Review
BibTex RIS Cite

Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi

Year 2021, Volume: 19 Issue: 1, 74 - 88, 26.04.2021
https://doi.org/10.24323/akademik-gida.927700

Abstract

Petrol türevi polimerlerin gıda ambalaj malzemesi olarak kullanımı hem sürdürülebilir değildir hem de kalıcı çevre problemlerine sebep olmaktadır. Bu nedenle son yıllarda biyobozunur ve biyobazlı polimerlerin geliştirilmesi önem kazanmıştır. Biyobazlı polimerler mikrobiyolojik ve biyoteknolojik yollarla elde edilebileceği gibi gıda sanayi yan ürünlerinden ya da doğada bulunan diğer kaynaklardan da elde edilebilmektedir. Nişasta, kitin, pektin ve proteinleri biyobozunur polimer kaynağı olarak kullanmak ambalaj kaynaklı atık problemlerini ve çevre kirliliğini azaltmak için alternatif olarak görülmektedir. Bu derleme makalede polisakkarit ve protein bazlı biyobozunur polimerlerin üretim yöntemleri, mekanik, bariyer, termal ve antimikrobiyal özellikleri irdelenerek sürdürebilir gıda ambalajlama açısından potansiyelleri değerlendirilecektir.

References

  • [1] Tawakkal, I.S., Cran, M.J., Miltz, J., Bigger, S.W. (2014). A review of poly (lactic acid)‐based materials for antimicrobial packaging. Journal of Food Science, 79(8), R1477-R1490.
  • [2] Kayan, A. (2018). Çevre Sorunlarına Eğitimle Farkındalık Oluşturma. J. Awareness (JoA), 3(Special), 481-496.
  • [3] Wang, L., Kerry, J.P. (2018). “Edible, Biodegradable Packing for Food.” New Food Magazine, www.newfoodmagazine.com/article/215/edible-biodegradable-packaging-for-food/.(01.05.2018).
  • [4] Keskin, B., Altay, B.N., Akyol, M., Meral, G., Uyar, O. (2018). Global Packaging Trends. 6. Uluslararası Matbaa Teknolojileri Sempozyumu 01-03 Kasım, İstanbul Türkiye, 483-503.
  • [5] Dursun, S., Erkan, N., Yesiltas, M. (2010). Dogal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünlerindeki uygulamaları. Journal of FisheriesSciences, 4(1), 50-77.
  • [6] Javidi, Z., Hosseini, S.F., Rezaei, M. (2016). Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT-Food Science and Technology, 72, 251-260.
  • [7] Saklar, A.S. (2008). Ambalaj ve Nanoteknoloji. http://www.gidabilimi.com/ index.php?option=com_contentvetask=view veid=1553veItemid=57. (06.01.2008).
  • [8] Priya, B., Gupta, V.K., Pathania, D., Singha, A.S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179.
  • [9] Ivonkovic, A., Zeljko, K., Talic, S., Lasic, M. (2017). Biodegradable packaging in the food industry. Journal of Food Safety and Food Quality, 68, 26-38.
  • [10] Fennema, O.R., Damodaran, S., Parkin, K.L. (2017). Introduction to food chemistry. In Fennema’s Food Chemistry, CRC Press, Florida, USA.
  • [11] Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058-2076.
  • [12] Chung, Y.L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P., Lai, H.M. (2010). Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 79(2), 391-396.
  • [13] Oleyaei, S.A., Almasi, H., Ghanbarzadeh, B., Moayedi, A.A. (2016). Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253-262.
  • [14] Tavares, K.M., de Campos, A., Mitsuyuki, M.C., Luchesi, B.R., Marconcini, J.M. (2019). Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers, 223, 115055 (1-11).
  • [15] Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.
  • [16] Nawab, A., Alam, F., Haq, M.A., Haider, M.S., Lutfi, Z., Kamaluddin, S., Hasnain, A. (2018). Innovative edible packaging from mango kernel starch for the shelf life extension of red chili powder. International Journal of Biological Macromolecules, 114, 626-631.
  • [17] Bie, P., Liu, P., Yu, L., Li, X., Chen, L., Xie, F. (2013). The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98(1), 959-966.
  • [18] Hu, Z., Hong, P., Liao, M., Kong, S., Huang, N., Ou, C., Li, S. (2016). Preparation and characterization of chitosan-agarose composite films. Materials, 9(10), 816.
  • [19] Tan, Y.M., Lim, S.H., Tay, B.Y., Lee, M.W., Thian, E.S. (2015). Fonksiyonel kitosan bazlı greyfurt çekirdeği, gıda paketleme teknolojisindeki uygulamalar için kompozit filmler çıkarır. Malzeme Araştırma Bülteni, 69, 142-146.
  • [20] Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.
  • [21] Al-Naamani, L., Dobretsov, S., Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies, 38, 231-237.
  • [22] Aljawish, A., Muniglia, L., Klouj, A., Jasniewski, J., Scher, J., Desobry, S. (2016). Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocolloids, 60, 551-558.
  • [23] Zarei, A., Ebrahimiasl, S., Jafarirad, S. (2014). International Multidisciplinary Microscopy Congress, Development of Bactericidal Ag/Chitosan Nanobiocomposites for Active Food Packaging. Edited by Polychroniadis, E.K., Oral, A.Y., Özer, M. Springer, Cham, Switzerland, 154, 225-260.
  • [24] Wu, Z., Huang, X., Li, Y.C., Xiao, H., Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199, 210-218.
  • [25] Kumar, S., Singh, M., Halder, D., Mitra, A. (2016). Lippia javanica: a cheap natural source for the synthesis of antibacterial silver nanocolloid. Applied Nanoscience, 6(7), 1001-1007.
  • [26] Tian, F., Chen, W., Cai'E, W., Kou, X., Fan, G., Li, T., Wu, Z. (2019). Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. International Journal of Biological Macromolecules, 126, 917-925.
  • [27] Karthikeyan, K.T., Nithya, A., Jothivenkatachalam, K. (2017). Photocatalytic and antimicrobial activities of chitosan-TiO2 nanocomposite. International Journal of Biological Macromolecules, 104, 1762-1773.
  • [28] Sharma, V.K., Yngard, R.A., Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83-96.
  • [29] Boura-Theodoridou, O., Giannakas, A., Katapodis, P., Stamatis, H., Ladavos, A., Barkoula, N.M. (2020). Performance of ZnO/chitosan nanocomposite films for antimicrobial packaging applications as a function of NaOH treatment and glycerol/PVOH blending. Food Packaging and Shelf Life, 23, 100456 (1-9).
  • [30] Priyadarshi, R., Negi, Y.S. (2017). Effect of varying filler concentration on zinc oxide nanoparticle embedded chitosan films as potential food packaging material. Journal of Polymers and the Environment, 25(4), 1087-1098.
  • [31] Souza, V.G.L., Pires, J.R., Vieira, É.T., Coelhoso, I.M., Duarte, M.P. Fernando, A.L. (2019). Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids, 89, 241-252.
  • [32] Kasirga, Y., Oral, A., Caner, C. (2012). Preparation and characterization of chitosan/montmorillonite‐K10 nanocomposites films for food packaging applications. Polymer Composites, 33(11), 1874-1882.
  • [33] Atalay, D., Türken, T., Erge, H.S. (2018). Pektin; Kaynakları ve ekstraksiyon yöntemleri, Gıda, 43(6), 1002-1018.
  • [34] Thakur, S., Chaudhary, J., Kumar, V., Thakur, V.K. (2019). Progress in pectin based hydrogels for water purification: Trends and challenges. Journal of Environmental Management, 238, 210-223.
  • [35] Batista, R.A., Espitia, P.J.P., Quintans, J.D.S.S., Freitas, M.M., Cerqueira, M.Â., Teixeira, J.A., Cardoso, J.C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116.
  • [36] Ciolacu, L., Nicolau, A.I., Hoorfar, J. (2014). Global Safety of Fresh Produce, Edible coatings for fresh and minimally processed fruits and vegetables, Edited by Hoorfar, J., Woodhead Publishing, England, 233-244.
  • [37] Ezati, P., Rhim, J.W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230, 115638 (1-8).
  • [38] Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128-135.
  • [39] Sartori, T., Feltre, G., do Amaral Sobral, P.J., da Cunha, R.L., Menegalli, F.C. (2018). Properties of films produced from blends of pectin and gluten. Food Packaging and Shelf Life, 18, 221-229.
  • [40] Olagunju, A., Onyike, E., Muhammad, A., Aliyu, S., Abdullahi, A.S. (2013). Effects of fungal (Lachnocladium spp.) pretreatment on nutrient and antinutrient composition of corn cobs. African Journal of Biochemistry Research, 7(11), 210-214.
  • [41] Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De’Nobili, M.D., Rojas, A.M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate polymers, 164, 13-22.compounds. Food Hydrocolloids, 60, 551-558.
  • [42] Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175.
  • [43] Sablani, S.S., Dasse, F., Bastarrachea, L., Dhawan, S., Hendrix, K.M., Min, S.C. (2009). Apple peel‐based edible film development using a high‐pressure homogenization. Journal of Food Science, 74(7), 372-381.
  • [44] Zubair, M., Ullah, A. (2020). Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 60(3), 406-434.
  • [45] Rahmani, H., Najafi, S.H.M., Saffarzadeh‐Matin, S., Ashori, A. (2014). Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle‐ply layers. Polymer Engineering and Science, 54(11), 2676-2682.
  • [46] Shankar, S., Teng, X., Li, G., Rhim, J.W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
  • [47] Gupta, P., Nayak, K.K. (2015). Characteristics of protein‐based biopolymer and its application. Polymer Engineering and Science, 55(3), 485-498.
  • [48] Janjarasskul, T., Krochta, J.M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415-448.
  • [49] Dursun, S., Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370.
  • [50] Türkas. (2016). 2016 yılı sebze ve meyve sektörü. Tüm ürün kap ve ambalaj standartları sempozyumu, 5-6 Ekim, 2016, İstanbul, Türkiye, 1-120.
  • [51] Denavi, G.A., Pérez-Mateos, M., Añón, M.C., Montero, P., Mauri, A.N., Gomez-Guillen, M.C. (2009). Structural and functional properties of soy protein isolate and cod gelatin blend films. Food Hydrocolloids, 23(8), 2094-2101.
  • [52] Wu, J., Sun, Q., Huang, H., Duan, Y., Xiao, G., Le, T. (2019). Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets. Colloids and Surfaces B: Biointerfaces, 180, 31-38.
  • [53] Yu, Z.L., Zeng, W.C. (2013). Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract. Journal of Food Science, 78(9), C1354-C1362.
  • [54] Jahangirian, H., Azizi, S., Rafiee-Moghaddam, R., Baratvand, B., Webster, T.J. (2019). Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules, 9(10), 619.
  • [55] Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282-301.
  • [56] Sogut, E., Balqis, A.I., Hanani, Z.N., Seydim, A.C. (2019). The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil. Polymer Testing, 77, 105886 (1-8).
  • [57] Salgado, P.R., López-Caballero, M.E., Gómez-Guillén, M.C., Mauri, A.N., Montero, M.P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84.
  • [58] Mytle, N., Anderson, G.L., Doyle, M.P., Smith, M.A. (2006). Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control, 17(2), 102-107.
  • [59] Gomez-Estaca, J., Gomez-Guillen, M.C., Fernandez-Martín, F., Montero, P. (2011). Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocolloids, 25, 1461-1469.
  • [60] Bae, H.J., Park, H.J., Hong, S.I., Byun, Y.J., Darby, D.O., Kimmel, R.M., Whiteside, W.S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT-Food Science and Technology, 42(6), 1179-1186.
  • [61] Hosseini, S.F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.
  • [62] Junqueira‐Gonçalves, M.P., Salinas, G.E., Bruna, J.E., Niranjan, K. (2017). An assessment of lactobiopolymer‐montmorillonite composites for dip coating applications on fresh strawberries. Journal of the Science of Food and Agriculture, 97(6), 1846-1853.

Assessment of Polysaccharide and Protein-Based Active Biocomposite Materials for Food Packaging

Year 2021, Volume: 19 Issue: 1, 74 - 88, 26.04.2021
https://doi.org/10.24323/akademik-gida.927700

Abstract

Petroleum based polymers as food packaging materials are not sustainable and also cause environmental problems. Therefore, biodegradable and biobased polymers have been developed in recent year. Biobased polymers can be obtained by microbiological and biotechnological methods or produced from food industry wastes or the other sources in nature. Starch, chitin, pectin and protein based biodegradable polymer sources could be an alternative to reduce packaging waste and environmental problems. This paper reviews the production methods, mechanical, barrier, thermal and antimicrobial properties of polysaccharide and protein based biodegradable polymers to project their potential for sustainable food packaging.

References

  • [1] Tawakkal, I.S., Cran, M.J., Miltz, J., Bigger, S.W. (2014). A review of poly (lactic acid)‐based materials for antimicrobial packaging. Journal of Food Science, 79(8), R1477-R1490.
  • [2] Kayan, A. (2018). Çevre Sorunlarına Eğitimle Farkındalık Oluşturma. J. Awareness (JoA), 3(Special), 481-496.
  • [3] Wang, L., Kerry, J.P. (2018). “Edible, Biodegradable Packing for Food.” New Food Magazine, www.newfoodmagazine.com/article/215/edible-biodegradable-packaging-for-food/.(01.05.2018).
  • [4] Keskin, B., Altay, B.N., Akyol, M., Meral, G., Uyar, O. (2018). Global Packaging Trends. 6. Uluslararası Matbaa Teknolojileri Sempozyumu 01-03 Kasım, İstanbul Türkiye, 483-503.
  • [5] Dursun, S., Erkan, N., Yesiltas, M. (2010). Dogal biyopolimer bazlı (biyobozunur) nanokompozit filmler ve su ürünlerindeki uygulamaları. Journal of FisheriesSciences, 4(1), 50-77.
  • [6] Javidi, Z., Hosseini, S.F., Rezaei, M. (2016). Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT-Food Science and Technology, 72, 251-260.
  • [7] Saklar, A.S. (2008). Ambalaj ve Nanoteknoloji. http://www.gidabilimi.com/ index.php?option=com_contentvetask=view veid=1553veItemid=57. (06.01.2008).
  • [8] Priya, B., Gupta, V.K., Pathania, D., Singha, A.S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179.
  • [9] Ivonkovic, A., Zeljko, K., Talic, S., Lasic, M. (2017). Biodegradable packaging in the food industry. Journal of Food Safety and Food Quality, 68, 26-38.
  • [10] Fennema, O.R., Damodaran, S., Parkin, K.L. (2017). Introduction to food chemistry. In Fennema’s Food Chemistry, CRC Press, Florida, USA.
  • [11] Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058-2076.
  • [12] Chung, Y.L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P., Lai, H.M. (2010). Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 79(2), 391-396.
  • [13] Oleyaei, S.A., Almasi, H., Ghanbarzadeh, B., Moayedi, A.A. (2016). Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152, 253-262.
  • [14] Tavares, K.M., de Campos, A., Mitsuyuki, M.C., Luchesi, B.R., Marconcini, J.M. (2019). Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers, 223, 115055 (1-11).
  • [15] Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.
  • [16] Nawab, A., Alam, F., Haq, M.A., Haider, M.S., Lutfi, Z., Kamaluddin, S., Hasnain, A. (2018). Innovative edible packaging from mango kernel starch for the shelf life extension of red chili powder. International Journal of Biological Macromolecules, 114, 626-631.
  • [17] Bie, P., Liu, P., Yu, L., Li, X., Chen, L., Xie, F. (2013). The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98(1), 959-966.
  • [18] Hu, Z., Hong, P., Liao, M., Kong, S., Huang, N., Ou, C., Li, S. (2016). Preparation and characterization of chitosan-agarose composite films. Materials, 9(10), 816.
  • [19] Tan, Y.M., Lim, S.H., Tay, B.Y., Lee, M.W., Thian, E.S. (2015). Fonksiyonel kitosan bazlı greyfurt çekirdeği, gıda paketleme teknolojisindeki uygulamalar için kompozit filmler çıkarır. Malzeme Araştırma Bülteni, 69, 142-146.
  • [20] Zhang, X., Xiao, G., Wang, Y., Zhao, Y., Su, H., Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 169, 101-107.
  • [21] Al-Naamani, L., Dobretsov, S., Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies, 38, 231-237.
  • [22] Aljawish, A., Muniglia, L., Klouj, A., Jasniewski, J., Scher, J., Desobry, S. (2016). Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocolloids, 60, 551-558.
  • [23] Zarei, A., Ebrahimiasl, S., Jafarirad, S. (2014). International Multidisciplinary Microscopy Congress, Development of Bactericidal Ag/Chitosan Nanobiocomposites for Active Food Packaging. Edited by Polychroniadis, E.K., Oral, A.Y., Özer, M. Springer, Cham, Switzerland, 154, 225-260.
  • [24] Wu, Z., Huang, X., Li, Y.C., Xiao, H., Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199, 210-218.
  • [25] Kumar, S., Singh, M., Halder, D., Mitra, A. (2016). Lippia javanica: a cheap natural source for the synthesis of antibacterial silver nanocolloid. Applied Nanoscience, 6(7), 1001-1007.
  • [26] Tian, F., Chen, W., Cai'E, W., Kou, X., Fan, G., Li, T., Wu, Z. (2019). Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. International Journal of Biological Macromolecules, 126, 917-925.
  • [27] Karthikeyan, K.T., Nithya, A., Jothivenkatachalam, K. (2017). Photocatalytic and antimicrobial activities of chitosan-TiO2 nanocomposite. International Journal of Biological Macromolecules, 104, 1762-1773.
  • [28] Sharma, V.K., Yngard, R.A., Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83-96.
  • [29] Boura-Theodoridou, O., Giannakas, A., Katapodis, P., Stamatis, H., Ladavos, A., Barkoula, N.M. (2020). Performance of ZnO/chitosan nanocomposite films for antimicrobial packaging applications as a function of NaOH treatment and glycerol/PVOH blending. Food Packaging and Shelf Life, 23, 100456 (1-9).
  • [30] Priyadarshi, R., Negi, Y.S. (2017). Effect of varying filler concentration on zinc oxide nanoparticle embedded chitosan films as potential food packaging material. Journal of Polymers and the Environment, 25(4), 1087-1098.
  • [31] Souza, V.G.L., Pires, J.R., Vieira, É.T., Coelhoso, I.M., Duarte, M.P. Fernando, A.L. (2019). Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids, 89, 241-252.
  • [32] Kasirga, Y., Oral, A., Caner, C. (2012). Preparation and characterization of chitosan/montmorillonite‐K10 nanocomposites films for food packaging applications. Polymer Composites, 33(11), 1874-1882.
  • [33] Atalay, D., Türken, T., Erge, H.S. (2018). Pektin; Kaynakları ve ekstraksiyon yöntemleri, Gıda, 43(6), 1002-1018.
  • [34] Thakur, S., Chaudhary, J., Kumar, V., Thakur, V.K. (2019). Progress in pectin based hydrogels for water purification: Trends and challenges. Journal of Environmental Management, 238, 210-223.
  • [35] Batista, R.A., Espitia, P.J.P., Quintans, J.D.S.S., Freitas, M.M., Cerqueira, M.Â., Teixeira, J.A., Cardoso, J.C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116.
  • [36] Ciolacu, L., Nicolau, A.I., Hoorfar, J. (2014). Global Safety of Fresh Produce, Edible coatings for fresh and minimally processed fruits and vegetables, Edited by Hoorfar, J., Woodhead Publishing, England, 233-244.
  • [37] Ezati, P., Rhim, J.W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230, 115638 (1-8).
  • [38] Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128-135.
  • [39] Sartori, T., Feltre, G., do Amaral Sobral, P.J., da Cunha, R.L., Menegalli, F.C. (2018). Properties of films produced from blends of pectin and gluten. Food Packaging and Shelf Life, 18, 221-229.
  • [40] Olagunju, A., Onyike, E., Muhammad, A., Aliyu, S., Abdullahi, A.S. (2013). Effects of fungal (Lachnocladium spp.) pretreatment on nutrient and antinutrient composition of corn cobs. African Journal of Biochemistry Research, 7(11), 210-214.
  • [41] Bernhardt, D.C., Pérez, C.D., Fissore, E.N., De’Nobili, M.D., Rojas, A.M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate polymers, 164, 13-22.compounds. Food Hydrocolloids, 60, 551-558.
  • [42] Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175.
  • [43] Sablani, S.S., Dasse, F., Bastarrachea, L., Dhawan, S., Hendrix, K.M., Min, S.C. (2009). Apple peel‐based edible film development using a high‐pressure homogenization. Journal of Food Science, 74(7), 372-381.
  • [44] Zubair, M., Ullah, A. (2020). Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 60(3), 406-434.
  • [45] Rahmani, H., Najafi, S.H.M., Saffarzadeh‐Matin, S., Ashori, A. (2014). Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle‐ply layers. Polymer Engineering and Science, 54(11), 2676-2682.
  • [46] Shankar, S., Teng, X., Li, G., Rhim, J.W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
  • [47] Gupta, P., Nayak, K.K. (2015). Characteristics of protein‐based biopolymer and its application. Polymer Engineering and Science, 55(3), 485-498.
  • [48] Janjarasskul, T., Krochta, J.M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415-448.
  • [49] Dursun, S., Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370.
  • [50] Türkas. (2016). 2016 yılı sebze ve meyve sektörü. Tüm ürün kap ve ambalaj standartları sempozyumu, 5-6 Ekim, 2016, İstanbul, Türkiye, 1-120.
  • [51] Denavi, G.A., Pérez-Mateos, M., Añón, M.C., Montero, P., Mauri, A.N., Gomez-Guillen, M.C. (2009). Structural and functional properties of soy protein isolate and cod gelatin blend films. Food Hydrocolloids, 23(8), 2094-2101.
  • [52] Wu, J., Sun, Q., Huang, H., Duan, Y., Xiao, G., Le, T. (2019). Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets. Colloids and Surfaces B: Biointerfaces, 180, 31-38.
  • [53] Yu, Z.L., Zeng, W.C. (2013). Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract. Journal of Food Science, 78(9), C1354-C1362.
  • [54] Jahangirian, H., Azizi, S., Rafiee-Moghaddam, R., Baratvand, B., Webster, T.J. (2019). Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules, 9(10), 619.
  • [55] Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282-301.
  • [56] Sogut, E., Balqis, A.I., Hanani, Z.N., Seydim, A.C. (2019). The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil. Polymer Testing, 77, 105886 (1-8).
  • [57] Salgado, P.R., López-Caballero, M.E., Gómez-Guillén, M.C., Mauri, A.N., Montero, M.P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84.
  • [58] Mytle, N., Anderson, G.L., Doyle, M.P., Smith, M.A. (2006). Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibiting Listeria monocytogenes on chicken frankfurters. Food Control, 17(2), 102-107.
  • [59] Gomez-Estaca, J., Gomez-Guillen, M.C., Fernandez-Martín, F., Montero, P. (2011). Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocolloids, 25, 1461-1469.
  • [60] Bae, H.J., Park, H.J., Hong, S.I., Byun, Y.J., Darby, D.O., Kimmel, R.M., Whiteside, W.S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT-Food Science and Technology, 42(6), 1179-1186.
  • [61] Hosseini, S.F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.
  • [62] Junqueira‐Gonçalves, M.P., Salinas, G.E., Bruna, J.E., Niranjan, K. (2017). An assessment of lactobiopolymer‐montmorillonite composites for dip coating applications on fresh strawberries. Journal of the Science of Food and Agriculture, 97(6), 1846-1853.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Eylem Karakuş This is me 0000-0002-6441-3483

Esra Kibar Balballı This is me 0000-0002-0955-7708

İlknur Ara This is me 0000-0001-9612-8196

Zehra Ayhan This is me 0000-0001-9114-4445

Publication Date April 26, 2021
Submission Date April 26, 2020
Published in Issue Year 2021 Volume: 19 Issue: 1

Cite

APA Karakuş, E., Kibar Balballı, E., Ara, İ., Ayhan, Z. (2021). Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda, 19(1), 74-88. https://doi.org/10.24323/akademik-gida.927700
AMA Karakuş E, Kibar Balballı E, Ara İ, Ayhan Z. Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda. April 2021;19(1):74-88. doi:10.24323/akademik-gida.927700
Chicago Karakuş, Eylem, Esra Kibar Balballı, İlknur Ara, and Zehra Ayhan. “Polisakkarit Ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi”. Akademik Gıda 19, no. 1 (April 2021): 74-88. https://doi.org/10.24323/akademik-gida.927700.
EndNote Karakuş E, Kibar Balballı E, Ara İ, Ayhan Z (April 1, 2021) Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda 19 1 74–88.
IEEE E. Karakuş, E. Kibar Balballı, İ. Ara, and Z. Ayhan, “Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi”, Akademik Gıda, vol. 19, no. 1, pp. 74–88, 2021, doi: 10.24323/akademik-gida.927700.
ISNAD Karakuş, Eylem et al. “Polisakkarit Ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi”. Akademik Gıda 19/1 (April 2021), 74-88. https://doi.org/10.24323/akademik-gida.927700.
JAMA Karakuş E, Kibar Balballı E, Ara İ, Ayhan Z. Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda. 2021;19:74–88.
MLA Karakuş, Eylem et al. “Polisakkarit Ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi”. Akademik Gıda, vol. 19, no. 1, 2021, pp. 74-88, doi:10.24323/akademik-gida.927700.
Vancouver Karakuş E, Kibar Balballı E, Ara İ, Ayhan Z. Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda. 2021;19(1):74-88.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).