Research Article
BibTex RIS Cite

Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü

Year 2021, Volume: 19 Issue: 1, 49 - 58, 26.04.2021
https://doi.org/10.24323/akademik-gida.927680

Abstract

Bu çalışma tartazinin A. cepa kök ucu hücrelerindeki sitotoksik ve genotoksik etkilerine karşı yeşil kahvenin koruyucu rolünü araştırmayı amaçlamıştır. Bu amaçla A. cepa bulbları altı gruba ayrılmıştır. Kontrol grubu deney süresince çeşme suyunda tutulurken; diğer gruplar 365 mg/L yeşil kahve, 730 mg/L yeşil kahve, 200 mg/L tartrazin, 365 mg/L yeşil kahve + 200 mg/L tartrazin ve 730 mg/L yeşil kahve + 200 mg/L tartrazin ile muamele edilmiştir. Tartrazin uygulaması, çimlenme yüzdesi, kök uzaması ve ağırlık artışının azalmasına yol açmıştır. Artan yeşil kahve dozları bu olumsuz etkileri azaltmıştır. Genotoksisitenin araştırılması için kullanılan mitotik indeks tartrazin uygulamasına bağlı olarak azalmıştır. Tartrazin, mikronükleus ve kromozomal anormalliklerin sıklığını arttırmıştır. Tartrazin ile birlikte uygulanan yeşil kahve dozları, tartrazinin sebep olduğu genotoksik etkileri azaltmıştır. Tartrazin, membranlarda lipid peroksidasyonunun bir göstergesi olan malondialdehit miktarında artışa neden olmuştur. Antioksidan savunmanın iki önemli bileşeni olan süperoksit dismutaz ve katalaz enzimlerinin aktiviteleri tartrazin uygulamasını takiben artmıştır. Tartrazin uygulaması meristematik hücre hasarlarına sebep olmuştur. Artan yeşil kahve dozları, doza bağlı bir şekilde tartrazinin neden olduğu oksidatif stresi ve meristematik hücre hasarlarını azaltmıştır. Çalışma, yeşil kahvenin, tartrazinin A. cepa kök ucu hücrelerinde neden olduğu zararlara karşı önemli bir koruyucu rolü olduğunu açıkça göstermiştir.

References

  • [1] Kumar, N., Singh, A., Sharma, D., Kishore, K. (2019). Toxicity of Food Additives. In Food Safety and Human Health, Edited by R.L. Singh, S. Mondal, Academic Press, London, United Kingdom, 402p.
  • [2] Codex Alimentarius, (2017). Food Additives. 11.4.2020 tarihinde Codex Alimentarius: http://www.codexalimentarius.org/standards/gsfa/
  • [3] Linke, B.G., Casagrande, T.A., Cardoso, L.I.A. (2018). Food additives and their health effects: A review on preservative sodium benzoate. African Journal of Biotechnology, 17(10), 306-310.
  • [4] Li, J., Liu, M., Jiang, J., Liu, B., Tong, H., Xu, Z., Yang, C., Qian, D. (2019). Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical, 288, 552-563.
  • [5] Soylak, M., Uzcan, F. (2020). A novel ultrasonication-assisted deep eutectic solvent microextraction procedure for tartrazine at trace levels from environmental samples. Journal of the Iranian Chemical Society, 17(2), 461-467.
  • [6] de Lima Barizão, A.C., Silva, M.F., Andrade, M., Brito, F.C., Gomes, R.G., Bergamasco, R. (2020). Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. Journal of Environmental Chemical Engineering, 8(1), 103618.
  • [7] Wu, S., Yin, Z.Z., Chen, X., Wang, X., Wu, D., Kong, Y. (2020). Electropolymerized melamine for simultaneous determination of nitrite and tartrazine. Food Chemistry, 333, 127532.
  • [8] Abd-Elhakim, Y.M., Moustafa, G.G., Hashem, M.M., Ali, H.A., Abo-EL-Sooud, K., El-Metwally, A.E. (2019). Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. Environmental Science and Pollution Research, 26(12), 12368-12378.
  • [9] Stevenson, D.D. (2014). Food Allergy: Adverse Reaction to Foods and Food Additives. Wiley-Blackwell, Hoboken, New Jersey.
  • [10] Elekima, I., Nwachuku, O.E. (2019). Evaluation of acute and chronic toxicity of tartrazine (E102) on steriod reproductive hormones of albino rats. Asian Journal of Research and Reports in Endocrinology, 1-15.
  • [11] Balta, I., Sevastre, B., Mireşan, V., Taulescu, M., Raducu, C., Longodor, A.L., Marchiş, Z., Mariş, C.S., Coroian, A. (2019). Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chemistry, 13(1), 104.
  • [12] Macheiner, L., Schmidt, A., Schreiner, M., Mayer, H.K. (2019). Green coffee infusion as a source of caffeine and chlorogenic acid. Journal of Food Composition and Analysis, 84, 103307.
  • [13] Castro, A.C.C.M., Oda, F.B., Almeida-Cincotto, M.G.J., Davanço, M.G., Chiari-Andréo, B.G., Cicarelli, R.M.B., Peccinini, R.G., Zocolo, G.J., Ribeiro, P.R.B., Correa, M.A., Isaac, V.L.B., Santos, A.G. (2018). Green coffee seed residue: a sustainable source of antioxidant compounds. Food Chemistry, 246, 48-57.
  • [14] Şemen, S., Mercan, S., Yayla, M., Açikkol, M. (2017). Elemental composition of green coffee and its contribution to dietary intake. Food Chemistry, 215, 92-100.
  • [15] Jeszka-Skowron, M., Stanisz, E., De Peña, M.P. (2016). Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT Food Science and Technology, 73, 243-250.
  • [16] Kalefetoğlu Macar, T. (2020). Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. Environmental Science and Pollution Research, 1-9.
  • [17] Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K., Yalçın, E. (2020). Determination of protective effect of carob (Ceratonia siliqua L.) extract against cobalt (II) nitrate-induced toxicity. Environmental Science and Pollution Research, 1-9.
  • [18] Khan, S., Anas, M., Malik, A. (2019). Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 6, 193-201.
  • [19] Bonciu, E., Rosculete, E., Rosculete, C. (2020). The clastogenic effect of tartrazine, a synthetic yellow dye, in plant meristematic tissues. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 49(1), 32-35.
  • [20] Taşlı, B., Çavuşoğlu, K., Yalçın, E. (2018). Allium cepa (Amaryllidaceae) L.’da tartrazin uygulaması sonucu oluşan fizyolojik, sitogenetik ve anatomik değişimlerin araştırılması. Türk Doğa ve Fen Dergisi, 7(2), 1-6.
  • [21] Türk Gıda Kodeksi (2013). Gıda katkı maddeleri yönetmeliği. T.C. Resmi Gazete, Sayı: 28693, Ankara.
  • [22] Atik, M., Karagüzel, O., Ersoy, S. (2017). Sıcaklığın Dalbergia sissoo tohumlarının çimlenme özelliklerine etkisi. Mediterranean Agricultural Sciences, 20(2), 203-210.
  • [23] Staykova, T.A., Ivanova, E.N., Velcheva, I.G. (2005). Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of southwest Bulgaria. Journal of Cell and Molecular Biology, 4, 41-46.
  • [24] Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi, S., Zeiger, E. (2003). HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 534(1-2), 65-75.
  • [25] Zou, J., Yue, J., Jiang, W., Liu, D. (2012). Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L. Acta Biologica Cracoviensia Series Botanica, 54, 129-141.
  • [26] Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
  • [27] Beers, R.F., Sizer, I.W. (1952). Colorimetric method for estimation of catalase. Journal of Biological Chemistry, 195, 133-139.
  • [28] Masek, A., Latos-Brozio, M., Kałużna-Czaplińska, J., Rosiak, A., Chrzescijanska, E. (2020). Antioxidant properties of green coffee extract. Forests, 11(5), 557.
  • [29] Lepage, C.C., Thompson, L.L., Larson, B., McManus, K.J. (2020). An automated, single cell quantitative imaging microscopy approach to assess micronucleus formation, genotoxicity and chromosome instability. Cells, 9(2), 344.
  • [30] Bianchi, J., Fernandes, T.C.C., Marin-Morales, M.A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475-483.
  • [31] Yi, H., Meng, Z. (2003). Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 109-114.
  • [32] Mishra, K. (1993). Cytotoxic effects of distillary waste on Allium cepa L. Bulletin of Environmental Contamination and Toxicology, 50(2), 199-204.
  • [33] Dutta, J., Ahmad, A., Singh, J. (2018). Study of industrial effluents induced genotoxicity on Allium cepa L. Caryologia, 71(2), 139-145.
  • [34] Khallef, M., Benouareth, D.E., Konuk, M., Liman, R., Bouchelaghem, S., Hazzem, S., Kerdouci, K. (2019). The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges. Environmental Science and Pollution Research, 26(18), 18403-18410.
  • [35] Hashem, M.M., Abd-Elhakim, Y.M., Abo-EL-Sooud, K., Eleiwa, M.M. (2019). Embryotoxic and teratogenic effects of tartrazine in rats. Toxicological Research, 35(1), 75-81.
  • [36] Glei, M., Kirmse, A., Habermann, N., Persin, C., Pool-Zobel, B.L. (2006). Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutrition and Cancer, 56(2), 182-192.
  • [37] Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B. (2017). Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chemistry, 221, 1451-1457.
  • [38] Tajik, N., Tajik, M., Mack, I., Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56, 2215-2244.
  • [39] Gouthamchandra, K., Sudeep, H.V., Venkatesh, B.J., Prasad, K.S. (2017). Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Science and Human Wellness, 6(3), 147-153.
  • [40] Öztürk, G., Çavuşoğlu, K., Yalçın, E. (2020). Dose-response analysis of potassium bromate–induced toxicity in Allium cepa L. meristematic cells. Environmental Science and Pollution Research, 1-10.
  • [41] Dalo, E., Sadikaj, R., Sahiti, H. (2019). Assessment of accumulation of heavy metals and lipid peroxidation in common reed (Phragmites australis) in the Albanian Part of Lake Ohrid. Ecological Engineering, 20(4), 114-120.
  • [42] Ali, A.F., Abdelgayed, S.A.S., El-Tawil, O.S., Bakeer, A.M. (2016). Toxicological and histopathological studies on the effect of tartrazine in male albino rats. International Journal of Biological, Biomolecular, Agricultural, Food & Biotechnological Engineering, 10(8), 513-518.
  • [43] Boussada, M., Dhouib, E.I., Lamine, J.A., Abidi, N. (2017). Assessment of a sub-chronic consumption of tartrazine (E102) on sperm and oxidative stress features in Wistar rat. International Food Research Journal, 24(4), 1473-1487.
  • [44] Martínez-López, S., Sarria, B., Mateos, R., Bravo-Clemente, L. (2019). Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. European Journal of Nutrition, 58(2), 865-878.
  • [45] Nogaim, Q.A., Bugata, L.S.P., Prabhakar, P.V., Reddy, U.A., Kumari, I., Mahboob, M. (2020). Protective effect of Yemeni green coffee powder against the oxidative stress induced by Ochratoxin A. Toxicology Reports, 7, 142-148.
  • [46] Ighodaro, O.M., Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293.
  • [47] Erdemli, Z., Altinoz, E., Erdemli, M.E., Gul, M., Bag, H.G., Gul, S. (2020). Ameliorative effects of crocin on tartrazine dye–induced pancreatic adverse effects: a biochemical and histological study. Environmental Science and Pollution Research,, 1-10.
  • [48] Noori, S., Rehman, N., Qureshi, M., Mahboob, T. (2009). Reduction of carbon tetrachloride-induced rat liver injury by coffee and green tea. Pakistan Journal of Nutrition, 8(4), 452-458.
  • [49] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research International, 2014, 761264.
  • [50] AL-Megrin, W.A., El-Khadragy, M.F., Hussein, M.H., Mahgoub, S., Abdel-Mohsen, D.M., Taha, H., Bakkar, A.A.A., Abdel Moneim, A.E., Amin, H.K. (2020). Green Coffea arabica extract ameliorates testicular injury in high-fat diet/Streptozotocin-induced diabetes in rats. Journal of Diabetes Research, 6762709.
  • [51] Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K., Yalçın, E. (2020). Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper (II) chloride toxicity. Environmental Science and Pollution Research, 1428-1435.

Protective Role of Green Coffee against Cytotoxic and Genotoxic Effects of Food Dye Tartzanine in A. cepa L. Root Tip Cells

Year 2021, Volume: 19 Issue: 1, 49 - 58, 26.04.2021
https://doi.org/10.24323/akademik-gida.927680

Abstract

This study aimed to investigate the protective role of green coffee against cytotoxic and genotoxic effects of tartazine on A. cepa root tip cells. For this purpose, A. cepa bulbs were divided into six groups. While the control group was kept in tap water throughout the experiment, other groups were treated with 365 mg/L green coffee, 730 mg/L green coffee, 200 mg/L tartrazine, 365 mg/L green coffee + 200 mg/L tartrazine and 730 mg/L green coffee + 200 mg/L tartrazine. Tartrazine treatment led to a decrease in germination percentage, root elongation and weight gain. Increasing doses of green coffee reduced these negative effects. Mitotic index used for the investigation of genotoxicity decreased due to tartrazine administration. Tartrazine increased the frequency of micronucleus and chromosomal abnormalities. Green coffee doses applied with tartrazine reduced the genotoxic effects caused by tartrazine. Tartrazine caused an increase in the amount of malondialdehyde, an indicator of lipid peroxidation in membranes. The activities of superoxide dismutase and catalase enzymes, two important components of antioxidant defense, increased following tartrazine administration. Tartrazine application caused meristematic cell damages. Increasing doses of green coffee decreased the oxidative stress and meristematic cell damages induced by tartrazine in a dose-dependent manner. The study clearly demonstrated that green coffee has an important protective role against the damage caused by tartrazine in A. cepa root tip cells.

References

  • [1] Kumar, N., Singh, A., Sharma, D., Kishore, K. (2019). Toxicity of Food Additives. In Food Safety and Human Health, Edited by R.L. Singh, S. Mondal, Academic Press, London, United Kingdom, 402p.
  • [2] Codex Alimentarius, (2017). Food Additives. 11.4.2020 tarihinde Codex Alimentarius: http://www.codexalimentarius.org/standards/gsfa/
  • [3] Linke, B.G., Casagrande, T.A., Cardoso, L.I.A. (2018). Food additives and their health effects: A review on preservative sodium benzoate. African Journal of Biotechnology, 17(10), 306-310.
  • [4] Li, J., Liu, M., Jiang, J., Liu, B., Tong, H., Xu, Z., Yang, C., Qian, D. (2019). Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical, 288, 552-563.
  • [5] Soylak, M., Uzcan, F. (2020). A novel ultrasonication-assisted deep eutectic solvent microextraction procedure for tartrazine at trace levels from environmental samples. Journal of the Iranian Chemical Society, 17(2), 461-467.
  • [6] de Lima Barizão, A.C., Silva, M.F., Andrade, M., Brito, F.C., Gomes, R.G., Bergamasco, R. (2020). Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. Journal of Environmental Chemical Engineering, 8(1), 103618.
  • [7] Wu, S., Yin, Z.Z., Chen, X., Wang, X., Wu, D., Kong, Y. (2020). Electropolymerized melamine for simultaneous determination of nitrite and tartrazine. Food Chemistry, 333, 127532.
  • [8] Abd-Elhakim, Y.M., Moustafa, G.G., Hashem, M.M., Ali, H.A., Abo-EL-Sooud, K., El-Metwally, A.E. (2019). Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. Environmental Science and Pollution Research, 26(12), 12368-12378.
  • [9] Stevenson, D.D. (2014). Food Allergy: Adverse Reaction to Foods and Food Additives. Wiley-Blackwell, Hoboken, New Jersey.
  • [10] Elekima, I., Nwachuku, O.E. (2019). Evaluation of acute and chronic toxicity of tartrazine (E102) on steriod reproductive hormones of albino rats. Asian Journal of Research and Reports in Endocrinology, 1-15.
  • [11] Balta, I., Sevastre, B., Mireşan, V., Taulescu, M., Raducu, C., Longodor, A.L., Marchiş, Z., Mariş, C.S., Coroian, A. (2019). Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chemistry, 13(1), 104.
  • [12] Macheiner, L., Schmidt, A., Schreiner, M., Mayer, H.K. (2019). Green coffee infusion as a source of caffeine and chlorogenic acid. Journal of Food Composition and Analysis, 84, 103307.
  • [13] Castro, A.C.C.M., Oda, F.B., Almeida-Cincotto, M.G.J., Davanço, M.G., Chiari-Andréo, B.G., Cicarelli, R.M.B., Peccinini, R.G., Zocolo, G.J., Ribeiro, P.R.B., Correa, M.A., Isaac, V.L.B., Santos, A.G. (2018). Green coffee seed residue: a sustainable source of antioxidant compounds. Food Chemistry, 246, 48-57.
  • [14] Şemen, S., Mercan, S., Yayla, M., Açikkol, M. (2017). Elemental composition of green coffee and its contribution to dietary intake. Food Chemistry, 215, 92-100.
  • [15] Jeszka-Skowron, M., Stanisz, E., De Peña, M.P. (2016). Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT Food Science and Technology, 73, 243-250.
  • [16] Kalefetoğlu Macar, T. (2020). Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. Environmental Science and Pollution Research, 1-9.
  • [17] Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K., Yalçın, E. (2020). Determination of protective effect of carob (Ceratonia siliqua L.) extract against cobalt (II) nitrate-induced toxicity. Environmental Science and Pollution Research, 1-9.
  • [18] Khan, S., Anas, M., Malik, A. (2019). Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 6, 193-201.
  • [19] Bonciu, E., Rosculete, E., Rosculete, C. (2020). The clastogenic effect of tartrazine, a synthetic yellow dye, in plant meristematic tissues. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 49(1), 32-35.
  • [20] Taşlı, B., Çavuşoğlu, K., Yalçın, E. (2018). Allium cepa (Amaryllidaceae) L.’da tartrazin uygulaması sonucu oluşan fizyolojik, sitogenetik ve anatomik değişimlerin araştırılması. Türk Doğa ve Fen Dergisi, 7(2), 1-6.
  • [21] Türk Gıda Kodeksi (2013). Gıda katkı maddeleri yönetmeliği. T.C. Resmi Gazete, Sayı: 28693, Ankara.
  • [22] Atik, M., Karagüzel, O., Ersoy, S. (2017). Sıcaklığın Dalbergia sissoo tohumlarının çimlenme özelliklerine etkisi. Mediterranean Agricultural Sciences, 20(2), 203-210.
  • [23] Staykova, T.A., Ivanova, E.N., Velcheva, I.G. (2005). Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of southwest Bulgaria. Journal of Cell and Molecular Biology, 4, 41-46.
  • [24] Fenech, M., Chang, W.P., Kirsch-Volders, M., Holland, N., Bonassi, S., Zeiger, E. (2003). HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 534(1-2), 65-75.
  • [25] Zou, J., Yue, J., Jiang, W., Liu, D. (2012). Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L. Acta Biologica Cracoviensia Series Botanica, 54, 129-141.
  • [26] Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
  • [27] Beers, R.F., Sizer, I.W. (1952). Colorimetric method for estimation of catalase. Journal of Biological Chemistry, 195, 133-139.
  • [28] Masek, A., Latos-Brozio, M., Kałużna-Czaplińska, J., Rosiak, A., Chrzescijanska, E. (2020). Antioxidant properties of green coffee extract. Forests, 11(5), 557.
  • [29] Lepage, C.C., Thompson, L.L., Larson, B., McManus, K.J. (2020). An automated, single cell quantitative imaging microscopy approach to assess micronucleus formation, genotoxicity and chromosome instability. Cells, 9(2), 344.
  • [30] Bianchi, J., Fernandes, T.C.C., Marin-Morales, M.A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475-483.
  • [31] Yi, H., Meng, Z. (2003). Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 109-114.
  • [32] Mishra, K. (1993). Cytotoxic effects of distillary waste on Allium cepa L. Bulletin of Environmental Contamination and Toxicology, 50(2), 199-204.
  • [33] Dutta, J., Ahmad, A., Singh, J. (2018). Study of industrial effluents induced genotoxicity on Allium cepa L. Caryologia, 71(2), 139-145.
  • [34] Khallef, M., Benouareth, D.E., Konuk, M., Liman, R., Bouchelaghem, S., Hazzem, S., Kerdouci, K. (2019). The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges. Environmental Science and Pollution Research, 26(18), 18403-18410.
  • [35] Hashem, M.M., Abd-Elhakim, Y.M., Abo-EL-Sooud, K., Eleiwa, M.M. (2019). Embryotoxic and teratogenic effects of tartrazine in rats. Toxicological Research, 35(1), 75-81.
  • [36] Glei, M., Kirmse, A., Habermann, N., Persin, C., Pool-Zobel, B.L. (2006). Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutrition and Cancer, 56(2), 182-192.
  • [37] Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B. (2017). Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chemistry, 221, 1451-1457.
  • [38] Tajik, N., Tajik, M., Mack, I., Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56, 2215-2244.
  • [39] Gouthamchandra, K., Sudeep, H.V., Venkatesh, B.J., Prasad, K.S. (2017). Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Science and Human Wellness, 6(3), 147-153.
  • [40] Öztürk, G., Çavuşoğlu, K., Yalçın, E. (2020). Dose-response analysis of potassium bromate–induced toxicity in Allium cepa L. meristematic cells. Environmental Science and Pollution Research, 1-10.
  • [41] Dalo, E., Sadikaj, R., Sahiti, H. (2019). Assessment of accumulation of heavy metals and lipid peroxidation in common reed (Phragmites australis) in the Albanian Part of Lake Ohrid. Ecological Engineering, 20(4), 114-120.
  • [42] Ali, A.F., Abdelgayed, S.A.S., El-Tawil, O.S., Bakeer, A.M. (2016). Toxicological and histopathological studies on the effect of tartrazine in male albino rats. International Journal of Biological, Biomolecular, Agricultural, Food & Biotechnological Engineering, 10(8), 513-518.
  • [43] Boussada, M., Dhouib, E.I., Lamine, J.A., Abidi, N. (2017). Assessment of a sub-chronic consumption of tartrazine (E102) on sperm and oxidative stress features in Wistar rat. International Food Research Journal, 24(4), 1473-1487.
  • [44] Martínez-López, S., Sarria, B., Mateos, R., Bravo-Clemente, L. (2019). Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. European Journal of Nutrition, 58(2), 865-878.
  • [45] Nogaim, Q.A., Bugata, L.S.P., Prabhakar, P.V., Reddy, U.A., Kumari, I., Mahboob, M. (2020). Protective effect of Yemeni green coffee powder against the oxidative stress induced by Ochratoxin A. Toxicology Reports, 7, 142-148.
  • [46] Ighodaro, O.M., Akinloye, O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293.
  • [47] Erdemli, Z., Altinoz, E., Erdemli, M.E., Gul, M., Bag, H.G., Gul, S. (2020). Ameliorative effects of crocin on tartrazine dye–induced pancreatic adverse effects: a biochemical and histological study. Environmental Science and Pollution Research,, 1-10.
  • [48] Noori, S., Rehman, N., Qureshi, M., Mahboob, T. (2009). Reduction of carbon tetrachloride-induced rat liver injury by coffee and green tea. Pakistan Journal of Nutrition, 8(4), 452-458.
  • [49] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research International, 2014, 761264.
  • [50] AL-Megrin, W.A., El-Khadragy, M.F., Hussein, M.H., Mahgoub, S., Abdel-Mohsen, D.M., Taha, H., Bakkar, A.A.A., Abdel Moneim, A.E., Amin, H.K. (2020). Green Coffea arabica extract ameliorates testicular injury in high-fat diet/Streptozotocin-induced diabetes in rats. Journal of Diabetes Research, 6762709.
  • [51] Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K., Yalçın, E. (2020). Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper (II) chloride toxicity. Environmental Science and Pollution Research, 1428-1435.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Article
Authors

Emine Yalçın This is me 0000-0002-5280-5375

Tuğçe Kalefetoğlu Macar This is me 0000-0002-9946-8054

Oksal Macar This is me 0000-0002-5067-8712

Kültiğin Çavuşoğlu This is me 0000-0002-4767-9132

Publication Date April 26, 2021
Submission Date November 4, 2020
Published in Issue Year 2021 Volume: 19 Issue: 1

Cite

APA Yalçın, E., Kalefetoğlu Macar, T., Macar, O., Çavuşoğlu, K. (2021). Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü. Akademik Gıda, 19(1), 49-58. https://doi.org/10.24323/akademik-gida.927680
AMA Yalçın E, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K. Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü. Akademik Gıda. April 2021;19(1):49-58. doi:10.24323/akademik-gida.927680
Chicago Yalçın, Emine, Tuğçe Kalefetoğlu Macar, Oksal Macar, and Kültiğin Çavuşoğlu. “Gıda Boyası Tartzaninin A. Cepa L. Kök Ucu Hücrelerindeki Sitotoksik Ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü”. Akademik Gıda 19, no. 1 (April 2021): 49-58. https://doi.org/10.24323/akademik-gida.927680.
EndNote Yalçın E, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K (April 1, 2021) Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü. Akademik Gıda 19 1 49–58.
IEEE E. Yalçın, T. Kalefetoğlu Macar, O. Macar, and K. Çavuşoğlu, “Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü”, Akademik Gıda, vol. 19, no. 1, pp. 49–58, 2021, doi: 10.24323/akademik-gida.927680.
ISNAD Yalçın, Emine et al. “Gıda Boyası Tartzaninin A. Cepa L. Kök Ucu Hücrelerindeki Sitotoksik Ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü”. Akademik Gıda 19/1 (April 2021), 49-58. https://doi.org/10.24323/akademik-gida.927680.
JAMA Yalçın E, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K. Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü. Akademik Gıda. 2021;19:49–58.
MLA Yalçın, Emine et al. “Gıda Boyası Tartzaninin A. Cepa L. Kök Ucu Hücrelerindeki Sitotoksik Ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü”. Akademik Gıda, vol. 19, no. 1, 2021, pp. 49-58, doi:10.24323/akademik-gida.927680.
Vancouver Yalçın E, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K. Gıda Boyası Tartzaninin A. cepa L. Kök Ucu Hücrelerindeki Sitotoksik ve Genotoksik Etkilerine Karşı Yeşil Kahvenin Koruyucu Rolü. Akademik Gıda. 2021;19(1):49-58.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).