Research Article
BibTex RIS Cite

Microwave-Assisted Extraction of Phenolic Components in Olive Leaves and its Kinetics, and Antioxidant Properties of Extracts

Year 2023, Volume: 21 Issue: 3, 233 - 242, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382919

Abstract

Recently, there has been an increasing interest in phenolic component extraction from various by-products of food production due to the health benefits of phenolics like antioxidant activity. In the present study, microwave-assisted extraction (MAE), which is characterized as an efficient alternative and green technique for extraction, was used for the extraction of phenolic compounds from olive leaves. In addition, the effect of different microwave powers on the release kinetics of total phenolic contents in extracts was determined. Extraction efficiency and antioxidant properties of extracts were evaluated with increasing time in three different microwave powers of 100, 300 and 500W. It was observed that the antioxidant activities of extracts increased up to the 15th minute for the microwave power of 100W. Phenolic compound content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity values increased up to 10 minutes for the microwave power of 300W. It was found that both phenolic contents and antioxidant properties of extracts increased up to 4 minutes and then decreased with time for extracts with the microwave power of 500W. Among all extracts, the highest total phenolic content, DPPH radical scavenging activity, and metal chelating activity value were found for the extracts treated with 500W for 4 minutes as 9.52±0.21 mg gallic acid equivalent (GAE)/mL, 15.22±0.45 mg Trolox equivalent (TE)/g, and 98.13±0.04 µmol ethylenediaminetetraacetic acid (EDTA)/g olive leaves, respectively. According to the results of extraction kinetics, the Peleg model was found to be more suitable for MAE. Results indicated that the increased potency for MAE from olive leaves resulted in shorter extraction time. In addition, it was observed that longer time at high microwave powers might reduce the extraction efficiency of MAE.

References

  • [1] Pérez-Bonilla, M., Salido, S., van Beek, T.A., Linares-Palomino, P.J., Altarejos, J., Nogueras, M., Sánchez, A. (2006). Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. Journal of Chromatography A, 1112(1-2), 311-318.
  • [2] Goulas, V., Exarchou, V., Troganis, A.N., Psomiadou, E., Fotsis, T., Briasoulis, E., Gerothanassis, I. P. (2009). Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition & Food Research, 53(5), 600-608.
  • [3] Mohammadi, A., Jafari, S.M., Esfanjani, A.F., Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190, 513-519.
  • [4] Ranalli, A., Marchegiani, D., Contento, S., Girardi, F., Nicolosi, M.P., Brullo, M.D. (2009). Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. European Journal of Lipid Science and Technology, 111(7), 678-687.
  • [5] Park, Y.K., Lee, W.Y. ,Park, S.Y., Ahn, J.K., Han, M.S. (2005). Antioxidant activity and total phenolic content of Callistemon citrinus extracts. Food Science and Biotechnology, 14(2), 212-215.
  • [6] Talhaoui, N., Taamalli, A., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A., Segura-Carretero, A. (2015). Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Research International, 77, 92-108.
  • [7] Erbay, Z., Icier, F. (2010). Thin‐layer drying behaviors of olive leaves (Olea europaea L.). Journal of Food Process Engineering, 33(2), 287-308.
  • [8] Gömen, M., Akkaya, L., Kara, R., Gök, V., Önen, A., Ektik, N. (2016). Zeytin yaprağı ekstraktı ilavesinin köftelerde S. typhimurium, E. coli o157 ve S. aureus gelişimi üzerine etkisi. Akademik Gıda, 14(1), 28-32.
  • [9] Taamalli, A., Arráez-Román, D., Ibañez, E., Zarrouk, M., Segura-Carretero, A., Fernandez-Gutierrez, A. (2012). Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. Journal of Agricultural and Food Chemistry, 60(3), 791-798.
  • [10] Chanioti, S., Siamandoura, P., Tzia, C. (2016). Evaluation of extracts prepared from olive oil by-products using microwave-assisted enzymatic extraction: effect of encapsulation on the stability of final products. Waste and Biomass Valorization, 7(4), 831-842.
  • [11] Şahin, S., Bilgin, M., Dramur, M.U. (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829-1837.
  • [12] Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., Skaltsounis, A.L. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323-330.
  • [13] Darvishzadeh, P., Orsat, V. (2022). Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 27, 100368.
  • [14] Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70(1), 63-70.
  • [15] Ballard, T.S., Mallikarjunan, P., Zhou, K., O’Keefe, S. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120(4), 1185-1192.
  • [16] Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104,17-25.
  • [17] Vieira, A., Abar, L., Chan, D., Vingeliene, S., Polemiti, E., Stevens, C., Norat, T. (2017). Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Annals of Oncology, 28(8), 1788-1802.
  • [18] Di Meo, M.C., De Cristofaro, G.A., Imperatore, R., Rocco, M., Giaquinto, D., Palladino, A., Zotti, T.,Vito, P., Paolucci, M., Varricchio, E. (2021). Microwave-assisted extraction of olive leaf from five Italian cultivars: Effects of harvest-time and extraction conditions on phenolic compounds and in vitro antioxidant properties. ACS Food Science & Technology, 2(1), 31-40.
  • [19] da Rosa, G.S., Vanga, S.K., Gariepy, Y., Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234.
  • [20] Da-Wen, S., Song-Jiu, D. (1989). Study of the heat and mass transfer characteristics of metal hydride beds: a two-dimensional model. Journal of the Less Common Metals, 155(2), 271-279.
  • [21] Sun, D.W., Deng, S.J. (1990). A theoretical model predicting the effective thermal conductivity in powdered metal hydride beds. International Journal of Hydrogen Energy, 15(5), 331-336.
  • [22] Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11.
  • [23] Dong, Z., Gu, F.,Xu, F.,Wang, Q. (2014). Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chemistry, 149, 54-61.
  • [24] Li, M., Ngadi,M. O., Ma, Y. (2014). Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chemistry, 165, 29-34.
  • [25] Alara, O.R., Abdurahman, N.H. (2019). Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification. Industrial Crops and Products, 137, 528-535.
  • [26] Singleton, V. (1985). Citation classic-colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 48, 18-18.
  • [27] Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y., Choudhary, M.I. (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry, 103(4), 1247-1254.
  • [28] Dinis, T.C., Madeira, V.M., Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161-169.
  • [29] Poojary, M.M., Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: kinetics and modelling. Food Chemistry, 173, 943-950.
  • [30] Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
  • [31] Goula, A.M. (2013). Ultrasound-assisted extraction of pomegranate seed oil–Kinetic modeling. Journal of Food Engineering, 117(4), 492-498.
  • [32] Pan, Z., Qu, W., Ma, H., Atungulu, G.G., McHugh, T.H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372.
  • [33] Chan, C.H., Yusoff, R., Ngoh, G.C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169-1186.
  • [34] Chemat, F., Cravotto, G. (2012). Microwave-assisted extraction for bioactive compounds: theory and practice (Vol. 4): Springer Science & Business Media.
  • [35] Alara, O.R., Abdurahman, N.H., Olalere, O.A. (2018). Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food and Bioproducts Processing, 107, 36-48.
  • [36] Gfrerer, M., Lankmayr, E. (2005). Screening, optimization and validation of microwave-assisted extraction for the determination of persistent organochlorine pesticides. Analytica Chimica Acta, 533(2), 203-211.
  • [37] Patil, D.M., Akamanchi, K.G. (2017). Microwave assisted process intensification and kinetic modelling: Extraction of camptothecin from Nothapodytes nimmoniana plant. Industrial Crops and Products, 98, 60-67.
  • [38] Irakli, M., Chatzopoulou, P., Ekateriniadou, L. (2018). Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops and Products, 124, 382-388.
  • [39] Ardestani, A., Yazdanparast, R. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chemistry, 104(1), 21-29.
  • [40] Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., Hammami, M. (2012). The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Industrial Crops and Products, 38, 146-152.
  • [41] Şahin, S., Samli, R., Tan, A.S.B., Barba, F.J., Chemat, F., Cravotto, G., Lorenzo, J.M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22(7), 1056.
  • [42] Şahin, S., Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595-602.
  • [43] Krishnaswamy, K., Orsat, V., Gariépy, Y., Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441-455.
  • [44] Chen, Y., Xie, M.Y., Gong, X.F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 81(1), 162-170.
  • [45] Kadiri, O., Gbadamosi, S.O., Akanbi, C.T. (2019). Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. Journal of Food Measurement and Characterization, 13(4), 3267-3284.
  • [46] Odriozola-Serrano, I., Soliva-Fortuny, R., Gimeno-Añó, V., Martín-Belloso, O. (2008). Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. Journal of Food Engineering, 89(2), 210-216.
  • [47] Ghafoor, M., Misra, N.,Mahadevan, K., Tiwari, B. (2014). Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrasonics Sonochemistry, 21(1), 409-414.

Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri

Year 2023, Volume: 21 Issue: 3, 233 - 242, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382919

Abstract

Son zamanlarda, çeşitli gıda üretim yan ürünlerinden antioksidan aktivite gibi sağlık yararları nedeniyle fenolik bileşen ekstraksiyonuna artan bir ilgi olduğu dikkat çekmektedir. Mevcut çalışmada, zeytin yapraklarından (ZY) fenoliklerin ekstraksiyonu için verimli bir alternatif ve yeşil teknik olarak nitelendirilen mikrodalga destekli ekstraksiyon (MDE) tekniği çalışılmıştır. Değişen mikrodalga gücünün toplam fenoliklerin salınım kinetiği üzerindeki etkisi K1, Bo,Ceq, k, ve SEE parametreleri belirlenerek mikrodalga gücünün etkisini ekstraksiyon süresi açısından açıklamak için kinetik modeller oluşturulmuştur. Üç farklı güçte (100, 300 ve 500W) artan süre ile birlikte ekstraksiyon verimi ve ekstraktların antioksidan özellikleri değerlendirilmiştir. 100 W uygulama için artan süre ile birlikte 15. dakikaya kadar ekstraktların antioksidan özelliklerinin arttığı görülmüştür. 300 W güç uygulamasında ekstraktların fenolik bileşen içeriği ve 2,2-difenil-1-pikrilhidrazil (DPPH) radikali süpürücü aktivite değerleri 10. dakikaya kadar artış göstermiştir. 500 W güç uygulaması için ekstraktların hem fenolik içeriğinin hem de antioksidan özelliklerinin 4. dakikaya kadar arttığı ve daha sonra ilerleyen uygulama süresiyle doğru orantılı olarak azaldığı görülmüştür. Tüm ekstraktlar arasında en yüksek toplam fenolik bileşen içeriği ve antioksidan kapasite değerleri 500 W güçte ve 4 dakika süre ile ekstrakte edilen örnekte gözlemlenmiştir. Aynı örnek için toplam fenolik bileşen içeriği, DPPH radikali süpürücü aktivite ve metal şelatlama aktivite değeri sırasıyla 9.52±0.21 mg gallik asit eşdeğeri (GAE)/mL, 15.22±0.45 mg Trolox eşdeğeri (TE)/g ZY ve 98.13±0.04 µmol etilenediaminetetraasetik asit (EDTA)/g zeytin yaprağı (ZY) olarak elde edilmiştir. Ekstraksiyon kinetiğine ait sonuçlara göre MDE için Peleg modelinin daha uygun olduğu görülmüştür. Sonuçlar göz önüne alındığında zeytin yapraklarından MDE için artan güç, ekstraksiyon süresinin kısalmasını sağlamıştır. Ayrıca yüksek güçlerde uzun uygulama sürelerinin ekstraksiyon verimini azalttığı görülmüştür.

References

  • [1] Pérez-Bonilla, M., Salido, S., van Beek, T.A., Linares-Palomino, P.J., Altarejos, J., Nogueras, M., Sánchez, A. (2006). Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. Journal of Chromatography A, 1112(1-2), 311-318.
  • [2] Goulas, V., Exarchou, V., Troganis, A.N., Psomiadou, E., Fotsis, T., Briasoulis, E., Gerothanassis, I. P. (2009). Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition & Food Research, 53(5), 600-608.
  • [3] Mohammadi, A., Jafari, S.M., Esfanjani, A.F., Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190, 513-519.
  • [4] Ranalli, A., Marchegiani, D., Contento, S., Girardi, F., Nicolosi, M.P., Brullo, M.D. (2009). Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. European Journal of Lipid Science and Technology, 111(7), 678-687.
  • [5] Park, Y.K., Lee, W.Y. ,Park, S.Y., Ahn, J.K., Han, M.S. (2005). Antioxidant activity and total phenolic content of Callistemon citrinus extracts. Food Science and Biotechnology, 14(2), 212-215.
  • [6] Talhaoui, N., Taamalli, A., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A., Segura-Carretero, A. (2015). Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Research International, 77, 92-108.
  • [7] Erbay, Z., Icier, F. (2010). Thin‐layer drying behaviors of olive leaves (Olea europaea L.). Journal of Food Process Engineering, 33(2), 287-308.
  • [8] Gömen, M., Akkaya, L., Kara, R., Gök, V., Önen, A., Ektik, N. (2016). Zeytin yaprağı ekstraktı ilavesinin köftelerde S. typhimurium, E. coli o157 ve S. aureus gelişimi üzerine etkisi. Akademik Gıda, 14(1), 28-32.
  • [9] Taamalli, A., Arráez-Román, D., Ibañez, E., Zarrouk, M., Segura-Carretero, A., Fernandez-Gutierrez, A. (2012). Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. Journal of Agricultural and Food Chemistry, 60(3), 791-798.
  • [10] Chanioti, S., Siamandoura, P., Tzia, C. (2016). Evaluation of extracts prepared from olive oil by-products using microwave-assisted enzymatic extraction: effect of encapsulation on the stability of final products. Waste and Biomass Valorization, 7(4), 831-842.
  • [11] Şahin, S., Bilgin, M., Dramur, M.U. (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829-1837.
  • [12] Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., Skaltsounis, A.L. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323-330.
  • [13] Darvishzadeh, P., Orsat, V. (2022). Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants, 27, 100368.
  • [14] Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70(1), 63-70.
  • [15] Ballard, T.S., Mallikarjunan, P., Zhou, K., O’Keefe, S. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120(4), 1185-1192.
  • [16] Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104,17-25.
  • [17] Vieira, A., Abar, L., Chan, D., Vingeliene, S., Polemiti, E., Stevens, C., Norat, T. (2017). Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Annals of Oncology, 28(8), 1788-1802.
  • [18] Di Meo, M.C., De Cristofaro, G.A., Imperatore, R., Rocco, M., Giaquinto, D., Palladino, A., Zotti, T.,Vito, P., Paolucci, M., Varricchio, E. (2021). Microwave-assisted extraction of olive leaf from five Italian cultivars: Effects of harvest-time and extraction conditions on phenolic compounds and in vitro antioxidant properties. ACS Food Science & Technology, 2(1), 31-40.
  • [19] da Rosa, G.S., Vanga, S.K., Gariepy, Y., Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234.
  • [20] Da-Wen, S., Song-Jiu, D. (1989). Study of the heat and mass transfer characteristics of metal hydride beds: a two-dimensional model. Journal of the Less Common Metals, 155(2), 271-279.
  • [21] Sun, D.W., Deng, S.J. (1990). A theoretical model predicting the effective thermal conductivity in powdered metal hydride beds. International Journal of Hydrogen Energy, 15(5), 331-336.
  • [22] Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11.
  • [23] Dong, Z., Gu, F.,Xu, F.,Wang, Q. (2014). Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chemistry, 149, 54-61.
  • [24] Li, M., Ngadi,M. O., Ma, Y. (2014). Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chemistry, 165, 29-34.
  • [25] Alara, O.R., Abdurahman, N.H. (2019). Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification. Industrial Crops and Products, 137, 528-535.
  • [26] Singleton, V. (1985). Citation classic-colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 48, 18-18.
  • [27] Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y., Choudhary, M.I. (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry, 103(4), 1247-1254.
  • [28] Dinis, T.C., Madeira, V.M., Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161-169.
  • [29] Poojary, M.M., Passamonti, P. (2015). Extraction of lycopene from tomato processing waste: kinetics and modelling. Food Chemistry, 173, 943-950.
  • [30] Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
  • [31] Goula, A.M. (2013). Ultrasound-assisted extraction of pomegranate seed oil–Kinetic modeling. Journal of Food Engineering, 117(4), 492-498.
  • [32] Pan, Z., Qu, W., Ma, H., Atungulu, G.G., McHugh, T.H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372.
  • [33] Chan, C.H., Yusoff, R., Ngoh, G.C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169-1186.
  • [34] Chemat, F., Cravotto, G. (2012). Microwave-assisted extraction for bioactive compounds: theory and practice (Vol. 4): Springer Science & Business Media.
  • [35] Alara, O.R., Abdurahman, N.H., Olalere, O.A. (2018). Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food and Bioproducts Processing, 107, 36-48.
  • [36] Gfrerer, M., Lankmayr, E. (2005). Screening, optimization and validation of microwave-assisted extraction for the determination of persistent organochlorine pesticides. Analytica Chimica Acta, 533(2), 203-211.
  • [37] Patil, D.M., Akamanchi, K.G. (2017). Microwave assisted process intensification and kinetic modelling: Extraction of camptothecin from Nothapodytes nimmoniana plant. Industrial Crops and Products, 98, 60-67.
  • [38] Irakli, M., Chatzopoulou, P., Ekateriniadou, L. (2018). Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops and Products, 124, 382-388.
  • [39] Ardestani, A., Yazdanparast, R. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chemistry, 104(1), 21-29.
  • [40] Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., Hammami, M. (2012). The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Industrial Crops and Products, 38, 146-152.
  • [41] Şahin, S., Samli, R., Tan, A.S.B., Barba, F.J., Chemat, F., Cravotto, G., Lorenzo, J.M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22(7), 1056.
  • [42] Şahin, S., Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595-602.
  • [43] Krishnaswamy, K., Orsat, V., Gariépy, Y., Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441-455.
  • [44] Chen, Y., Xie, M.Y., Gong, X.F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 81(1), 162-170.
  • [45] Kadiri, O., Gbadamosi, S.O., Akanbi, C.T. (2019). Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. Journal of Food Measurement and Characterization, 13(4), 3267-3284.
  • [46] Odriozola-Serrano, I., Soliva-Fortuny, R., Gimeno-Añó, V., Martín-Belloso, O. (2008). Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. Journal of Food Engineering, 89(2), 210-216.
  • [47] Ghafoor, M., Misra, N.,Mahadevan, K., Tiwari, B. (2014). Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrasonics Sonochemistry, 21(1), 409-414.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Elif Meltem İşçimen 0000-0002-9849-6352

Mehmet Hayta 0000-0001-6239-8630

Publication Date October 30, 2023
Submission Date April 20, 2023
Published in Issue Year 2023 Volume: 21 Issue: 3

Cite

APA İşçimen, E. M., & Hayta, M. (2023). Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri. Akademik Gıda, 21(3), 233-242. https://doi.org/10.24323/akademik-gida.1382919
AMA İşçimen EM, Hayta M. Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri. Akademik Gıda. October 2023;21(3):233-242. doi:10.24323/akademik-gida.1382919
Chicago İşçimen, Elif Meltem, and Mehmet Hayta. “Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu Ve Kinetiği Ile Ekstraktların Antioksidan Özellikleri”. Akademik Gıda 21, no. 3 (October 2023): 233-42. https://doi.org/10.24323/akademik-gida.1382919.
EndNote İşçimen EM, Hayta M (October 1, 2023) Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri. Akademik Gıda 21 3 233–242.
IEEE E. M. İşçimen and M. Hayta, “Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri”, Akademik Gıda, vol. 21, no. 3, pp. 233–242, 2023, doi: 10.24323/akademik-gida.1382919.
ISNAD İşçimen, Elif Meltem - Hayta, Mehmet. “Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu Ve Kinetiği Ile Ekstraktların Antioksidan Özellikleri”. Akademik Gıda 21/3 (October 2023), 233-242. https://doi.org/10.24323/akademik-gida.1382919.
JAMA İşçimen EM, Hayta M. Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri. Akademik Gıda. 2023;21:233–242.
MLA İşçimen, Elif Meltem and Mehmet Hayta. “Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu Ve Kinetiği Ile Ekstraktların Antioksidan Özellikleri”. Akademik Gıda, vol. 21, no. 3, 2023, pp. 233-42, doi:10.24323/akademik-gida.1382919.
Vancouver İşçimen EM, Hayta M. Zeytin Yapraklarından Fenolik Bileşenlerin Mikrodalga Destekli Ekstraksiyonu ve Kinetiği ile Ekstraktların Antioksidan Özellikleri. Akademik Gıda. 2023;21(3):233-42.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).