara, Y., 1999. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 436: 69-97.
  • [7] Sharma, V., Gulati, A., Ravindranath, S.D., Kumar, V., 2005. A simple and convenient method for analysis of tea bioghemicals by reverse phase HPLC. J. Food Comp. Anal. 18: 583-594.
  • [8] Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., Hara, Y., 1996. Scavenging effects of tea catechins and their derivatives on 1,1-Diphenyl-2- Picrylhydrazyl radical. Free Rad. Biol. Med. 21: 895- 902.
  • [9] Zandi, P., Gordon, M.H., 1999. Antioxidant activity of extracts from old tea leaves. Food Chem. 64: 285-288.
  • [10] Mello, L.D., Alves, A.A., Macedo, D.V., Kubota, L.T., 2004. Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem. 92: 515-519.
  • [11] Navas, P. B., Carrasquero-Durán, A., Iraima F., 2005. Effect of black tea, garlic and onion on corn oil stability and fatty acid composition under accelerated oxidation. Int. J. Food Sci. Tech. 40: 1- 5.
  • [12] Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K.P., Dexter, D.T., Aruoma, O.I., 2005. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int. 38: 357-367.
  • [13] Satoh, E., 2005. Ethyl acetate extract from black tea prevents neuromuscular blockade by botulinum neurotoxin type A in vitro. Inter. J. Food Sci Nutr. 56: 543-550.
  • [14] Farhoosh, R., Golmovahhed, G.A., Khodaparast, M.H.H., 2007. Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L). Food Chem. 100: 231-236.
  • [15] Yen, G., Chen, H., 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.
  • [16] Hour, T., Liang, Y., Chu, I., Lin, J., 1999. Inhibition of eleven mutagens by various tea extracts, (-) epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem. Toxicol. 37: 569-579.
  • [17] Shukla, Y., Taneja, P., 2001. Antimutagenic effect of black tea extract using ‘rodent dominant lethal mutation assay’. Toxicology 168: 269-274.
  • [18] Gupta, S., Chaudhuri, T., Seth, P., Ganguly, D.K., Giri, A.K., 2002. Antimutagenic effects of black tea (world blend) and its two active polyphenols theaflavins and thearubigins in Salmonella assays. Phytother. Res. 16: 655-661.
  • [19] Halder, B., Pramanick, S., Mukhopadhyoy, S., Giri, A. K., 2005. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity multiple test systems. Food Chem. Toxicol. 43: 591-597.
  • [20] Han, C., 1997. Screening of anticarcinogenic ingredients in tea polyphenols. Cancer Lett. 114: 153-158.
  • [21] Sarkar, A., Bhaduri, A., 2001. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem. Bioph.Comm. 284: 173-178.
  • [22] Zhu, Y., Huang, H., Tu, Y., 2006. A review of recent studies in China on the possible beneficial health effects of tea. Int. J. Food Sci. Tech. 41: 333-340.
  • [23] Chung, K.T., Lu, Z., Chou, M.W., 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol, 36: 1053-1060.
  • [24] Sakanaka, S., Juneja, L.R., Taniguchi, M., 2000. Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng. 90: 81-85.
  • [25] An, B., Kwak, J., Son, J., Park, J., Lee, Jo., C., Byun, M., 2004. Biological and anti-microbial activity of irradiated green tea polyphenols. Food Chem. 88: 549-555.
  • [26] Hara-Kudo., Y., Yamasaki, A., Sasaki, M., Okubo, T., Minai, Y., Haga, M., 2005. Antibacterial action on pathogenic bacterial spore by green tea catechins. J. Sci. Food Agric. 85: 2354-2361.
  • [27] Wu, S., Yen, G., Wang, B., Chiu, C., Yen, W., Chang, L., Duh, P., 2007. Antimutagenic and antimicrobial activities of pu-erh tea. LWT-Food Sci. Technol. 40: 506-512.
  • [28] Wang, H., Provan, G.J., Helliwell, K., 2000. Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci. Tech. 11: 152-160.
  • [29] Chen, Z. Y., Chan, P. T., 1996. Antioxidative activity of green tea catechins in canola oil. Chem. Phys. Lipids 82: 163-172.
  • [30] Yilmaz, Y., 2006. Novel uses of catechins in foods. Trends Food Sci. Tech. 17: 64-71.
  • [31] Tang, S., Kerry, J.P., Sheehan, D., Buckley, D.J., Morrissey, P.A., 2001. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res. Int. 34: 651-657.
  • [32] Nissen, L.R., Byrne, D.V., Bertelsen, G., Skibsted L. H., 2004. The antioxidant activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profilling and chemical analysis. Meat Sci. 68: 485-495.
  • [33] Leung, L.K., Su, Y., Chen, R., Zhang, Z., Huang, Y., Chen, Z., 2001. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131: 2248-2251.
  • [34] Hodgson, J. M., Proudfoot, J.M., Croft, K.D., Puddey, I.B., Mori, T.M., Beilin, L.J., 1999. Comparison of the effects of black and green tea on in vitro lipoprotein oxidation in human serum. J. Sci. Food Agric. 79: 561-566
  • [35] Caffin, N., D’Arcy, B., Yao, L., Rintoul, G., 2004. Developing an index of quality for Australian tea. RIRDC Publication No. 04/033, Project No. UQ88A, Publication of Rural Industries Research and Development Corporation, 192 pp., Australia.
  • [36] Gramza, A., Korczak, J., 2005. Tea constituents (Camellia sinensis L.) as antioxidant in lipid systems. Trends Food Sci. Tech. 16: 351-358.
  • [37] Obanda, M., Owuor, P.O., Mang’oka, R., Kavoi, M.M., 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 85: 163- 173.
  • [38] Yao, L., Jiang, Y., Datta, N., Singanusong, R., Liu, X., Duan, J., et al., 2004. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 84: 253-263.
  • [39] Borse, B. B., Rao, L.J.M., Nagalakshmi, S., Krishnamurthy, N., 2002. Fingerprint of black teas from India: identification of the regio-specific characteristics. Food Chem. 79: 419-424.
  • [40] Yoshida, Y., Kiso, M., Goto, T., 1999. Efficiency of the extraction of catechins from green tea. Food Chem. 67: 429-433.
  • [41] Obanda, M., Owuor, P.O., Mang’oka, R., 2001. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404.
  • [42] Wright, L.P., Mphangwe, N.I.K., Nyirenda, H.E., Apostolides, Z., 2002. Analysis of the theaflavin composition in black tea (Camellia sinensis) for predicting the quality of tea produced in Central and Southern Africa. J. Sci. Food Agric. 82: 517-525.
  • [43] Zuo, Y., Chen, H., Deng, Y., 2002. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57: 307-316.
  • [44] Wheeler, D.S., Wheeler, W.J., 2004. The medicinal chemistry of tea. Drug Develop. Res. 61: 45-65.
  • [45] Clifford, M.N., Copeland, E.L., Bloxsidge, J.P., Mitchell, L.A., 2000. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 30: 317-326.
  • [46] Heim, K.E. Tagliaferro, A.R., Bobilya, D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13: 572-584.
  • [47] Lin, Y., Juan, I., Chen, Y., Liang, Y., Lin, J., 1996. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J. Agric. Food Chem. 44: 1387-1394.
  • [48] Chen, Z., Wang, H., You, X., Xu, N., 2002. The chemistry of tea non-volatiles. In: Tea: Bioactivity and Therapeutic Potential. pp. 57-88. Zhen, Y., Eds., Boca Raton, FL, USA.
  • [49] Obanda M., Owuor P.O., 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74: 209-215.
  • [50] Aucamp, J.P., Hara, Y., Apostolides, Z., 2000. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography. J. Chromat. A. 876: 235-242.
  • [51] Owuor, P. O., Obanda, M., Nyirenda, H.E., Mphangwe, N.I.K., Wright, L.P., Apostolides, Z., 2006. The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem. 97: 644-653.
  • [52] Wang, J., Sporns, P., 2000. MALDI-TOF MS analysis of food flavonol glycosides. J. Agric. Food Chem. 48: 1657-1662.
  • [53] Wang, H., Helliwell, K., 2001. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res. Int. 34: 223-227.
  • [54] Tomlins, K.I., Mashingaidze, A., 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas-a review. Food Chem. 60: 573-580.
  • [55] Robertson, A., 1983. Effects of catechin concentration on the formation of black tea polyphenols during in vitro oxidation. Phytochem. 22: 897-903.
  • [56] Chen, C.N., Liang, C.M., Lai, J.R., Tsai, Y.J., Tsay, J.S., Lin, J.K., 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J. Agric. Food Chem. 51: 7495-7503.
  • [57] Lin, Y.S., Tsai, Y.J., Tsay, J.S., Lin, J.K., 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51: 1864–1873.
  • [58] Tüfekci, M., Güner, S., 1997. The determination of optimum fermentation time in Turkish black tea manufacture. Food Chem. 60: 53-56.
  • [59] Chou, C., Lin, L., Chung, K., 1999. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int. J. Food Microb. 48: 125-130.
  • [60] Ravichandran, R., Parthiban, R.,1998. The impact of mechanization of tea harvesting on the quality of south Indian CTC teas. Food Chem. 63: 61-64.
  • [61] Hilton, P.J., Palmer-Jones, R., 1973. Relationship between the flavanol composition of fresh tea shoots and the theaflavin content of manufactured tea. J. Sci. Food Agric. 24: 813-818.
  • [62] Saravanan, M., Maria John, K. M., Raj Kumar, R., Pius, P. K., Sasikumar, R., 2005. Genetic diversity of UPASI tea clones (Camellia sinensis (L.) O. Kuntze) on the basis of total catechins and their fractions. Phytochem. 66: 561-565.
  • [63] Owuor, P.O., Obanda, M., 2007. The use of green tea (Camellia sinensis) leaf flavan-3-ol composition in predicting plain black tea quality potential. Food Chem. 100: 873-884.
  • [64] Wright, L.P., Mphangwe, N.I.K., Nyirenda, H.E., Apostolides, Z., 2000. Analysis of caffeine and flavan-3-ol composition in the fresh leaf of Camellia sinesis for predicting the quality of the black teaproduced in Central and Southern Africa. J. Sci. Food Agric. 80: 1823-1830.
  • [65] Lopez, S.J., Thomas, J., Pius, P.K., Kumar, R.R., Muraleedharan, N., 2005. A reliable technique to identify superior quality clones from tea germplasm, Food Chem. 91: 771-778.
  • [66] Owuor, P. O., Obanda, M., 1999. The effects of blending clonal leaf on black tea quality. Food Chem. 66: 147-152.
  • [67] Chu, D.C., 1997. Green tea –its cultivation, processing of the leaves for drinking materials, and kinds of green tea. In: Chemistry and Applications of Green Tea. p. 1-6. Yamamoto, T., Juneja, L.R., Chu, D. and Kim, M., Eds., Boca Raton, New York, USA.
  • [68] Gulati, A., Rawat, R., Singh, B., Ravindranath, S.D., 2003. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 51: 4764-4768.
  • [69] [Goto, T., Yoshida, Y., Kiso, M., Nagashima, H., 1996. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromat. A. 749: 295- 299.
  • [70] Nishitani, E., Sagesaka, Y. M., 2004. Simultaneous determination of catechins caffeine and other phenolic compounds in tea using new HPLC method. J. Food Comp. Anal. 17: 675-685.
  • [71] Perva-Uzunalic, A., Skerget, M., Knez, Z., Weinreich, B., Otto, F., Grüner, S., 2006. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605.
  • [72] Chang, C. J., Chiu, K., Chen, Y., Chang, C., 2000. Separation of catechins from green tea using carbon dioxide extraction. Food Chem. 68: 109-113.
  • [73] Wang, H., Provan, G.J., You, X., 2000. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 68: 115-121.
  • [74] Wang, H.F., Tsai, Y.S., Lin, M.L., Ou, A.S., 2006. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem. 96: 648-653.
  • [75] Stewart, A.J., Mullen, W., Crozier, A., 2005. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol. Nutr. Food Res. 49: 52- 60.
  • [76] Liu, Z., Ma, L., Zhou, B., Yang, L., Liu, Z., 2000. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Physic. Lipids 106: 53-63.
  • [77] McDowell, I., Bailey, R.G., Howard, G., 1990. Flavonol glycosides in black tea. J. Sci. Food Agric. 53: 411-414.
  • [78] Dufresne, C.J., Farnworth, E.R., 2001. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 12: 404-421.
  • [79] Rice-Evans, C.A., Miller, N.J., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159.
  • [80] Chu, D.C., Juneja, L.R., 1997. General chemical composition of green tea and its infusion. In: Chemistry and Applications of Green Tea. p. 13-22. Yamamoto, T., Juneja, L.R., Chu, D. and Kim, M., Eds., Boca Raton, New York.
  • [81] Khokhar, S., Magnusdottir, S.G.M., 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric.Food Chem. 50: 565-570.
  • [82] Bonoli, M., Pelillo, M., Toschi, T. G., Lercker, G., 2003. Analysis of green tea catechins: comparative study between HPLC and HPCE. Food Chem. 81: 631-638.
  • [83] Xu, N., Chen, Z., 2002. Green tea, black tea and semi-fermented tea. In: Tea: Bioactivity and Therapeutic Potential. pp. 35-57. Zhen, Y., Eds., Boca Raton, FL, USA.
  • [84] Hara, Y., 2001. Green Tea: Health Benefits and Applications. p 36. Marcel Dekker Incorporated, NY, USA.
  • [85] Łuczaj, W., Skrzydlewska, E., 2005. Antioxidative properties of black tea. Prev. Med. 40: 910-918.
  • [86] Baruah, A.M., 2003. Fermentation characteristics of some Assamica clones and process optimization of black tea manufacturing. J. Agric. Food Chem. 51: 6575-6588.
  • [87] Lin, J.K., Lin, C.L., Liang, Y.C., Lin-Shiau, S.Y., Juan, I.M., 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46: 3635-3642.
  • [88] Borah, S., Bhuyan, M., 2005. A computer based system for matching colours during the monitoring tea fermentation. Int. J. Food Sci. Tech. 40: 675- 682.
  • [89] Bonnely, S., Davis, A.L., Lewis, J.R., Astill, C., 2003. A model oxidation system to study oxidised phenolic compounds present in black tea. Food Chem. 83: 485-492.
  • [90] Sanderson, G.W., Berkowitz, J.E., Co, H., Graham, H.N., 1972. Biochemistry of tea fermentation: Products of the oxidation of tea flavanols in a model tea fermentation system. J. Food Sci. 37: 399-404.
  • [91] Sang, S., Yang, C. S., Ho, C., 2004. Peroxidasemediated oxidation of catechins. Phytochem. Revs. 3: 229-241.
  • [92] Haslam, E. (2003). Thoughts on thearubigins. Phytochem. 64: 61-73.
  • [93] Liang, Y. Lu, J., Zhang, L., Wu, S., Wu, Y., 2003. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 80: 283-290.
  • [94] Miller, N.J., Castelluccio, C., Tijburg, L., RiceEvans, C., 1996. The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators? FEBS Lett. 392: 40- 44.
  • [95] Hertog, M.G.L., Hollman, P.C.H., Van de Putte, B., 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. and Food Chem. 41: 1242-1246.
  • [96] Price, K.R., Rhodes, M.J.C., Barnes, K.A., 1998. Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J. Agric. Food Chem. 46: 2517- 2522.
  • [97] Ding, Z., Kuhr, S., Engelhardt, U.H., 1992. Influence of catechins and theaflavins on the astringent taste of black tea brews. Z. Lebensm. Unters-Forsch. 195: 108-111.
  • [98] McDowell, I., Feakes, J., Gay, C., 1991. Phenolic composition of black tea liquors as a means of predicting price and country of origin. J. Sci. Food Agric. 55: 627-641.
  • [99] Ghodake, H.M., Goswami, T.K., Chakraverty, A., 2006. Mathematical modelling of withering characteristics of tea leaves. Drying Tech. 24: 159- 164.
  • [100] Ravichandran, R., Parthiban, R., 1998. Changes in enzyme activities (polyphenol oxidase and phenylalanine ammonialyase) with type of tea leaf and during black tea manufacture and the effect of enzyme supplementation of dhool on black tea quality. Food Chem. 62: 277-281.
  • [101] Sud, R.G., Baru, A., 2000. Seasonal variations in theaflavins, thearubigins, total colour and brightness of Kangra orthodox tea (Camellia sinensis (L) O Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 80: 1291-1299.
  • [102] Muthumani, T., Kumar, R.S.S., 2007. Studies on freeze-withering in black tea manufacturing. Food Chem. 101: 103-106.
  • [103] Peterson, J., Dwyer, J., Jacques, P., Rand, W., Prior, R., Chui, K., 2004. Tea variety and brewing techniques influence flavonoid content of black tea. J. Food Comp. Anal. 17: 397-405.
  • [104] Hazarika, M., Chakravarty, S.K., Mahanta, P.K., 1984. Studies on thearubigin pigments in black tea manufacturing systems. J. Sci. Food Agric. 35: 1208-1218.
  • [105] Mahanta, P.K., 1988. Chemical basis of liquor characteristics and made Tea. Appearance: A brief review. Two and A Bud 35: 66-70.
  • [106] Astill, C., Birch, M.R., Dacombe, C., Humphrey, P.G., Martin, P.T., 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food Chem. 49: 5340-5347.
  • [107] McDowell, I., Taylor, S., Gay, C., 1995. The phenolic pigment composition of black tea liguorsPart I: predicting quality. J. Sci. Food Agric. 69: 467- 474.
  • [108] Muthumani, T., and Kumar, R.S.S., 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 101: 98-102.
  • [109] Biswas, A.K., Biswas, A.K., Sarkar A.R., 1971. Biological and chemical factors affecting the valuations of North-East Indian plains teas. IIStatistical evaluation of the biochemical constituents and their effects on briskness, quality and cash valuations of black teas. J. Sci. Food Agric. 22: 196- 204.
  • [110] Ravichandran, R., Parthiban, R., 1998. Occurrence and distribution of lipoxygenase in Camellia sinensis (L) O kuntze and their changes Southern Indian conditions. J. Sci. Food Agric. 78: 67-72.

Taze ve İşlenmiş Çay Yapraklarındaki Polifenol Đçeriği ile Dağılımına Etki Eden Faktörler

Year 2009, Volume: 7 Issue: 6, 29 - 40, 01.12.2009

Abstract

Binlerce yıldır tüketilmekte olan çay, diyette polifenollerin ana kaynaklarından biridir. Polifenoller taze çay yapraklarında kuru maddenin %20-40’ını oluşturur ve çay kalitesinin en önemli ögelerinden biridir. Polifenoller çayın renk, lezzet ve parlaklığından sorumlu bileşiklerdir. Son yıllarda çayın sağlık üzerindeki olumlu etkilerinin ve potansiyel kullanım olanaklarının ortaya çıkmasından sonra çay polifenolleri üzerinde daha yoğun olarak çalışılmaya başlanmıştır. Çayın polifenol yapısını etkileyen çok sayıda faktör bulunmaktadır. Bunların başlıcaları çay yaprağı varyetesi, hasat dönemi, işleme yöntemi ve uygulanan analiz metotlarıdır. Bu makalede taze çay yapraklarının ve bunlardan işlenen yeşil ve siyah çayların polifenolleri üzerine etki eden faktörler irdelenmiştir

References

  • [1] Benzie, I.F.F., Szeto, Y.T., 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 47: 633-636.
  • [2] Rio, D.D., Stewart, A.J., Mullen, W., Burns, J., Lean, M.E.J., Brighenti, F., Crozier, A., 2004. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 52: 2807-2815.
  • [3] Bronner, W.E., Beecher, G.R., 1998. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromat. A. 805: 137-142.
  • [4] Liebert, M., Licht, U., Böhm, V., Bitsch, R., 1999. Antioxidant properties and total phenolics content of green and black tea under different brewing conditions. Z. Lebensm. Unters-Forsch. 208: 217- 220.
  • [5] Kilmartin, P.A., Hsu, C.F., 2003. Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry. Food Chem. 82: 501-512.
  • [6] Kuroda, Y., Hara, Y., 1999. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 436: 69-97.
  • [7] Sharma, V., Gulati, A., Ravindranath, S.D., Kumar, V., 2005. A simple and convenient method for analysis of tea bioghemicals by reverse phase HPLC. J. Food Comp. Anal. 18: 583-594.
  • [8] Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., Hara, Y., 1996. Scavenging effects of tea catechins and their derivatives on 1,1-Diphenyl-2- Picrylhydrazyl radical. Free Rad. Biol. Med. 21: 895- 902.
  • [9] Zandi, P., Gordon, M.H., 1999. Antioxidant activity of extracts from old tea leaves. Food Chem. 64: 285-288.
  • [10] Mello, L.D., Alves, A.A., Macedo, D.V., Kubota, L.T., 2004. Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem. 92: 515-519.
  • [11] Navas, P. B., Carrasquero-Durán, A., Iraima F., 2005. Effect of black tea, garlic and onion on corn oil stability and fatty acid composition under accelerated oxidation. Int. J. Food Sci. Tech. 40: 1- 5.
  • [12] Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K.P., Dexter, D.T., Aruoma, O.I., 2005. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int. 38: 357-367.
  • [13] Satoh, E., 2005. Ethyl acetate extract from black tea prevents neuromuscular blockade by botulinum neurotoxin type A in vitro. Inter. J. Food Sci Nutr. 56: 543-550.
  • [14] Farhoosh, R., Golmovahhed, G.A., Khodaparast, M.H.H., 2007. Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L). Food Chem. 100: 231-236.
  • [15] Yen, G., Chen, H., 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.
  • [16] Hour, T., Liang, Y., Chu, I., Lin, J., 1999. Inhibition of eleven mutagens by various tea extracts, (-) epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem. Toxicol. 37: 569-579.
  • [17] Shukla, Y., Taneja, P., 2001. Antimutagenic effect of black tea extract using ‘rodent dominant lethal mutation assay’. Toxicology 168: 269-274.
  • [18] Gupta, S., Chaudhuri, T., Seth, P., Ganguly, D.K., Giri, A.K., 2002. Antimutagenic effects of black tea (world blend) and its two active polyphenols theaflavins and thearubigins in Salmonella assays. Phytother. Res. 16: 655-661.
  • [19] Halder, B., Pramanick, S., Mukhopadhyoy, S., Giri, A. K., 2005. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity multiple test systems. Food Chem. Toxicol. 43: 591-597.
  • [20] Han, C., 1997. Screening of anticarcinogenic ingredients in tea polyphenols. Cancer Lett. 114: 153-158.
  • [21] Sarkar, A., Bhaduri, A., 2001. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem. Bioph.Comm. 284: 173-178.
  • [22] Zhu, Y., Huang, H., Tu, Y., 2006. A review of recent studies in China on the possible beneficial health effects of tea. Int. J. Food Sci. Tech. 41: 333-340.
  • [23] Chung, K.T., Lu, Z., Chou, M.W., 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol, 36: 1053-1060.
  • [24] Sakanaka, S., Juneja, L.R., Taniguchi, M., 2000. Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng. 90: 81-85.
  • [25] An, B., Kwak, J., Son, J., Park, J., Lee, Jo., C., Byun, M., 2004. Biological and anti-microbial activity of irradiated green tea polyphenols. Food Chem. 88: 549-555.
  • [26] Hara-Kudo., Y., Yamasaki, A., Sasaki, M., Okubo, T., Minai, Y., Haga, M., 2005. Antibacterial action on pathogenic bacterial spore by green tea catechins. J. Sci. Food Agric. 85: 2354-2361.
  • [27] Wu, S., Yen, G., Wang, B., Chiu, C., Yen, W., Chang, L., Duh, P., 2007. Antimutagenic and antimicrobial activities of pu-erh tea. LWT-Food Sci. Technol. 40: 506-512.
  • [28] Wang, H., Provan, G.J., Helliwell, K., 2000. Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci. Tech. 11: 152-160.
  • [29] Chen, Z. Y., Chan, P. T., 1996. Antioxidative activity of green tea catechins in canola oil. Chem. Phys. Lipids 82: 163-172.
  • [30] Yilmaz, Y., 2006. Novel uses of catechins in foods. Trends Food Sci. Tech. 17: 64-71.
  • [31] Tang, S., Kerry, J.P., Sheehan, D., Buckley, D.J., Morrissey, P.A., 2001. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res. Int. 34: 651-657.
  • [32] Nissen, L.R., Byrne, D.V., Bertelsen, G., Skibsted L. H., 2004. The antioxidant activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profilling and chemical analysis. Meat Sci. 68: 485-495.
  • [33] Leung, L.K., Su, Y., Chen, R., Zhang, Z., Huang, Y., Chen, Z., 2001. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131: 2248-2251.
  • [34] Hodgson, J. M., Proudfoot, J.M., Croft, K.D., Puddey, I.B., Mori, T.M., Beilin, L.J., 1999. Comparison of the effects of black and green tea on in vitro lipoprotein oxidation in human serum. J. Sci. Food Agric. 79: 561-566
  • [35] Caffin, N., D’Arcy, B., Yao, L., Rintoul, G., 2004. Developing an index of quality for Australian tea. RIRDC Publication No. 04/033, Project No. UQ88A, Publication of Rural Industries Research and Development Corporation, 192 pp., Australia.
  • [36] Gramza, A., Korczak, J., 2005. Tea constituents (Camellia sinensis L.) as antioxidant in lipid systems. Trends Food Sci. Tech. 16: 351-358.
  • [37] Obanda, M., Owuor, P.O., Mang’oka, R., Kavoi, M.M., 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 85: 163- 173.
  • [38] Yao, L., Jiang, Y., Datta, N., Singanusong, R., Liu, X., Duan, J., et al., 2004. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 84: 253-263.
  • [39] Borse, B. B., Rao, L.J.M., Nagalakshmi, S., Krishnamurthy, N., 2002. Fingerprint of black teas from India: identification of the regio-specific characteristics. Food Chem. 79: 419-424.
  • [40] Yoshida, Y., Kiso, M., Goto, T., 1999. Efficiency of the extraction of catechins from green tea. Food Chem. 67: 429-433.
  • [41] Obanda, M., Owuor, P.O., Mang’oka, R., 2001. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404.
  • [42] Wright, L.P., Mphangwe, N.I.K., Nyirenda, H.E., Apostolides, Z., 2002. Analysis of the theaflavin composition in black tea (Camellia sinensis) for predicting the quality of tea produced in Central and Southern Africa. J. Sci. Food Agric. 82: 517-525.
  • [43] Zuo, Y., Chen, H., Deng, Y., 2002. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57: 307-316.
  • [44] Wheeler, D.S., Wheeler, W.J., 2004. The medicinal chemistry of tea. Drug Develop. Res. 61: 45-65.
  • [45] Clifford, M.N., Copeland, E.L., Bloxsidge, J.P., Mitchell, L.A., 2000. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 30: 317-326.
  • [46] Heim, K.E. Tagliaferro, A.R., Bobilya, D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13: 572-584.
  • [47] Lin, Y., Juan, I., Chen, Y., Liang, Y., Lin, J., 1996. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J. Agric. Food Chem. 44: 1387-1394.
  • [48] Chen, Z., Wang, H., You, X., Xu, N., 2002. The chemistry of tea non-volatiles. In: Tea: Bioactivity and Therapeutic Potential. pp. 57-88. Zhen, Y., Eds., Boca Raton, FL, USA.
  • [49] Obanda M., Owuor P.O., 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74: 209-215.
  • [50] Aucamp, J.P., Hara, Y., Apostolides, Z., 2000. Simultaneous analysis of tea catechins, caffeine, gallic acid, theanine and ascorbic acid by micellar electrokinetic capillary chromatography. J. Chromat. A. 876: 235-242.
  • [51] Owuor, P. O., Obanda, M., Nyirenda, H.E., Mphangwe, N.I.K., Wright, L.P., Apostolides, Z., 2006. The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem. 97: 644-653.
  • [52] Wang, J., Sporns, P., 2000. MALDI-TOF MS analysis of food flavonol glycosides. J. Agric. Food Chem. 48: 1657-1662.
  • [53] Wang, H., Helliwell, K., 2001. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res. Int. 34: 223-227.
  • [54] Tomlins, K.I., Mashingaidze, A., 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas-a review. Food Chem. 60: 573-580.
  • [55] Robertson, A., 1983. Effects of catechin concentration on the formation of black tea polyphenols during in vitro oxidation. Phytochem. 22: 897-903.
  • [56] Chen, C.N., Liang, C.M., Lai, J.R., Tsai, Y.J., Tsay, J.S., Lin, J.K., 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J. Agric. Food Chem. 51: 7495-7503.
  • [57] Lin, Y.S., Tsai, Y.J., Tsay, J.S., Lin, J.K., 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51: 1864–1873.
  • [58] Tüfekci, M., Güner, S., 1997. The determination of optimum fermentation time in Turkish black tea manufacture. Food Chem. 60: 53-56.
  • [59] Chou, C., Lin, L., Chung, K., 1999. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int. J. Food Microb. 48: 125-130.
  • [60] Ravichandran, R., Parthiban, R.,1998. The impact of mechanization of tea harvesting on the quality of south Indian CTC teas. Food Chem. 63: 61-64.
  • [61] Hilton, P.J., Palmer-Jones, R., 1973. Relationship between the flavanol composition of fresh tea shoots and the theaflavin content of manufactured tea. J. Sci. Food Agric. 24: 813-818.
  • [62] Saravanan, M., Maria John, K. M., Raj Kumar, R., Pius, P. K., Sasikumar, R., 2005. Genetic diversity of UPASI tea clones (Camellia sinensis (L.) O. Kuntze) on the basis of total catechins and their fractions. Phytochem. 66: 561-565.
  • [63] Owuor, P.O., Obanda, M., 2007. The use of green tea (Camellia sinensis) leaf flavan-3-ol composition in predicting plain black tea quality potential. Food Chem. 100: 873-884.
  • [64] Wright, L.P., Mphangwe, N.I.K., Nyirenda, H.E., Apostolides, Z., 2000. Analysis of caffeine and flavan-3-ol composition in the fresh leaf of Camellia sinesis for predicting the quality of the black teaproduced in Central and Southern Africa. J. Sci. Food Agric. 80: 1823-1830.
  • [65] Lopez, S.J., Thomas, J., Pius, P.K., Kumar, R.R., Muraleedharan, N., 2005. A reliable technique to identify superior quality clones from tea germplasm, Food Chem. 91: 771-778.
  • [66] Owuor, P. O., Obanda, M., 1999. The effects of blending clonal leaf on black tea quality. Food Chem. 66: 147-152.
  • [67] Chu, D.C., 1997. Green tea –its cultivation, processing of the leaves for drinking materials, and kinds of green tea. In: Chemistry and Applications of Green Tea. p. 1-6. Yamamoto, T., Juneja, L.R., Chu, D. and Kim, M., Eds., Boca Raton, New York, USA.
  • [68] Gulati, A., Rawat, R., Singh, B., Ravindranath, S.D., 2003. Application of microwave energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 51: 4764-4768.
  • [69] [Goto, T., Yoshida, Y., Kiso, M., Nagashima, H., 1996. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromat. A. 749: 295- 299.
  • [70] Nishitani, E., Sagesaka, Y. M., 2004. Simultaneous determination of catechins caffeine and other phenolic compounds in tea using new HPLC method. J. Food Comp. Anal. 17: 675-685.
  • [71] Perva-Uzunalic, A., Skerget, M., Knez, Z., Weinreich, B., Otto, F., Grüner, S., 2006. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605.
  • [72] Chang, C. J., Chiu, K., Chen, Y., Chang, C., 2000. Separation of catechins from green tea using carbon dioxide extraction. Food Chem. 68: 109-113.
  • [73] Wang, H., Provan, G.J., You, X., 2000. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 68: 115-121.
  • [74] Wang, H.F., Tsai, Y.S., Lin, M.L., Ou, A.S., 2006. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem. 96: 648-653.
  • [75] Stewart, A.J., Mullen, W., Crozier, A., 2005. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol. Nutr. Food Res. 49: 52- 60.
  • [76] Liu, Z., Ma, L., Zhou, B., Yang, L., Liu, Z., 2000. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Physic. Lipids 106: 53-63.
  • [77] McDowell, I., Bailey, R.G., Howard, G., 1990. Flavonol glycosides in black tea. J. Sci. Food Agric. 53: 411-414.
  • [78] Dufresne, C.J., Farnworth, E.R., 2001. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 12: 404-421.
  • [79] Rice-Evans, C.A., Miller, N.J., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159.
  • [80] Chu, D.C., Juneja, L.R., 1997. General chemical composition of green tea and its infusion. In: Chemistry and Applications of Green Tea. p. 13-22. Yamamoto, T., Juneja, L.R., Chu, D. and Kim, M., Eds., Boca Raton, New York.
  • [81] Khokhar, S., Magnusdottir, S.G.M., 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric.Food Chem. 50: 565-570.
  • [82] Bonoli, M., Pelillo, M., Toschi, T. G., Lercker, G., 2003. Analysis of green tea catechins: comparative study between HPLC and HPCE. Food Chem. 81: 631-638.
  • [83] Xu, N., Chen, Z., 2002. Green tea, black tea and semi-fermented tea. In: Tea: Bioactivity and Therapeutic Potential. pp. 35-57. Zhen, Y., Eds., Boca Raton, FL, USA.
  • [84] Hara, Y., 2001. Green Tea: Health Benefits and Applications. p 36. Marcel Dekker Incorporated, NY, USA.
  • [85] Łuczaj, W., Skrzydlewska, E., 2005. Antioxidative properties of black tea. Prev. Med. 40: 910-918.
  • [86] Baruah, A.M., 2003. Fermentation characteristics of some Assamica clones and process optimization of black tea manufacturing. J. Agric. Food Chem. 51: 6575-6588.
  • [87] Lin, J.K., Lin, C.L., Liang, Y.C., Lin-Shiau, S.Y., Juan, I.M., 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46: 3635-3642.
  • [88] Borah, S., Bhuyan, M., 2005. A computer based system for matching colours during the monitoring tea fermentation. Int. J. Food Sci. Tech. 40: 675- 682.
  • [89] Bonnely, S., Davis, A.L., Lewis, J.R., Astill, C., 2003. A model oxidation system to study oxidised phenolic compounds present in black tea. Food Chem. 83: 485-492.
  • [90] Sanderson, G.W., Berkowitz, J.E., Co, H., Graham, H.N., 1972. Biochemistry of tea fermentation: Products of the oxidation of tea flavanols in a model tea fermentation system. J. Food Sci. 37: 399-404.
  • [91] Sang, S., Yang, C. S., Ho, C., 2004. Peroxidasemediated oxidation of catechins. Phytochem. Revs. 3: 229-241.
  • [92] Haslam, E. (2003). Thoughts on thearubigins. Phytochem. 64: 61-73.
  • [93] Liang, Y. Lu, J., Zhang, L., Wu, S., Wu, Y., 2003. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 80: 283-290.
  • [94] Miller, N.J., Castelluccio, C., Tijburg, L., RiceEvans, C., 1996. The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators? FEBS Lett. 392: 40- 44.
  • [95] Hertog, M.G.L., Hollman, P.C.H., Van de Putte, B., 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. and Food Chem. 41: 1242-1246.
  • [96] Price, K.R., Rhodes, M.J.C., Barnes, K.A., 1998. Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J. Agric. Food Chem. 46: 2517- 2522.
  • [97] Ding, Z., Kuhr, S., Engelhardt, U.H., 1992. Influence of catechins and theaflavins on the astringent taste of black tea brews. Z. Lebensm. Unters-Forsch. 195: 108-111.
  • [98] McDowell, I., Feakes, J., Gay, C., 1991. Phenolic composition of black tea liquors as a means of predicting price and country of origin. J. Sci. Food Agric. 55: 627-641.
  • [99] Ghodake, H.M., Goswami, T.K., Chakraverty, A., 2006. Mathematical modelling of withering characteristics of tea leaves. Drying Tech. 24: 159- 164.
  • [100] Ravichandran, R., Parthiban, R., 1998. Changes in enzyme activities (polyphenol oxidase and phenylalanine ammonialyase) with type of tea leaf and during black tea manufacture and the effect of enzyme supplementation of dhool on black tea quality. Food Chem. 62: 277-281.
  • [101] Sud, R.G., Baru, A., 2000. Seasonal variations in theaflavins, thearubigins, total colour and brightness of Kangra orthodox tea (Camellia sinensis (L) O Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 80: 1291-1299.
  • [102] Muthumani, T., Kumar, R.S.S., 2007. Studies on freeze-withering in black tea manufacturing. Food Chem. 101: 103-106.
  • [103] Peterson, J., Dwyer, J., Jacques, P., Rand, W., Prior, R., Chui, K., 2004. Tea variety and brewing techniques influence flavonoid content of black tea. J. Food Comp. Anal. 17: 397-405.
  • [104] Hazarika, M., Chakravarty, S.K., Mahanta, P.K., 1984. Studies on thearubigin pigments in black tea manufacturing systems. J. Sci. Food Agric. 35: 1208-1218.
  • [105] Mahanta, P.K., 1988. Chemical basis of liquor characteristics and made Tea. Appearance: A brief review. Two and A Bud 35: 66-70.
  • [106] Astill, C., Birch, M.R., Dacombe, C., Humphrey, P.G., Martin, P.T., 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food Chem. 49: 5340-5347.
  • [107] McDowell, I., Taylor, S., Gay, C., 1995. The phenolic pigment composition of black tea liguorsPart I: predicting quality. J. Sci. Food Agric. 69: 467- 474.
  • [108] Muthumani, T., and Kumar, R.S.S., 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 101: 98-102.
  • [109] Biswas, A.K., Biswas, A.K., Sarkar A.R., 1971. Biological and chemical factors affecting the valuations of North-East Indian plains teas. IIStatistical evaluation of the biochemical constituents and their effects on briskness, quality and cash valuations of black teas. J. Sci. Food Agric. 22: 196- 204.
  • [110] Ravichandran, R., Parthiban, R., 1998. Occurrence and distribution of lipoxygenase in Camellia sinensis (L) O kuntze and their changes Southern Indian conditions. J. Sci. Food Agric. 78: 67-72.
There are 110 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nihal Turkmen This is me

Ferda Sarı This is me

Y. Sedat Velioglu This is me

Publication Date December 1, 2009
Published in Issue Year 2009 Volume: 7 Issue: 6

Cite

APA Turkmen, N., Sarı, F., & Velioglu, Y. S. (2009). Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves. Akademik Gıda, 7(6), 29-40.
AMA Turkmen N, Sarı F, Velioglu YS. Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves. Akademik Gıda. December 2009;7(6):29-40.
Chicago Turkmen, Nihal, Ferda Sarı, and Y. Sedat Velioglu. “Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves”. Akademik Gıda 7, no. 6 (December 2009): 29-40.
EndNote Turkmen N, Sarı F, Velioglu YS (December 1, 2009) Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves. Akademik Gıda 7 6 29–40.
IEEE N. Turkmen, F. Sarı, and Y. S. Velioglu, “Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves”, Akademik Gıda, vol. 7, no. 6, pp. 29–40, 2009.
ISNAD Turkmen, Nihal et al. “Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves”. Akademik Gıda 7/6 (December 2009), 29-40.
JAMA Turkmen N, Sarı F, Velioglu YS. Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves. Akademik Gıda. 2009;7:29–40.
MLA Turkmen, Nihal et al. “Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves”. Akademik Gıda, vol. 7, no. 6, 2009, pp. 29-40.
Vancouver Turkmen N, Sarı F, Velioglu YS. Factors Affecting Polyphenol Content and Composition of Fresh and Processed Tea Leaves. Akademik Gıda. 2009;7(6):29-40.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).