Research Article
BibTex RIS Cite

İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri

Year 2020, Volume: 18 Issue: 3, 270 - 278, 29.10.2020
https://doi.org/10.24323/akademik-gida.818125

Abstract

Bu çalışma Elaeagnus angustifolia L. (iğde) meyve ve yapraklarının antioksidan ve antidiyabetik etkilerini belirlemek ve karşılaştırmak için gerçekleştirilmiştir. Metanol:su (1:1, v/v) ile yapılan iğde meyve ve yaprak ekstraktlarının toplam fenolik, toplam flavonoid ve tanen içerikleri, antioksidan aktiviteleri (DPPH ve ABTS metotları) ve α-glukozidaz ve α-amilaz enzimlerini inhibe edici etkileri araştırılmıştır. Ayrıca ekstraktlarda lipaz inhibisyonu aktivitesi tayini de gerçekleştirilmiştir. İğde meyve ve yapraklarının α-glukozidaz enzimini %50 oranında inhibe ettikleri değerler (IC50) sırasıyla 17.11 μg/mL ve 124.7 μg/mL olarak tespit edilirken, α-amilaz enzimini sadece meyvenin inhibe etttiği (21.95 mg/mL) ve hem meyve hem de yaprakların lipaz inhibisyon aktivitesi göstermediği belirlenmiştir. Meyve ve yaprakların ekstraktlarının toplam fenolik, flavonoid ve tanen içerikleri ile antioksidan aktivite değerleri incelendiğinde meyvenin biyoaktif içeriğinin yaprağına göre anlamlı şekilde yüksek olduğu tespit edilmiştir (p<0.05). İğdenin meyve ve yapraklarının içerdiği biyoaktif bileşikler sayesinde göstermiş olduğu antidiyabetik aktivitenin in vitro çalışmalar sonrası elde edildiği göz önüne alındığında, iğdenin özellikle de meyve kısmının tip 2 diyabet rahatsızlıklarının doğal yoldan tedavisinde destekleyici yönünün olabileceği belirlenmiştir.

References

  • [1] McCune, L.M., Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. Journal Ethnopharmacology, 82(2-3), 197-205.
  • [2] Sarikaya, S., Öner, H., Harput, U.Ş. (2010). Türkiye florasında diyabet tedavisinde kullanilan tibbi bitkiler. Ankara Universitesi Eczacilik Fakultesi Dergisi, 39, 317-342.
  • [3] Büyükbalci, A., El, S.N. (2008). Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods for Human Nutrition, 63, 27-33.
  • [4] McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A., Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53, 2760-2766.
  • [5] Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., Matsumoto, K. (2001). Alpha-glucosidase inhibitory action of natural acylated anthocyanins 1: Survey of natural pigments with potent inhibitory activity. Journal of Agricultural and Food Chemistry, 49(4), 1948-51.
  • [6] Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M., Shahlari, N., Hamidpour, R. (2016). Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 7(1), 24-29.
  • [7] Saboonchian, F., Jamei, R., Hosseini, S.S. (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna Journal of Phytomedicine, 4, 231-8.
  • [8] Hassanzadeh, Z., Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.
  • [9] Cansev, A., Sahan, Y., Celik, G., Taskesen, S., Ozbey, H. (2011). Chemical properties and antioxidant capacity of Elaeagnus angustifolia L. fruits. Asian Journal of Chemistry, 23, 2661–2665.
  • [10] Abizov, E.A., Tolkachev, O.N., Mal’Tsev, S.D., Abizova, E.V. (2008). Composition of biologically active substances isolated from the fruits of Russian olive (Elaeagnus angustifolia) introduced in the European part of Russia. Pharmaceutical Chemistry Journal, 42, 696-698.
  • [11] Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M., Saremi, S. (2000). Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. Journal of Ethnopharmacology, 72, 287-292.
  • [12] Ayaz, F.A., Bertoft, E. (2001). Sugar and phenolic acid composition of stored commercial oleaster fruits. Journal of Food Composition and Analysis, 14(5), 505-511.
  • [13] Gürbüz, I., Üstün, O., Yesilada, E., Sezik, E., Kutsal, O. (2003). Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 88(1), 93-97.
  • [14] Goncharova, N.P., Plugar’, V.N., Rashkes, Y.V., Isamukhamedov, A.S., Glushenkova, A.I. (1995). Oxygenated fatty acids of the seeds of Elaeagnus angustifolia. Chemistry of Natural Compounds, 30(6), 661-665.
  • [15] Okmen, G., Turkcan, O. (2014). A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. African Journal of Traditional, Complementary and Alternative Medicines, 11, 116-120.
  • [16] Sahan, Y., Gocmen, D., Cansev, A., Celik, G., Aydin, E., Dundar, A.N., Dulger, D., Kaplan, H.B., Kilci, A., Gucer, S. (2015). Chemical and techno-functional properties of flours from peeled and unpeeled oleaster (Elaeagnus angustifolia L.). Journal of Applied Botany and Food Quality, 88, 34-41.
  • [17] Bekker, N.P., Glushenkova, A.I. (2001). Components of certain species of the Elaeagnaceae family. Chemistry of Natural Compounds, 37, 97-116.
  • [18] Yıldırım, I., Gökçe, Z., Yılmaz, Ö. (2015). The investigation of biochemical content of Elaeagnus angustifolia. Journal of the Turkish Chemical Society, Section A: Chemistry, 2(1), 34-41.
  • [19] Sahan, Y., Dundar, A.N., Aydin, E., Kilci, A., Dulger, D., Kaplan, F.B., Gocmen, D., Celik, G. (2013). Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) flour. I Physicochemical, sensorial and textural properties. Journal of Agricultural Science, 5, 160-168.
  • [20] Incilay, G. (2014). Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. Journal of Essential Oil-Bearing Plants, 17, 1187-1202.
  • [21] Çakmakçı, S., Topdaş, E.F., Kalin, P., Han, H., Şekerci, P., Köse, L., Gülçin, I. (2015). Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science and Technology, 50, 472-481.
  • [22] Wang, Y., Guo, T., Li, J., Zhou, S., Zhao, P. (2012). Four flavonoid glycosides from the pulps of Elaeagnus angustifolia and their antioxidant activities, in: Proceedings of the 2012 2nd International Conference on Computer and Information Applications (ICCIA 2012). Atlantis Press, Paris, France.
  • [23] Saltan, F.Z., Okutucu, B., Canbay, H.S., Ozel, D. (2017). In vitro α-glucosidase and α-amylase enzyme inhibitory effects in Elaeagnus angustifolia leaves extracts. Eurasian Journal of Analytical Chemistry, 12, 117-126.
  • [24] Yalcin, G., Sogut, O. (2014). Antioxidant capacity of Elaeagnus angustifolia L. and investigation of eosin y as the fluorescent probe in ORAC method. Journal of Food, Agriculture and Environment, 12(2), 51-54.
  • [25] Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96, 254-260.
  • [26] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [27] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • [28] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und-Technologie, 28, 25-30.
  • [29] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(98), 1231-1237.
  • [30] Sun, B., Ricardo-da-Silva, J.M., Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46, 4267-4274.
  • [31] Willis, R.B., Allen, P.R. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst, 123, 435-439.
  • [32] Kliebenstein, D.J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell and Environment, 27, 675-684.
  • [33] Amini, M.H., Ahmady, A., Zhakfar, A.M. (2019). Preliminary phytochemical profile, in vitro antioxidant and sun protective activities of Alhagi pseudalhagi and Elaeagnus angustifolia L. Journal of Pharmaceutical Research International, 31(4), 1-13.
  • [34] Zengin, G., Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: an endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 481-488.
  • [35] Zengin, G., Uysal, S., Ceylan, R., Aktumsek, A. (2015). Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Industrial Crops and Products, 70, 1-6.
  • [36] Harborne, J.B. (1973). Phytochemical methods. A guide to modern techniques of plant analysis, Edited by Chapman and Hall, Springer Netherlands, 278p.
  • [37] Gupta, D. (2013). Comparative analysis of spices for their phenolic content, flavonoid content and antioxidant capacity. American International Journal of Research in Formal, Applied and Natural Sciences, 4(1), 38-42.
  • [38] Bajpai, M., Pande, A., Tewari, S.K., Prakash, D. (2005). Phenolic contents and antioxidant activity of some food and medicinal plants. International Journal of Food Sciences and Nutrition, 56, 287-291.
  • [39] Demirci, F., Guven, K., Demirci, B., Dadandi, M.Y., Baser, K.H.C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control, 19(12), 1159-1164.
  • [40] Aherne, S.A., O ’brien, N.M. (2002). Dietary flavonols: chemistry, food content, and metabolism chemistry and structure of the flavonoids. Nutrition, 18(1), 75-81.

Antioxidant and Antidiabetic Properties of Oleaster (Elaeagnus angustifolia L.) Fruits and Leaves

Year 2020, Volume: 18 Issue: 3, 270 - 278, 29.10.2020
https://doi.org/10.24323/akademik-gida.818125

Abstract

This study was carried out to determine the antioxidant and antidiabetic activities of Elaeagnus angustifolia L. (oleaster) fruits and leaves. The total phenolic, total flavonoid and tannin contents, antioxidant activities (DPPH and ABTS methods), and inhibitory effects against α-glucosidase and α-amylase enzyme were investigated in the oleaster fruit and leaf extracts obtained with methanol:water (1:1, v/v). In addition, lipase inhibition activity was determined in these extracts. The values in which the fruit and leaves of oleaster inhibit the α-glucosidase enzyme by 50% (IC50) were determined as 17.11 μg/mL and 124.71 μg/L, respectively. Neither fruits nor leaves displayed a lipase inhibition activity. In terms of the phenolic, flavonoid and tannin contents and antioxidant activity values of the extracts of fruits and leaves, the bioactive content of fruits was significantly higher than that of leaves (p<0.05). Considering in vitro antidiabetic activities of the fruits and leaves of oleaster, the consumption of these natural extracts may have a potential for the treatment of type 2 diabetes.

References

  • [1] McCune, L.M., Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. Journal Ethnopharmacology, 82(2-3), 197-205.
  • [2] Sarikaya, S., Öner, H., Harput, U.Ş. (2010). Türkiye florasında diyabet tedavisinde kullanilan tibbi bitkiler. Ankara Universitesi Eczacilik Fakultesi Dergisi, 39, 317-342.
  • [3] Büyükbalci, A., El, S.N. (2008). Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods for Human Nutrition, 63, 27-33.
  • [4] McDougall, G.J., Shpiro, F., Dobson, P., Smith, P., Blake, A., Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53, 2760-2766.
  • [5] Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., Matsumoto, K. (2001). Alpha-glucosidase inhibitory action of natural acylated anthocyanins 1: Survey of natural pigments with potent inhibitory activity. Journal of Agricultural and Food Chemistry, 49(4), 1948-51.
  • [6] Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M., Shahlari, N., Hamidpour, R. (2016). Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 7(1), 24-29.
  • [7] Saboonchian, F., Jamei, R., Hosseini, S.S. (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna Journal of Phytomedicine, 4, 231-8.
  • [8] Hassanzadeh, Z., Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.
  • [9] Cansev, A., Sahan, Y., Celik, G., Taskesen, S., Ozbey, H. (2011). Chemical properties and antioxidant capacity of Elaeagnus angustifolia L. fruits. Asian Journal of Chemistry, 23, 2661–2665.
  • [10] Abizov, E.A., Tolkachev, O.N., Mal’Tsev, S.D., Abizova, E.V. (2008). Composition of biologically active substances isolated from the fruits of Russian olive (Elaeagnus angustifolia) introduced in the European part of Russia. Pharmaceutical Chemistry Journal, 42, 696-698.
  • [11] Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M., Saremi, S. (2000). Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. Journal of Ethnopharmacology, 72, 287-292.
  • [12] Ayaz, F.A., Bertoft, E. (2001). Sugar and phenolic acid composition of stored commercial oleaster fruits. Journal of Food Composition and Analysis, 14(5), 505-511.
  • [13] Gürbüz, I., Üstün, O., Yesilada, E., Sezik, E., Kutsal, O. (2003). Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 88(1), 93-97.
  • [14] Goncharova, N.P., Plugar’, V.N., Rashkes, Y.V., Isamukhamedov, A.S., Glushenkova, A.I. (1995). Oxygenated fatty acids of the seeds of Elaeagnus angustifolia. Chemistry of Natural Compounds, 30(6), 661-665.
  • [15] Okmen, G., Turkcan, O. (2014). A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. African Journal of Traditional, Complementary and Alternative Medicines, 11, 116-120.
  • [16] Sahan, Y., Gocmen, D., Cansev, A., Celik, G., Aydin, E., Dundar, A.N., Dulger, D., Kaplan, H.B., Kilci, A., Gucer, S. (2015). Chemical and techno-functional properties of flours from peeled and unpeeled oleaster (Elaeagnus angustifolia L.). Journal of Applied Botany and Food Quality, 88, 34-41.
  • [17] Bekker, N.P., Glushenkova, A.I. (2001). Components of certain species of the Elaeagnaceae family. Chemistry of Natural Compounds, 37, 97-116.
  • [18] Yıldırım, I., Gökçe, Z., Yılmaz, Ö. (2015). The investigation of biochemical content of Elaeagnus angustifolia. Journal of the Turkish Chemical Society, Section A: Chemistry, 2(1), 34-41.
  • [19] Sahan, Y., Dundar, A.N., Aydin, E., Kilci, A., Dulger, D., Kaplan, F.B., Gocmen, D., Celik, G. (2013). Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) flour. I Physicochemical, sensorial and textural properties. Journal of Agricultural Science, 5, 160-168.
  • [20] Incilay, G. (2014). Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. Journal of Essential Oil-Bearing Plants, 17, 1187-1202.
  • [21] Çakmakçı, S., Topdaş, E.F., Kalin, P., Han, H., Şekerci, P., Köse, L., Gülçin, I. (2015). Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science and Technology, 50, 472-481.
  • [22] Wang, Y., Guo, T., Li, J., Zhou, S., Zhao, P. (2012). Four flavonoid glycosides from the pulps of Elaeagnus angustifolia and their antioxidant activities, in: Proceedings of the 2012 2nd International Conference on Computer and Information Applications (ICCIA 2012). Atlantis Press, Paris, France.
  • [23] Saltan, F.Z., Okutucu, B., Canbay, H.S., Ozel, D. (2017). In vitro α-glucosidase and α-amylase enzyme inhibitory effects in Elaeagnus angustifolia leaves extracts. Eurasian Journal of Analytical Chemistry, 12, 117-126.
  • [24] Yalcin, G., Sogut, O. (2014). Antioxidant capacity of Elaeagnus angustifolia L. and investigation of eosin y as the fluorescent probe in ORAC method. Journal of Food, Agriculture and Environment, 12(2), 51-54.
  • [25] Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96, 254-260.
  • [26] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • [27] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • [28] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und-Technologie, 28, 25-30.
  • [29] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(98), 1231-1237.
  • [30] Sun, B., Ricardo-da-Silva, J.M., Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46, 4267-4274.
  • [31] Willis, R.B., Allen, P.R. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst, 123, 435-439.
  • [32] Kliebenstein, D.J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell and Environment, 27, 675-684.
  • [33] Amini, M.H., Ahmady, A., Zhakfar, A.M. (2019). Preliminary phytochemical profile, in vitro antioxidant and sun protective activities of Alhagi pseudalhagi and Elaeagnus angustifolia L. Journal of Pharmaceutical Research International, 31(4), 1-13.
  • [34] Zengin, G., Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: an endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 481-488.
  • [35] Zengin, G., Uysal, S., Ceylan, R., Aktumsek, A. (2015). Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Industrial Crops and Products, 70, 1-6.
  • [36] Harborne, J.B. (1973). Phytochemical methods. A guide to modern techniques of plant analysis, Edited by Chapman and Hall, Springer Netherlands, 278p.
  • [37] Gupta, D. (2013). Comparative analysis of spices for their phenolic content, flavonoid content and antioxidant capacity. American International Journal of Research in Formal, Applied and Natural Sciences, 4(1), 38-42.
  • [38] Bajpai, M., Pande, A., Tewari, S.K., Prakash, D. (2005). Phenolic contents and antioxidant activity of some food and medicinal plants. International Journal of Food Sciences and Nutrition, 56, 287-291.
  • [39] Demirci, F., Guven, K., Demirci, B., Dadandi, M.Y., Baser, K.H.C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control, 19(12), 1159-1164.
  • [40] Aherne, S.A., O ’brien, N.M. (2002). Dietary flavonols: chemistry, food content, and metabolism chemistry and structure of the flavonoids. Nutrition, 18(1), 75-81.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Serap Berktaş This is me 0000-0002-5195-0685

Mustafa Çam This is me 0000-0003-1258-0834

Publication Date October 29, 2020
Submission Date May 16, 2020
Published in Issue Year 2020 Volume: 18 Issue: 3

Cite

APA Berktaş, S., & Çam, M. (2020). İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri. Akademik Gıda, 18(3), 270-278. https://doi.org/10.24323/akademik-gida.818125
AMA Berktaş S, Çam M. İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri. Akademik Gıda. October 2020;18(3):270-278. doi:10.24323/akademik-gida.818125
Chicago Berktaş, Serap, and Mustafa Çam. “İğde (Elaeagnus Angustifolia L.) Meyve Ve Yapraklarının Antioksidan Ve Antidiyabetik Özellikleri”. Akademik Gıda 18, no. 3 (October 2020): 270-78. https://doi.org/10.24323/akademik-gida.818125.
EndNote Berktaş S, Çam M (October 1, 2020) İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri. Akademik Gıda 18 3 270–278.
IEEE S. Berktaş and M. Çam, “İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri”, Akademik Gıda, vol. 18, no. 3, pp. 270–278, 2020, doi: 10.24323/akademik-gida.818125.
ISNAD Berktaş, Serap - Çam, Mustafa. “İğde (Elaeagnus Angustifolia L.) Meyve Ve Yapraklarının Antioksidan Ve Antidiyabetik Özellikleri”. Akademik Gıda 18/3 (October 2020), 270-278. https://doi.org/10.24323/akademik-gida.818125.
JAMA Berktaş S, Çam M. İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri. Akademik Gıda. 2020;18:270–278.
MLA Berktaş, Serap and Mustafa Çam. “İğde (Elaeagnus Angustifolia L.) Meyve Ve Yapraklarının Antioksidan Ve Antidiyabetik Özellikleri”. Akademik Gıda, vol. 18, no. 3, 2020, pp. 270-8, doi:10.24323/akademik-gida.818125.
Vancouver Berktaş S, Çam M. İğde (Elaeagnus angustifolia L.) Meyve ve Yapraklarının Antioksidan ve Antidiyabetik Özellikleri. Akademik Gıda. 2020;18(3):270-8.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).