Review
BibTex RIS Cite

Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri

Year 2020, Volume: 18 Issue: 4, 421 - 432, 31.12.2020
https://doi.org/10.24323/akademik-gida.850939

Abstract

Hücreler arası haberleşme hayati öneme sahip olup, organizmalarda farklı şekillerde gerçekleştirilmektedir. Ekstraselüler veziküller uzun mesafeli iletişimde görev alarak DNA, RNA ve proteinler gibi hücreye özgü maddeleri taşımaktadır. Ekstraselüler veziküller boyutlarına ve oluşumlarına göre apoptozom, mikrovezikül ve eksozom olmak üzere 3 gruba ayrılmaktadır. Eksozomların hastalıkların teşhisinde kullanılan bazı önemli biyobelirteçleri içermesi, hastalıkların tanısında kullanılma fikrini ortaya çıkararak eksozomlara olan ilginin artmasına neden olmuştur. Ayrıca dendritik hücre kökenli eksozomların bağışıklayıcı rolleri eksozomların tedavi amaçlı kullanılabilirliğini de göstermektedir. Eksozomların hayvansal ve bitkisel kaynaklardan eldesinde diferansiyel santrifüj, immünoaffinite, ultrafiltrasyon ve polimer bazlı çökeltme en çok kullanılan yöntemler arasındadır. Eksozomlar genellikle hücre biyolojisi, biyomedikal gibi alanların konusu olsa da son yapılan çalışmalar ile eksozomların gıda ve tarım alanlarında da umut vaat eden sonuçları içerdiği belirlenmiştir. Özellikle çözünürlüğü ve biyoyararlılığı düşük biyoaktif bileşiklerin taşınmasındaki rolleri dikkat çekmektedir. Eksozomlar bütün vücut hücreleri tarafından oluşturulduğu, yapı ve içerik olarak hücre zarına benzediği ve kan-beyin gibi kompleks bariyerleri geçebildiğinden vücut tarafından daha iyi tolere edilmektedir. Nitekim literatür verileri biyoaktif bileşiklerin eksozomlar ile taşınmasının immün reaksiyonlar, toksisite, modifikasyona ihtiyaç duyma ve yapay olarak sentezlenme gibi dezavantajlara sahip nanopartiküllere karşı alternatif bir çözüm olabileceğini düşündürmektedir. Bu derlemenin amacı, son yıllarda gıda bilimi alanında da dikkat çeken eksozomların özellikleri, fonksiyonları ve biyoaktif bileşiklerin taşınmasındaki rollerinin değerlendirilmesidir.

References

  • [1] Reece, J.B., Campbell, N.A. (2011). Campbell biology, Pearson Yayınları, Boston.
  • [2] Ahmad, A., Desai, N.N., Qureshi, M.Z., Librelotto, D.R.N., Gasparri, M.L., Bishayee, A., Nabavi, S.R., Curti, V., Daglia, M. (2018). Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology Advances, 36(1), 328-334.
  • [3] Reiner, A.T., Somoza, V. (2019). Extracellular vesicles as vehicles for the delivery of food bioactives. Journal of Agricultural and Food Chemistry, 67, 2113-2119.
  • [4] Akers, J., Gonda, D., Kim, R., Carter, B., Chen, C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113(1), 1-11.
  • [5] Kooijmans, S.A.A., Vader, P., Van Dommelen, S.M., Van Solinge, W.W., Schiffelers, R.M. (2012). Exosome mimetics: A novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525-1541.
  • [6] Beach, A., Zhang, H.G., Ratajczak, M.Z., Kakar, S.S. (2014). Exosomes: An overview of biogenesis, composition and role in ovarian cancer. Journal of Ovarian Research, 7(1), 1-10.
  • [7] Bozkurt, S. (2018). Eksozomlar ve kanserdeki rolleri. Dicle Tıp Dergisi, 45(9), 209–217.
  • [8] Ersöz, E., Can, O.B., Uzunoğlu, S. (2016). Eksozomların kanserdeki rolü. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2(5), 144-152.
  • [9] Boucheix, C., Rubinstein, E. (2011). Tetraspanins. Cellular and Molecular Life Sciences, 58, 1189-1205.
  • [10] Wang, J., Sun, X., Zhao, J., Yang, Y., Cai, X., Xu, J., Cao, P. (2017). Exosomes: A novel strategy for treatment and prevention of diseases. Frontiers in Pharmacology, 8, 1-13.
  • [11] Kahlert, C. (2014). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine, 91(4), 431-437.
  • [12] El Andaloussi, S., Mäger, I., Breakefield, X.O., Wood, M.J.A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12, 347-357.
  • [13] Li, Y., Zhang, Y., Li, Z., Zhou, K., Feng, N. (2019). Exosomes as carriers for antitumor therapy. ACS Biomaterials Science & Engineering, 5, 4870-4881.
  • [14] Isola, A., Chen, S. (2016). Exosomes: The messengers of health and disease. Current Neuropharmacology, 15(1), 157-165.
  • [15] Kahraman, T., Güçlüler, G., Gürsel, İ. (2014). Exosomes: Natural nanovesicle candidates used in the diagnosis and treatment. Turkish Journal of Immunology, 2(2), 34-40.
  • [16] Hessvik, N.P., Sandvig, K., Llorente, A. (2013). Exosomal miRNAs as biomarkers for prostate cancer. Frontiers in Genetics, 4(36), 1-9.
  • [17] Wang, M., Ji, S., Shao, G., Zhang, J., Zhao, K., Wang, Z., Wu, A. (2018). Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clinical and Translational Oncology, 20(7), 906-911.
  • [18] Lakhal, S., Wood, M.J.A. (2011). Exosome nanotechnology: An emerging paradigm shift in drug delivery exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays, 33(10), 737-741.
  • [19] Lönnerdal, B. (2019). Human milk microRNAs/exosomes: Composition and biological effects. Nestle Nutrition Institute Workshop Series, 90, 83-92.
  • [20] Martinez, B., Peplow, P. (2020). MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regeneration Research, 15(4), 606-619.
  • [21] Lässer, C., Seyed Alikhani, V., Ekström, K., Eldh, M., Torregrosa Paredes, P., Bossios, A., Sjöstrand, M., Gabriellsson, S., Lötvall, J., Valadi, H. (2011). Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. Journal of Translational Medicine, 9(1), 1-8.
  • [22] Azmi, A.S., Bao, B., Sarkar, F.H. (2013). Exosomes in cancer development. Cancer and Metastasis Reviews, 32, 1-33.
  • [23] Groza, M., Zimta, A., Irimie, A., Achimas‐Cadariu, P., Cenariu, D., Stanta, G., Berindan‐Neagoe, I. (2019). Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. Journal of Cellular Physiology, 235(6), 1-15.
  • [24] Huang, T., Deng, C.X. (2019). Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. International Journal of Biological Sciences, 15(1), 1-11.
  • [25] Neviani, P., Fabbri, M. (2015). Exosomic microRNAs in the tumor microenvironment. Frontiers in Medicine, 2, 1-6.
  • [26] Gao, X., Wang, Z., Wang, F., Gu, Y., Zhang, J., Chen, S. (2019). Exosomes in coronary artery disease. International Journal of Biological Sciences, 15, 2461-2470.
  • [27] Zhou, H., Wang, B., Yang, Y., Jia, Q., Qi, Z., Zhang, A., Lv, S., Zhang, J. (2019). Exosomes in ischemic heart disease: Novel carriers for bioinformation. Biomedicine & Pharmacotherapy, 120, 1-9.
  • [28] Melling, G.E., Carollo, E., Conlon, R., Simpson, J.C., Raul, D., Carter, F. (2019). The challenges and possibilities of extracellular vesicles as therapeutic vehicles. European Journal of Pharmaceutics and Biopharmaceutics, 144, 50-56.
  • [29] Segura, E., Nicco, C., Lombard, B., Véron, P., Raposo, G., Batteux, F., Amigorena, S., Théry, C. (2005). ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood, 106(1), 216-223.
  • [30] Zıtgovel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., Amigorena, S. (1998). Eradication of established murine tumors using a novel cell-free vaccine: Dentritic cell-derived exosomes. Nature Medicine, 4(5), 594-600.
  • [31] Ramírez-Flores, C.J., Cruz-Mirón, R., Arroyo, R., Mondragón-Castelán, M.E., Nopal-Guerrero, T., González-Pozos, S., Rios-Castro, E., Mondragón-Flores, R. (2019). Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells. Parasitology Research, 118, 289-306.
  • [32] Tavukçuoğlu, Z., Peynircioğlu, B. (2018). Exosomes in diagnostic and therapeutical approaches of infectious diseases. Turkish Journal of Medicine Science, 11(2), 33-39.
  • [33] Vlassov, A.V, Magdaleno, S., Setterquist, R., Conrad, R. (2012). Exosomes: Current knowledge of their composition, biological functions and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820, 940-948.
  • [34] Morse, M.A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T.M., Valente, N., Shreeniwas, R., Sutton, M. A., Delcayre, A., Hsu, D., Pecq, J., Lyerly, H.K. (2005). A phase I study of exosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine, 3(9), 1-8.
  • [35] Nakamura, K., Sawada, K., Kobayashi, M., Miyamoto, M., Shimizu, A., Yamamoto, M., Kinose, Y., Kimura, T. (2019). Role of the exosome in ovarian cancer progression and its potential as a therapeutic target. Cancers, 11(8), 1-17.
  • [36] Syn, N.L., Wang, L., Chow, E.K.H., Lim, C.T., Goh, B.C. (2017). Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends in Biotechnology, 35(7), 665-676.
  • [37] Pitt, J.M., Kroemer, G., Zitvogel, L., Pitt, J.M., André, F., Amigorena, S., Soria, J., Eggermont, A. (2016). Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation, 126(4), 1224-1232.
  • [38] Viaud, S., Terme, M., Flament, C., Taieb, J., André, F., Novault, S., Escudier, B., Robert, C., Caillat-Zucman, S., Tursz, T., Zitvogel, L., Chaput, N. (2009). Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Rα. PLoS ONE, 4(3), 1-12.
  • [39] Kalani, A., Tyagi, A., Tyagi, N. (2014). Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Molecular Neurobiology, 49(1), 1-19.
  • [40] Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoenhn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J., Sadoul, R. (2006). Exosomes are released by cultured cortical neurones. Molecular and Cellular Neuroscience, 31(4), 642-648.
  • [41] Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J., Santambrogio, L. (2005). Proteomic analysis of microglia-derived exosomes: Metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. The Journal of Immunology, 175(4), 2237-2243.
  • [42] Lai, C.P., Breakefield, X.O. (2012). Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Frontiers in Physiology, 3(228), 1-14.
  • [43] Zhang, M., Viennois, E., Xu, C., Merlin, D. (2016). Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers, 4(2), 1-9.
  • [44] Baldrich, P., Rutter, B., Zandkarimi, H., Podicheti, R., Meyers, B., Innes, R. (2018). Biological properties of plant-derived extracellular vesicles. Food & Function, 10(2), 529-538.
  • [45] Pérez-Bermúdez, P., Blesa, J., Soriano, J.M., Marcilla, A. (2017). Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences, 98, 40-50.
  • [46] Aqil, F., Kausar, H., Kumar, A., Jeyabalan, J., Kyakulaga, A., Munagala, R., Gupta, R. (2016). Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Experimental and Molecular Pathology, 101(1), 12-21.
  • [47] Munagala, R., Aqil, F., Jeyabalan, J., Agrawal, A.K., Mudd, A.M., Kyakulaga, A., Singh, I., Vadhanam, M., Gupta, R.C. (2017). Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Letters, 393, 94-102.
  • [48] Vaswani, K., Mitchell, M.D., Holland, O.J., Qin Koh, Y., Hill, R.J., Harb, T., Davies, P., Peiris, H. (2019). A method for the isolation of exosomes from human and bovine milk. Journal of Nutrition and Metabolism, 2019, 1-6.
  • [49] Yang, X.X., Sun, C., Wang, L., Guo, X.L. (2019). New insight into isolation, identification techniques and medical applications of exosomes. Journal of Controlled Release, 308, 119-129.
  • [50] Chen, B., Sung, C.W., Chen, C., Cheng, C., Lin, D.P.C., Huang, C.T., Hsu, M.Y. (2019). Advances in exosomes techonology. Clinica Chimica Acta, 493, 14-19.
  • [51] Peterson, M.F., Otoc, N., Sethi, J.K., Gupta, A., Antes, T.J. (2015). Integrated systems for exosome investigation. Methods, 87, 31-45.
  • [52] Yamada, T., Inoshima, Y., Matsuda, T., Ishiguro, N. (2012). Comparison of methods for isolating exosomes from bovine milk. Journal of Veterinary Medical Science, 74(11), 1523-1525.
  • [53] Tauro, B.J., Greening, D.W., Mathias, R.A., Ji, H., Mathivanan, S., Scott, A.M., Simpson, R.J. (2012). Comparison of ultracentrifugation, density gradient separation and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56(2), 293-304.
  • [54] Ha, D., Yang, N., Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287-296.
  • [55] Lai, R.C., Yeo, R.W.Y., Tan, K.H., Lim, S.K. (2013). Exosomes for drug delivery: A novel application for the mesenchymal stem cell. Biotechnology Advances, 31(5), 543-551.
  • [56] Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: A review of the existing evidence. Food and Function, 5(7), 1341-1359.
  • [57] Tontul, I. (2019). Nanoencapsulation techniques in food industry. Turkish Journal of Agriculture - Food Science and Technology, 7(2), 220-233.
  • [58] Sayıner, Ö., Çomoğlu, T. (2016). Nanotaşıyıcı sistemlerde hedeflendirme. Ankara Eczacılık Fakültesi Dergisi, 40(3), 62-79.
  • [59] Tüylek, Z. (2017). İlaç taşıyıcı si̇stemler ve nanoteknoloji̇k etki̇leşi̇m. Bozok Tıp Dergisi, 7(3), 89-98.
  • [60] Kırtıl, E., Öztop, M.H. (2014). Enkapsülasyon maddesi olarak lipozom ve gıdalarda kullanımı: Yapısı, karakterizasyonu, üretimi ve stabilitesi. Akademik Gıda, 12(4), 41-57.
  • [61] Batist, G., Ramakrishnan, G., Rao, C.S., Chandrasekharan, A., Gutheil, J., Guthrie, T., Shah, P., Khojasteh, A., Nair, M.K., Hoelzer, K., Tkaczuk, K., Park, Y.C., Lee, L.W. (2001). Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. Journal of Clinical Oncology, 19(5), 1444-1454.
  • [62] Narayanan, N.K., Nargi, D., Randolph, C., Narayanan, B.A. (2009). Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. International Journal of Cancer, 125, 1–8.
  • [63] Thangapazham, R., Puri, A., Tele, S., Blumenthal, R., Maheshwari, R. (2008). Evaluation of a nanotechnology based carrier for delivery of curcumin in prostate cancer cells. International Journal of Oncology, 32(5), 1119–1123.
  • [64] Chun, J.Y., Choi, M.J., Min, S.G., Weiss, J. (2013). Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids, 30(1), 249-257.
  • [65] Barenholz, Y. (2001). Liposome application: Problems and prospects. Current Opinion in Colloid and Interface Science, 6(1), 66-77.
  • [66] Laye, C., McClements, D.J., Weiss, J. (2008). Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73(5), 7-15.
  • [67] Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7), 587–605.
  • [68] Aqil, F., Jeyabalan, J., Agrawal, A.K., Kyakulaga, A.H., Munagala, R., Parker, L., Gupta, R.C. (2017). Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food and Function, 8(11), 4100-4107.
  • [69] Mazid, M., Khan, T.A., Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232-249.
  • [70] Soleti, R., Andriantsitohaina, R., Martinez, M.C. (2018). Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Archives of Biochemistry and Biophysics, 644, 57-63.
  • [71] Middleton, E., Kandaswami, C., Theoharides, T. (2000). The effects of plant flavonoids on mammalian cells: Implication for inflamation, heart disease and cancer. Pharmalogical Reviews, 52(4), 673-751.
  • [72] Chuang, C.C., McIntosh, M.K. (2011). Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annual Review of Nutrition, 31(1), 155-176.
  • [73] Russo, A., Acquaviva, R., Campisi, A., Sorrenti, V., Di Giacomo, C., Virgata, G., Barcellona, M.L., Vanella, A. (2000). Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biology and Toxicology, 16(2), 91-98.
  • [74] Skibola, C., Smith, M. (2000). Potential health impacts of excessive flavonoid intake. Free Radical Biology & Medicine, 29, 375-383.
  • [75] Yousuf, B., Gul, K., Wani, A.A., Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition, 56, 2223-2230.
  • [76] Stintzing, F.C., Carle, R. (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15,19-38.
  • [77] Nichenametla, S.N., Taruscio, T.G., Barney, D.L., Exon, J.H. (2006) A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46,161-183.
  • [78] Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1-21.
  • [79] Smeriglio, A., Barreca, D., Bellocco, E., Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30, 1265-1286.
  • [80] Zikri, N., Riedl, K., Wang, L.S., Lecher, J., Schwartz, S., Stoner, G. (2009). Black raspberry components inhibit proliferation, induce apoptosis and modulate gene expression in rat esophageal epithelial cells. Nutrition and Cancer, 61(6), 816-826.
  • [81] Munagala, R., Aqil, F., Jeyabalan, J., Gupta, R.C. (2016). Bovine milk-derived exosomes for drug delivery. Cancer Letters, 371, 48-61.
  • [82] Kumar, N., Gupta, S., Chand Yadav, T., Pruthi, V., Kumar Varadwaj, P., Goel, N. (2019). Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. Journal of Biomolecular Structure and Dynamics, 37(9), 2355-2369.
  • [83] Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393-396.
  • [84] Donoso-Quezada, J., Guajardo-Flores, D., González-Valdez, J. (2019). Exosomes as nanocarriers for the delivery of bioactive compounds from black bean extract with antiproliferative activity in cancer cell lines. Materials Today: Proceedings, 13, 362-369.
  • [85] Kannaiyan, R., Shanmugam, M.K., Sethi, G. (2011). Molecular targets of celastrol derived from Thunder of God Vine : Potential role in the treatment of inflammatory disorders and cancer. Cancer Letters, 303(1), 9-20.
  • [86] Salminen, A., Lehtonen, M., Paimela, T., Kaarniranta, K. (2010). Biochemical and biophysical research communications celastrol : Molecular targets of Thunder God Vine. Biochemical and Biophysical Research Communications, 394, 439-442.
  • [87] Benet, L.Z. (2013). The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug development. Journal of Pharmaceutical Sciences, 102(1), 34-42.
  • [88] Yaşın, D., Teksin, Z.Ş. (2018). Biopharmaceutics classification system: Evaluation on international guidelines and countries. Journal of Literature Pharmacy Sciences, 7(2), 160-174.
  • [89] Li, Z., Wu, X., Li, J., Yao, L., Sun, L., Shi, Y., Zhang, W., Lin, J., Liang, D., Li, Y. (2012). Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. International Journal of Nanomedicine, 7, 2389-2398.
  • [90] Park, W., Ruhul Amin, A.R.M., Chen, Z.G., Shin, D.M. (2013). New perspectives of curcumin in cancer prevention. Cancer Prevention Research, 6(5), 387-400.
  • [91] Alisi, I. O., Uzairu, A., Abechi, S.E., Idris, S.O. (2018). Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. Journal of Advanced Research, 12, 47-54.
  • [92] Konak, Ş., Şener, E.H. (2019). Antioxidant effects of curcumin on the blood tissue in rats. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 7(1), 8-14.
  • [93] Jurenka, J.S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Alternative Medicine Review, 14(2), 141-154.
  • [94] Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics, 4(6), 807-818.
  • [95] Aggarwal, B.B., Harikumar, K.B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. International Journal of Biochemistry and Cell Biology, 41(1), 40-59.
  • [96] Aqil, F., Munagala, R., Jeyabalan, J., Agrawal, A.K., Gupta, R. (2017). Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. The American Association of Pharmaceutical Scientists Journal, 19(6), 1691-1702.
  • [97] Osterman, C.J.D., Lynch, J.C., Leaf, P., Gonda, A., Bennit, H.R.F., Griffiths, D., Wall, N.R. (2015). Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS ONE, 10(7), 1-17.
  • [98] Vashisht, M., Rani, P., Onteru, S.K., Singh, D. (2017). Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology, 183, 993-1007.
  • [99] Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., Zhang, H. (2010). A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. The American Society of Gene & Cell Therapy, 18(9), 1606-1614.
  • [100] Guden, D., Temiz, M., Tunctan, B., Fırat, S. (2015). The role of endothelin-1 and new therapeutic approaches in sepsis and septic shock. Journal of Marmara University Institute of Health Sciences, 5(3), 178-190.
  • [101] Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., Ju, S., Mu, J., Zhang, L., Steinman, L., Miller, D., Zhang, H. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. The American Society of Gene & Cell Therapy, 19(10), 1769-1779.
  • [102] Wang, H., Sui, H., Zheng, Y., Jiang, Y., Shi, Y., Liang, J., Zhao, L. (2019). Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 11(15), 7481-7496.
  • [103] Oskouie, M.N., Aghili Moghaddam, N.S., Butler, A.E., Zamani, P., Sahebkar, A. (2019). Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. Journal of Cellular Physiology, 234(6), 8182-8191.
  • [104] Pascual, M., Ibáñez, F., Guerri, C. (2020). Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regeneration Research, 15(5), 796-801.
  • [105] Silva, G.A. (2010). Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Annals of the New York Academy of Sciences, 1199, 221-230.
  • [106] Pardridge, W.M. (2012). Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32, 1959-1972.
  • [107] Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A., Batrakova, E.V. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18-30.

Exosomes: Their Composition, Biological Functions and Potential for Transport of Bioactive Compounds

Year 2020, Volume: 18 Issue: 4, 421 - 432, 31.12.2020
https://doi.org/10.24323/akademik-gida.850939

Abstract

Intercellular communication, which is vital in organisms, is carried out in many different ways. Extracellular vesicles carry cell-specific substances such as DNA, RNA and proteins, taking part in long-distance communication. Extracellular vesicles are divided into three groups as apoptosis, microvesicle and exosome according to their size and formation. The fact that exosomes can be obtained from all body fluids and contain some important biomarkers used in the understanding of diseases has led to an increase in interest in exosomes by revealing the idea of being used in the diagnosis of diseases. In addition, the immunizing roles of dendritic cell-derived exosomes demonstrate the therapeutic utility of exosomes. Differential centrifugation, immunoaffinity, ultrafiltration and polymer-based precipitation are among the most commonly used methods for obtaining exosomes from animal and plant sources. Although exosomes are generally the subject of cell biology and biomedical, recent studies have shown that exosomes contain promising results in food and agriculture. Exosomes are better tolerated by the body as it is formed by all body cells, resembles the cell membrane in structure and content, and can cross complex barriers such as blood-brain. Thus, literature data suggest that transport of bioactive compounds by exosomes may be an alternative solution to nanoparticles having disadvantages such as immune reactions, toxicity, need for modification and artificially synthesized. The aim of this review is to evaluate the properties, functions and role of bioactive compounds in exosomes that have attracted attention in the field of food science in recent years.

References

  • [1] Reece, J.B., Campbell, N.A. (2011). Campbell biology, Pearson Yayınları, Boston.
  • [2] Ahmad, A., Desai, N.N., Qureshi, M.Z., Librelotto, D.R.N., Gasparri, M.L., Bishayee, A., Nabavi, S.R., Curti, V., Daglia, M. (2018). Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology Advances, 36(1), 328-334.
  • [3] Reiner, A.T., Somoza, V. (2019). Extracellular vesicles as vehicles for the delivery of food bioactives. Journal of Agricultural and Food Chemistry, 67, 2113-2119.
  • [4] Akers, J., Gonda, D., Kim, R., Carter, B., Chen, C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113(1), 1-11.
  • [5] Kooijmans, S.A.A., Vader, P., Van Dommelen, S.M., Van Solinge, W.W., Schiffelers, R.M. (2012). Exosome mimetics: A novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525-1541.
  • [6] Beach, A., Zhang, H.G., Ratajczak, M.Z., Kakar, S.S. (2014). Exosomes: An overview of biogenesis, composition and role in ovarian cancer. Journal of Ovarian Research, 7(1), 1-10.
  • [7] Bozkurt, S. (2018). Eksozomlar ve kanserdeki rolleri. Dicle Tıp Dergisi, 45(9), 209–217.
  • [8] Ersöz, E., Can, O.B., Uzunoğlu, S. (2016). Eksozomların kanserdeki rolü. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2(5), 144-152.
  • [9] Boucheix, C., Rubinstein, E. (2011). Tetraspanins. Cellular and Molecular Life Sciences, 58, 1189-1205.
  • [10] Wang, J., Sun, X., Zhao, J., Yang, Y., Cai, X., Xu, J., Cao, P. (2017). Exosomes: A novel strategy for treatment and prevention of diseases. Frontiers in Pharmacology, 8, 1-13.
  • [11] Kahlert, C. (2014). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine, 91(4), 431-437.
  • [12] El Andaloussi, S., Mäger, I., Breakefield, X.O., Wood, M.J.A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12, 347-357.
  • [13] Li, Y., Zhang, Y., Li, Z., Zhou, K., Feng, N. (2019). Exosomes as carriers for antitumor therapy. ACS Biomaterials Science & Engineering, 5, 4870-4881.
  • [14] Isola, A., Chen, S. (2016). Exosomes: The messengers of health and disease. Current Neuropharmacology, 15(1), 157-165.
  • [15] Kahraman, T., Güçlüler, G., Gürsel, İ. (2014). Exosomes: Natural nanovesicle candidates used in the diagnosis and treatment. Turkish Journal of Immunology, 2(2), 34-40.
  • [16] Hessvik, N.P., Sandvig, K., Llorente, A. (2013). Exosomal miRNAs as biomarkers for prostate cancer. Frontiers in Genetics, 4(36), 1-9.
  • [17] Wang, M., Ji, S., Shao, G., Zhang, J., Zhao, K., Wang, Z., Wu, A. (2018). Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clinical and Translational Oncology, 20(7), 906-911.
  • [18] Lakhal, S., Wood, M.J.A. (2011). Exosome nanotechnology: An emerging paradigm shift in drug delivery exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays, 33(10), 737-741.
  • [19] Lönnerdal, B. (2019). Human milk microRNAs/exosomes: Composition and biological effects. Nestle Nutrition Institute Workshop Series, 90, 83-92.
  • [20] Martinez, B., Peplow, P. (2020). MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regeneration Research, 15(4), 606-619.
  • [21] Lässer, C., Seyed Alikhani, V., Ekström, K., Eldh, M., Torregrosa Paredes, P., Bossios, A., Sjöstrand, M., Gabriellsson, S., Lötvall, J., Valadi, H. (2011). Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. Journal of Translational Medicine, 9(1), 1-8.
  • [22] Azmi, A.S., Bao, B., Sarkar, F.H. (2013). Exosomes in cancer development. Cancer and Metastasis Reviews, 32, 1-33.
  • [23] Groza, M., Zimta, A., Irimie, A., Achimas‐Cadariu, P., Cenariu, D., Stanta, G., Berindan‐Neagoe, I. (2019). Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. Journal of Cellular Physiology, 235(6), 1-15.
  • [24] Huang, T., Deng, C.X. (2019). Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. International Journal of Biological Sciences, 15(1), 1-11.
  • [25] Neviani, P., Fabbri, M. (2015). Exosomic microRNAs in the tumor microenvironment. Frontiers in Medicine, 2, 1-6.
  • [26] Gao, X., Wang, Z., Wang, F., Gu, Y., Zhang, J., Chen, S. (2019). Exosomes in coronary artery disease. International Journal of Biological Sciences, 15, 2461-2470.
  • [27] Zhou, H., Wang, B., Yang, Y., Jia, Q., Qi, Z., Zhang, A., Lv, S., Zhang, J. (2019). Exosomes in ischemic heart disease: Novel carriers for bioinformation. Biomedicine & Pharmacotherapy, 120, 1-9.
  • [28] Melling, G.E., Carollo, E., Conlon, R., Simpson, J.C., Raul, D., Carter, F. (2019). The challenges and possibilities of extracellular vesicles as therapeutic vehicles. European Journal of Pharmaceutics and Biopharmaceutics, 144, 50-56.
  • [29] Segura, E., Nicco, C., Lombard, B., Véron, P., Raposo, G., Batteux, F., Amigorena, S., Théry, C. (2005). ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood, 106(1), 216-223.
  • [30] Zıtgovel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., Amigorena, S. (1998). Eradication of established murine tumors using a novel cell-free vaccine: Dentritic cell-derived exosomes. Nature Medicine, 4(5), 594-600.
  • [31] Ramírez-Flores, C.J., Cruz-Mirón, R., Arroyo, R., Mondragón-Castelán, M.E., Nopal-Guerrero, T., González-Pozos, S., Rios-Castro, E., Mondragón-Flores, R. (2019). Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells. Parasitology Research, 118, 289-306.
  • [32] Tavukçuoğlu, Z., Peynircioğlu, B. (2018). Exosomes in diagnostic and therapeutical approaches of infectious diseases. Turkish Journal of Medicine Science, 11(2), 33-39.
  • [33] Vlassov, A.V, Magdaleno, S., Setterquist, R., Conrad, R. (2012). Exosomes: Current knowledge of their composition, biological functions and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820, 940-948.
  • [34] Morse, M.A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T.M., Valente, N., Shreeniwas, R., Sutton, M. A., Delcayre, A., Hsu, D., Pecq, J., Lyerly, H.K. (2005). A phase I study of exosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine, 3(9), 1-8.
  • [35] Nakamura, K., Sawada, K., Kobayashi, M., Miyamoto, M., Shimizu, A., Yamamoto, M., Kinose, Y., Kimura, T. (2019). Role of the exosome in ovarian cancer progression and its potential as a therapeutic target. Cancers, 11(8), 1-17.
  • [36] Syn, N.L., Wang, L., Chow, E.K.H., Lim, C.T., Goh, B.C. (2017). Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends in Biotechnology, 35(7), 665-676.
  • [37] Pitt, J.M., Kroemer, G., Zitvogel, L., Pitt, J.M., André, F., Amigorena, S., Soria, J., Eggermont, A. (2016). Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation, 126(4), 1224-1232.
  • [38] Viaud, S., Terme, M., Flament, C., Taieb, J., André, F., Novault, S., Escudier, B., Robert, C., Caillat-Zucman, S., Tursz, T., Zitvogel, L., Chaput, N. (2009). Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Rα. PLoS ONE, 4(3), 1-12.
  • [39] Kalani, A., Tyagi, A., Tyagi, N. (2014). Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Molecular Neurobiology, 49(1), 1-19.
  • [40] Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoenhn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J., Sadoul, R. (2006). Exosomes are released by cultured cortical neurones. Molecular and Cellular Neuroscience, 31(4), 642-648.
  • [41] Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J., Santambrogio, L. (2005). Proteomic analysis of microglia-derived exosomes: Metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. The Journal of Immunology, 175(4), 2237-2243.
  • [42] Lai, C.P., Breakefield, X.O. (2012). Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Frontiers in Physiology, 3(228), 1-14.
  • [43] Zhang, M., Viennois, E., Xu, C., Merlin, D. (2016). Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers, 4(2), 1-9.
  • [44] Baldrich, P., Rutter, B., Zandkarimi, H., Podicheti, R., Meyers, B., Innes, R. (2018). Biological properties of plant-derived extracellular vesicles. Food & Function, 10(2), 529-538.
  • [45] Pérez-Bermúdez, P., Blesa, J., Soriano, J.M., Marcilla, A. (2017). Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences, 98, 40-50.
  • [46] Aqil, F., Kausar, H., Kumar, A., Jeyabalan, J., Kyakulaga, A., Munagala, R., Gupta, R. (2016). Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Experimental and Molecular Pathology, 101(1), 12-21.
  • [47] Munagala, R., Aqil, F., Jeyabalan, J., Agrawal, A.K., Mudd, A.M., Kyakulaga, A., Singh, I., Vadhanam, M., Gupta, R.C. (2017). Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Letters, 393, 94-102.
  • [48] Vaswani, K., Mitchell, M.D., Holland, O.J., Qin Koh, Y., Hill, R.J., Harb, T., Davies, P., Peiris, H. (2019). A method for the isolation of exosomes from human and bovine milk. Journal of Nutrition and Metabolism, 2019, 1-6.
  • [49] Yang, X.X., Sun, C., Wang, L., Guo, X.L. (2019). New insight into isolation, identification techniques and medical applications of exosomes. Journal of Controlled Release, 308, 119-129.
  • [50] Chen, B., Sung, C.W., Chen, C., Cheng, C., Lin, D.P.C., Huang, C.T., Hsu, M.Y. (2019). Advances in exosomes techonology. Clinica Chimica Acta, 493, 14-19.
  • [51] Peterson, M.F., Otoc, N., Sethi, J.K., Gupta, A., Antes, T.J. (2015). Integrated systems for exosome investigation. Methods, 87, 31-45.
  • [52] Yamada, T., Inoshima, Y., Matsuda, T., Ishiguro, N. (2012). Comparison of methods for isolating exosomes from bovine milk. Journal of Veterinary Medical Science, 74(11), 1523-1525.
  • [53] Tauro, B.J., Greening, D.W., Mathias, R.A., Ji, H., Mathivanan, S., Scott, A.M., Simpson, R.J. (2012). Comparison of ultracentrifugation, density gradient separation and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56(2), 293-304.
  • [54] Ha, D., Yang, N., Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287-296.
  • [55] Lai, R.C., Yeo, R.W.Y., Tan, K.H., Lim, S.K. (2013). Exosomes for drug delivery: A novel application for the mesenchymal stem cell. Biotechnology Advances, 31(5), 543-551.
  • [56] Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: A review of the existing evidence. Food and Function, 5(7), 1341-1359.
  • [57] Tontul, I. (2019). Nanoencapsulation techniques in food industry. Turkish Journal of Agriculture - Food Science and Technology, 7(2), 220-233.
  • [58] Sayıner, Ö., Çomoğlu, T. (2016). Nanotaşıyıcı sistemlerde hedeflendirme. Ankara Eczacılık Fakültesi Dergisi, 40(3), 62-79.
  • [59] Tüylek, Z. (2017). İlaç taşıyıcı si̇stemler ve nanoteknoloji̇k etki̇leşi̇m. Bozok Tıp Dergisi, 7(3), 89-98.
  • [60] Kırtıl, E., Öztop, M.H. (2014). Enkapsülasyon maddesi olarak lipozom ve gıdalarda kullanımı: Yapısı, karakterizasyonu, üretimi ve stabilitesi. Akademik Gıda, 12(4), 41-57.
  • [61] Batist, G., Ramakrishnan, G., Rao, C.S., Chandrasekharan, A., Gutheil, J., Guthrie, T., Shah, P., Khojasteh, A., Nair, M.K., Hoelzer, K., Tkaczuk, K., Park, Y.C., Lee, L.W. (2001). Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. Journal of Clinical Oncology, 19(5), 1444-1454.
  • [62] Narayanan, N.K., Nargi, D., Randolph, C., Narayanan, B.A. (2009). Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. International Journal of Cancer, 125, 1–8.
  • [63] Thangapazham, R., Puri, A., Tele, S., Blumenthal, R., Maheshwari, R. (2008). Evaluation of a nanotechnology based carrier for delivery of curcumin in prostate cancer cells. International Journal of Oncology, 32(5), 1119–1123.
  • [64] Chun, J.Y., Choi, M.J., Min, S.G., Weiss, J. (2013). Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids, 30(1), 249-257.
  • [65] Barenholz, Y. (2001). Liposome application: Problems and prospects. Current Opinion in Colloid and Interface Science, 6(1), 66-77.
  • [66] Laye, C., McClements, D.J., Weiss, J. (2008). Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73(5), 7-15.
  • [67] Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7), 587–605.
  • [68] Aqil, F., Jeyabalan, J., Agrawal, A.K., Kyakulaga, A.H., Munagala, R., Parker, L., Gupta, R.C. (2017). Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food and Function, 8(11), 4100-4107.
  • [69] Mazid, M., Khan, T.A., Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232-249.
  • [70] Soleti, R., Andriantsitohaina, R., Martinez, M.C. (2018). Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Archives of Biochemistry and Biophysics, 644, 57-63.
  • [71] Middleton, E., Kandaswami, C., Theoharides, T. (2000). The effects of plant flavonoids on mammalian cells: Implication for inflamation, heart disease and cancer. Pharmalogical Reviews, 52(4), 673-751.
  • [72] Chuang, C.C., McIntosh, M.K. (2011). Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annual Review of Nutrition, 31(1), 155-176.
  • [73] Russo, A., Acquaviva, R., Campisi, A., Sorrenti, V., Di Giacomo, C., Virgata, G., Barcellona, M.L., Vanella, A. (2000). Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biology and Toxicology, 16(2), 91-98.
  • [74] Skibola, C., Smith, M. (2000). Potential health impacts of excessive flavonoid intake. Free Radical Biology & Medicine, 29, 375-383.
  • [75] Yousuf, B., Gul, K., Wani, A.A., Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition, 56, 2223-2230.
  • [76] Stintzing, F.C., Carle, R. (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15,19-38.
  • [77] Nichenametla, S.N., Taruscio, T.G., Barney, D.L., Exon, J.H. (2006) A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46,161-183.
  • [78] Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1-21.
  • [79] Smeriglio, A., Barreca, D., Bellocco, E., Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30, 1265-1286.
  • [80] Zikri, N., Riedl, K., Wang, L.S., Lecher, J., Schwartz, S., Stoner, G. (2009). Black raspberry components inhibit proliferation, induce apoptosis and modulate gene expression in rat esophageal epithelial cells. Nutrition and Cancer, 61(6), 816-826.
  • [81] Munagala, R., Aqil, F., Jeyabalan, J., Gupta, R.C. (2016). Bovine milk-derived exosomes for drug delivery. Cancer Letters, 371, 48-61.
  • [82] Kumar, N., Gupta, S., Chand Yadav, T., Pruthi, V., Kumar Varadwaj, P., Goel, N. (2019). Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. Journal of Biomolecular Structure and Dynamics, 37(9), 2355-2369.
  • [83] Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393-396.
  • [84] Donoso-Quezada, J., Guajardo-Flores, D., González-Valdez, J. (2019). Exosomes as nanocarriers for the delivery of bioactive compounds from black bean extract with antiproliferative activity in cancer cell lines. Materials Today: Proceedings, 13, 362-369.
  • [85] Kannaiyan, R., Shanmugam, M.K., Sethi, G. (2011). Molecular targets of celastrol derived from Thunder of God Vine : Potential role in the treatment of inflammatory disorders and cancer. Cancer Letters, 303(1), 9-20.
  • [86] Salminen, A., Lehtonen, M., Paimela, T., Kaarniranta, K. (2010). Biochemical and biophysical research communications celastrol : Molecular targets of Thunder God Vine. Biochemical and Biophysical Research Communications, 394, 439-442.
  • [87] Benet, L.Z. (2013). The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug development. Journal of Pharmaceutical Sciences, 102(1), 34-42.
  • [88] Yaşın, D., Teksin, Z.Ş. (2018). Biopharmaceutics classification system: Evaluation on international guidelines and countries. Journal of Literature Pharmacy Sciences, 7(2), 160-174.
  • [89] Li, Z., Wu, X., Li, J., Yao, L., Sun, L., Shi, Y., Zhang, W., Lin, J., Liang, D., Li, Y. (2012). Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. International Journal of Nanomedicine, 7, 2389-2398.
  • [90] Park, W., Ruhul Amin, A.R.M., Chen, Z.G., Shin, D.M. (2013). New perspectives of curcumin in cancer prevention. Cancer Prevention Research, 6(5), 387-400.
  • [91] Alisi, I. O., Uzairu, A., Abechi, S.E., Idris, S.O. (2018). Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. Journal of Advanced Research, 12, 47-54.
  • [92] Konak, Ş., Şener, E.H. (2019). Antioxidant effects of curcumin on the blood tissue in rats. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 7(1), 8-14.
  • [93] Jurenka, J.S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Alternative Medicine Review, 14(2), 141-154.
  • [94] Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics, 4(6), 807-818.
  • [95] Aggarwal, B.B., Harikumar, K.B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. International Journal of Biochemistry and Cell Biology, 41(1), 40-59.
  • [96] Aqil, F., Munagala, R., Jeyabalan, J., Agrawal, A.K., Gupta, R. (2017). Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. The American Association of Pharmaceutical Scientists Journal, 19(6), 1691-1702.
  • [97] Osterman, C.J.D., Lynch, J.C., Leaf, P., Gonda, A., Bennit, H.R.F., Griffiths, D., Wall, N.R. (2015). Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS ONE, 10(7), 1-17.
  • [98] Vashisht, M., Rani, P., Onteru, S.K., Singh, D. (2017). Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology, 183, 993-1007.
  • [99] Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., Zhang, H. (2010). A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. The American Society of Gene & Cell Therapy, 18(9), 1606-1614.
  • [100] Guden, D., Temiz, M., Tunctan, B., Fırat, S. (2015). The role of endothelin-1 and new therapeutic approaches in sepsis and septic shock. Journal of Marmara University Institute of Health Sciences, 5(3), 178-190.
  • [101] Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., Ju, S., Mu, J., Zhang, L., Steinman, L., Miller, D., Zhang, H. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. The American Society of Gene & Cell Therapy, 19(10), 1769-1779.
  • [102] Wang, H., Sui, H., Zheng, Y., Jiang, Y., Shi, Y., Liang, J., Zhao, L. (2019). Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 11(15), 7481-7496.
  • [103] Oskouie, M.N., Aghili Moghaddam, N.S., Butler, A.E., Zamani, P., Sahebkar, A. (2019). Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. Journal of Cellular Physiology, 234(6), 8182-8191.
  • [104] Pascual, M., Ibáñez, F., Guerri, C. (2020). Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regeneration Research, 15(5), 796-801.
  • [105] Silva, G.A. (2010). Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Annals of the New York Academy of Sciences, 1199, 221-230.
  • [106] Pardridge, W.M. (2012). Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32, 1959-1972.
  • [107] Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A., Batrakova, E.V. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18-30.
There are 107 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Cansu İnanır This is me 0000-0002-4748-954X

Lütfiye Ekici This is me 0000-0002-2216-9128

Publication Date December 31, 2020
Submission Date January 7, 2020
Published in Issue Year 2020 Volume: 18 Issue: 4

Cite

APA İnanır, C., & Ekici, L. (2020). Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri. Akademik Gıda, 18(4), 421-432. https://doi.org/10.24323/akademik-gida.850939
AMA İnanır C, Ekici L. Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri. Akademik Gıda. December 2020;18(4):421-432. doi:10.24323/akademik-gida.850939
Chicago İnanır, Cansu, and Lütfiye Ekici. “Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları Ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri”. Akademik Gıda 18, no. 4 (December 2020): 421-32. https://doi.org/10.24323/akademik-gida.850939.
EndNote İnanır C, Ekici L (December 1, 2020) Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri. Akademik Gıda 18 4 421–432.
IEEE C. İnanır and L. Ekici, “Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri”, Akademik Gıda, vol. 18, no. 4, pp. 421–432, 2020, doi: 10.24323/akademik-gida.850939.
ISNAD İnanır, Cansu - Ekici, Lütfiye. “Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları Ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri”. Akademik Gıda 18/4 (December 2020), 421-432. https://doi.org/10.24323/akademik-gida.850939.
JAMA İnanır C, Ekici L. Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri. Akademik Gıda. 2020;18:421–432.
MLA İnanır, Cansu and Lütfiye Ekici. “Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları Ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri”. Akademik Gıda, vol. 18, no. 4, 2020, pp. 421-32, doi:10.24323/akademik-gida.850939.
Vancouver İnanır C, Ekici L. Eksozomlar: Kompozisyonları, Biyolojik Fonksiyonları ve Biyoaktif Bileşiklerin Taşınmasındaki Potansiyelleri. Akademik Gıda. 2020;18(4):421-32.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).