Research Article
BibTex RIS Cite

Drying of Red Pepper in Daylight Simulated Drying System

Year 2025, Volume: 23 Issue: 2, 140 - 155, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746650

Abstract

Red pepper is commonly used as a natural food colorant since it consists of valuable colour components. Drying is one of the most important processes applied for the purposes of the production of dried red pepper and handling of valuable colour components form its processing waste. In order to minimize the quality changes of foods during drying, several studies on the improvement of the drying methods or systems have been carried out. In this study, the drying behaviour and some quality (total red colour components (TRCC), total antioxidant activity (TAA), colour properties) changes of red pepper were examined during drying in daylight simulated drying (DLSD) system by applying different heating sources (hot air and infrared) with different light sources (daylight, LED and without light). Drying was applied at 55°C with the air velocity of 1.5 m/s. The average drying time, which is required to reach the total moisture content of 7.70%±0.99 from the initial moisture content of 91.70% ±0.74 during drying of red peppers in DLSD by applying different conditions, was 315±15 min. For all conditions investigated, the best thin layer drying model characterizing the drying behaviour of red pepper in DLSD was “ Diffusion Approach Model”. It was determined that TRCC loss was minimized by using light assistance and LED light was more efficient on the preservation of TRCC and colour properties than daylight. It was found that heating source was not effective on change of TAA while light assistance decreased the change of TAA. Similar to the drying under sun, the simulated daylight effect in the custom designed drying system could minimize the quality losses compared to the artificial drying systems without light. It is expected that this study might give valuable contribution to the following studies on the drying of different food materials under optimum light conditions.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2021-23539

Thanks

Bu çalışma “Kırmızıbiberden Renk Maddesi Eldesinde Gün Işığı Benzetimli Kurutma ve Vurgulu Ilımlı Elektriksel Alan Destekli Ekstraksiyon İşlemlerinin Etkilerinin İncelenmesi” isimli Yüksek Lisans tezinin bir bölümünü içermektedir. Çalışmaya FYL-2021-23539 nolu proje kapsamında maddi destekte bulunan Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz.

References

  • [1] Hepsağ, F., Hayoğlu, İ. (2022). Çukurova ve doğu Akdeniz Bölgesi’nde satışa sunulan kırmızı pul biber ve kuru incirlerde aflatoksin B1 ve toplam aflatoksin (B1,B2,G1,G2) içeriğinin yüksek performans sıvı kromatografi yöntemi ile belirlenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1393–1406.
  • [2] Demiray, E., Tülek, Y. (2012). Kurutma işleminin kırmızı biberdeki renk maddelerine etkisi. Gıda Teknolojileri Elektronik Dergisi, 7(3), 1–10.
  • [3] Turgay, Ö., Çelik, E. (2016). Kırmızı biberden pigment ekstraksiyonunda kullanılan yöntemler. KSU Mühendislik Bilimleri Dergisi, 19(3), 184–188.
  • [4] Cerit, İ. (2015). Kırmızı biberin (Capsicum Annuum L.) fonksiyonel ve mikrobiyal özellikleri üzerine modifiye atmosferde paketleme etkisi. Yüksek Lisans Tezi, Sakarya Üniversitesi, 2015.
  • [5] Minguez-Mosquera, M.I., Hornero-Mendez, D. (1994). Comparative study of the effect of paprika processing on the carotenoids in peppers (Capsicum annuum) of the Bola and Agridulce varieties. Journal of Agricultural and Food Chemistry, 42(7), 1555–1560.
  • [6] Levy, A., Harel, S., Palevitch, D., Akiri, B., Menagem, E., Kanner, J. (1995). Carotenoid pigments and .beta.-carotene in paprika fruits (Capsicum spp.) with different genotypes. Journal of Agricultural and Food Chemistry, 43(2), 362–366.
  • [7] Anon (2025). Pepper production statistics. Food and Agriculture Organization of the United Nations, Erişim tarihi: 01.07.2025, https://www.fao.org/statistics/en/
  • [8] Doymaz, İ. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61(3), 359–364.
  • [9] Erbay, B., Küçükönder, E. (2008). Gıda endüstrisinde kullanılan farklı kurutma sistemleri. In Türkiye 10. Gıda Kongresi, 21-23 Mayıs 2008, Erzurum, Kongre Kitapçığı, 1045-1048.
  • [10] Barbosa de Lima, A.G., da Silva, J. V., Pereira, E.M.A., dos Santos, I.B., de Lima, W.M.P.B. (2016). Drying of bioproducts: quality and energy aspects. In Drying and Energy Technologies, Edited by J.M.P.Q Delgado, A.G. Barbosa de Lima, Springer, 1–18 p.
  • [11] Sonmete, M.H., Mengeş, H.O., Ertekin, C., Özcan, M.M. (2017). Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 11(2), 629–638.
  • [12] Kovacı, T., Dikmen, E., Şencan-Şahin, A. (2018). Kurutma sistemleri, enerji tüketimleri ve ürün kalitesine etkileri ve örnek sistem tasarımı. Teknik Bilimleri Dergisi, 8(2), 25–39.
  • [13] Begüm Tepe, F., Kağan Tepe, T. (2025). Improvement of intermittent microwave drying of red peppers: Effect of ethanol and blanching pretreatments on drying behavior, modeling, energy consumption and some quality attributes. Thermal Science and Engineering Progress, 63, 103734.
  • [14] El-Mesery, H.S., Mwithiga, G. (2015). Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer. Journal of Food Science and Technology, 52(5), 2721–2730.
  • [15] İçier, F., Çokgezme, Ö. (2024). Kızılötesi kurutma teknolojisi. In Gıdaların Kurutulmasında Kullanılan Yenilikçi Kurutma Teknolojileri, Ed: F. Ertekin-Kaymak (Ed.), 1st ed., Türkiye Klinikleri, Ankara, 46–53p.
  • [16] Sabbaghi, H., Nguyen, P.N. (2025). Infrared drying in food technology: principles and practical insights. In Novel Drying Technologies in Food Science, Edited by: Chandrapala, J., Chapter 8, IntechOpen, 1-22p.
  • [17] Onwude, D.I., Hashim, N., Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145.
  • [18] Arslan, A., Soysal, Y., Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Tekirdağ Ziraat Fakültesi Dergisi, 18(2), 260–272.
  • [19] Tezcan, D., Sabancı, S., Cevik, M., Cokgezme, O.F., Icier, F. (2021). Infrared drying of dill leaves: Drying characteristics, temperature distributions, performance analyses and colour changes. Food Science and Technology International, 27(1), 32–45.
  • [20] Icier, F., Ozmen, D., Cevik, M., Cokgezme, O.F. (2021). Drying of licorice root by novel radiative methods. Journal of Food Processing and Preservation, 45(3), e15214.
  • [21] Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chemistry, 117(4), 647–653.
  • [22] Nasiroglu, S., Kocabıyık, H. (2009). Thin‐layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering, 32(1), 1–16.
  • [23] Cao, Z., Zhou, L., Bi, J., Yi, J., Chen, Q., Wu, X., Zheng J.K., Li, S.R. (2016). Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96(10), 3596–3603.
  • [24] Deng, L.-Z., Yang, X.-H., Mujumdar, A.S., Zhao, J.-H., Wang, D., Zhang, Q., Wang, J., Gao, Z.J., Xiao, H.W. (2018). Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893–907.
  • [25] Demiray, E., Tülek, Y. (2020). Color and ascorbic acid degradation kinetics of red pepper (Capsicum annuum L.) slices during vacuum drying. Akademik Gıda, 18(1), 19–26.
  • [26] Getahun, E., Ebissa, D.T. (2024). Investigation of optimal drying conditions of red chili peppers in a hot air cabinet dryer. Case Studies in Thermal Engineering, 59, 104586.
  • [27] Bayana, D. (2022). Gün ışığı benzetimli ve fotovoltaik destekli kurutucu sistemi kurulumu, performans değerlendirmesi ve domates posasının kurutulmasında kullanımının incelenmesi. Doktora Tezi, Ege Üniversitesi, Fen Bilimleri, Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İzmir.
  • [28] Bohm, M., Holmer, I., Nilsson, H., Noren, O. (2002). Thermal effect of glazing in driver’s cabs. Evaluation of the impact of different types of glazing on the thermal comfort. JTI-rapport-1-82p.
  • [29] Bayana, D., İçier, F. (2022). Drying of tomato pomace in daylight simulated photovoltaic‐assisted drying system: Effects of daylight intensity and application mode. Journal of Food Process Engineering, 45(3), e13990.
  • [30] Bayana, D., İçier, F. (2024). Effects of process conditions on drying of tomato pomace in a novel daylight simulated photovoltaic-assisted drying system. Food and Bioprocess Technology, 17(12), 5000–5022.
  • [31] Poonia, A., Pandey, S., Vasundhara (2022). Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. Food Production, Processing and Nutrition, 4(1), 1-8.
  • [32] Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.
  • [33] Uslu, G., Demirci, A., Regan, J.M. (2015). Efficacy of pulsed UV-light treatment on wastewater effluent disinfection and suspended solid reduction. Journal of Environmental Engineering, 141(6), 04014090.
  • [34] Wekhof, A., Trompeter, F., and Franken, O. (2001). Pulsed UV disintegration (PUVD): a new sterilisation mechanism for packaging and broad medical-hospital applications. In The First International Conference on Ultraviolet Technologies, Washington D.C., Book of Proceedings, 1–15 p.
  • [35] Liu, L.H., Zabaras, D., Bennett, L.E., Aguas, P., Woonton, B.W. (2009). Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry, 115(2), 495–500.
  • [36] Wu, B., Pan, Z., Qu, W., Wang, B., Wang, J., Ma, H. (2014). Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices. LWT - Food Science and Technology, 57(1), 90–98.
  • [37] Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., Wang, K., Hu, W. (2019). Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, 251, 73–79.
  • [38] Minguez-Mosquera, M.I., Hornero-Mendez, D. (1994). Formation and transformation of pigments during the fruit ripening of Capsicum annuum Cv. Bola and Agridulce. Journal of Agricultural and Food Chemistry, 42(1), 38–44.
  • [39] Hornero-Méndez, D., Mínguez-Mosquera, M.I. (2000). Carotenoid pigments in Rosa mosqueta Hips, an alternative carotenoid source for foods. Journal of Agricultural and Food Chemistry, 48(3), 825–828.
  • [40] Wang, J., Yang, X.-H., Mujumdar, A.S., Fang, X.-M., Zhang, Q., Zheng, Z.-A., Gao, Z.J., Xiao, H.W. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food Chemistry, 259, 65–72.
  • [41] Nour, V., Ionica, M.E., Trandafir, I. (2015). Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. Journal of Food Science and Technology, 52(12), 8260–8267.
  • [42] Cemeroğlu, B.S. (2010). Gıda Analizleri. Gıda Teknolojisi Dernegi Yayınları, Ankara.
  • [43] Erbay, Z., Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–64.
  • [44] Lewis, W.K. (1921). The rate of drying of solid materials. I&EC-Symposium of Drying, Book of Proceedings, 3(5), 42p.
  • [45] Page, G.E. (1949). Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers. M.S.Thesis, Purdue University, West Lafayette, Indiana.
  • [46] Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169–174.
  • [47] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39, 337–344.
  • [48] Chandra, P.K., Singh, R.P. (1995). Applied Numerical Methods For Food And Agricultural Engineers. CRC Press, Boca Raton, FL, 163–167p.
  • [49] Sharaf-Eldeen, Y. I., Blaisdell, J.L., Hamdy, M.Y. (1980). A model for ear corn drying. Transaction of the ASAE, 23, 1261–1271.
  • [50] Kaseem, A.S. (1998). Comparative studies on thin layer drying models for wheat. In 13th International Congress on Agricultural Engineering, Vol. 6, 2–6 February, Book of Proceedings, Morocco.
  • [51] Verma, L.R., Bucklin, R.A, Ednan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transaction of the ASAE, 28, 296–301.
  • [52] Kaymak‐Ertekin, F. (2002). Drying and rehydrating kinetics of green and red peppers. Journal of Food Science, 67(1), 168–175.
  • [53] Mazza, G., Lemaguer, M. (1980). Dehydration of onion: some theoretical and practical considerations. International Journal of Food Science & Technology, 15(2), 181–194.
  • [54] Mulet, A., Berna, A., Borr, M., Pinaga, F. (1987). Effect of air flow rate on carrot dryıng. Drying Technology, 5(2), 245–258.
  • [55] Magee, T.., Wilkinson, C. (1992). Influence of process variables on the drying of potato slices. International Journal of Food Science & Technology, 27(5), 541–549.
  • [56] Akpinar, E.K., Bicer, Y., Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99–104.
  • [57] Rabha, D.K., Muthukumar, P., Somayaji, C. (2017). Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable Energy, 105, 583–589.
  • [58] Soysal, Y., Keskin, M., Arslan, A., Şekerli, Y. (2018). Infrared drying characteristics of pepper at different maturity stages. In International Conference on Energy Research, Alanya, Turkey, Book of Proceedings, 293–304p.
  • [59] İncedayı, B. (2020). Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper. Turkısh Journal of Agrıculture and Forestry, 44(6), 543–556.
  • [60] Fratianni, A., Niro, S., Messia, M.C., Cinquanta, L., Panfili, G., Albanese, D., Matteo, M.D. (2017). Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.). Food Research International, 99, 862–867.
  • [61] Yang, X.-H., Deng, L.-Z., Mujumdar, A.S., Xiao, H.-W., Zhang, Q., Kan, Z. (2018). Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, 101–108.
  • [62] Aczél, A. (1986). Application of overpressured layer chromatography in red pepper analysis. Study of the carotenoids responsible for the red color in ground red pepper. Journal of High Resolution Chromatography, 9(7), 407–408.
  • [63] Ngamwonglumlert, L., Devahastin, S., Chiewchan, N., Raghavan, V. (2020). Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1561–1604.
  • [64] Speranza, G., Lo Scalzo, R., Morelli, C.F., Rabuffetti, M., Bianchi, G. (2019). Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). Journal of Food Biochemistry, 43(11), e13031.
  • [65] Liu, C., Wan, H., Yang, Y., Ye, Q., Zhou, G., Wang, X., Ahammed, G.J., Cheng, Y. (2022). Post-Harvest LED light irradiation affects firmness, bioactive substances, and amino acid compositions in chili pepper (Capsicum annum L.). Foods, 11(17), 2712.
  • [66] Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kiriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H. (2015). Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biology and Technology, 99, 99–104.
  • [67] Howard, L.R., Talcott, S.T., Brenes, C.H., Villalon, B. (2000). Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry, 48(5), 1713–1720.
  • [68] Zhou, L., Cao, Z., Bi, J., Yi, J., Chen, Q., Wu, X., Zhou, M. (2016). Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. International Journal of Food Science & Technology, 51(4), 842–853.
  • [69] Meckelmann, S.W., Riegel, D.W., van Zonneveld, M., Ríos, L., Peña, K., Mueller-Seitz, E., Petz, M. (2015). Capsaicinoids, flavonoids, tocopherols, antioxidant capacity and color attributes in 23 native Peruvian chili peppers (Capsicum spp.) grown in three different locations. European Food Research and Technology, 240(2), 273–283.
  • [70] Maroga, G.M., Soundy, P., Sivakumar, D. (2019). Different postharvest responses of fresh-cut sweet peppers related to quality and antioxidant and phenylalanine Ammonia Lyase activities during exposure to light-emitting diode treatments. Foods, 8(9), 359.
  • [71] Nasıroğlu, Ş. (2007). Kırmızı biber, elma ve pırasanın kurutulmasında infrared kurutma tekniğinin kullanılması. Yüksek lisans tezi, Çanakkale Onsekiz Mart Üniversitesi, 2007.

Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması

Year 2025, Volume: 23 Issue: 2, 140 - 155, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746650

Abstract

Kırmızıbiber oldukça değerli renk bileşenlerine sahip olması nedeniyle genellikle gıdalarda doğal renklendirici olarak kullanılmaktadır. Hem kurutulmuş kırmızıbiber hem de kırmızıbiberin işleme atıklarından bu değerli bileşenlerin eldesi amacıyla uygulanan en önemli işlemlerden biri kurutmadır. İşlem sırasında kalite özelliklerindeki değişimleri en aza indirmek için kurutma yöntemlerini iyileştirmeye yönelik çalışmalar gerçekleştirilmektedir. Bu çalışmada, gün ışığı benzetimli kurutma (GIBK) sisteminde farklı ısıtma kaynağı (sıcak hava ve kızılötesi) modlarında farklı ışık destekleri (gün ışığı ve LED) ile kurutma sırasında kırmızıbiberin kurutma davranışı ve bazı kalite özelliklerindeki (toplam kırmızı renk bileşeni (TKRB) içeriği, toplam antioksidan aktivite (TAA) ve renk özellikleri) değişimler belirlenmiştir. Kurutma işlemleri 55°C sıcaklıkta ve 1.5 m/s hava hızında gerçekleştirilmiştir. Başlangıç toplam nem içeriği %91.70±0.74 olan kırmızıbiber örneklerinin GIBK sisteminde gerçekleştirilen farklı işlem koşullarında işlem sonu nem içeriklerinin ortalama %7.70±0.99 olması için belirlenen kurutma sürelerinin 315±15 dk olduğu belirlenmiştir. İncelenen tüm koşullarda kırmızıbiberin dilim halinde kurutulma davranışını en iyi karakterize eden ince tabaka modelinin “Difüzyon Yaklaşım Modeli” olduğu belirlenmiştir. TKRB kaybının (%65-85) ışık desteği kullanımı ile azaltılabildiği, LED ışığın ise TKRB ve renk özelliklerinin korunmasında günışığına kıyasla daha başarılı olduğu belirlenmiştir. Isıtma kaynağının TAA değişimi üzerine etkisinin istatistiksel anlamda etkili olmadığı, ancak TAA değişiminin ışık desteği ile azaldığı tespit edilmiştir. Güneş altında kurutmaya benzer şekilde geliştirilen kurutma sisteminde simüle edilen günışığı etkisi ile kalite özelliklerindeki değişimin ışıksız ortamlarda gerçekleştirilen yapay kurutma yöntemlerine kıyasla azaltılabileceği ortaya koyulmuştur. Bu çalışmanın farklı gıda ürünlerinin kurutulmasında en uygun ışık ortamlarının sağlanmasına yönelik çalışmalara öncülük etmesi beklenmektedir.

Project Number

FYL-2021-23539

References

  • [1] Hepsağ, F., Hayoğlu, İ. (2022). Çukurova ve doğu Akdeniz Bölgesi’nde satışa sunulan kırmızı pul biber ve kuru incirlerde aflatoksin B1 ve toplam aflatoksin (B1,B2,G1,G2) içeriğinin yüksek performans sıvı kromatografi yöntemi ile belirlenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1393–1406.
  • [2] Demiray, E., Tülek, Y. (2012). Kurutma işleminin kırmızı biberdeki renk maddelerine etkisi. Gıda Teknolojileri Elektronik Dergisi, 7(3), 1–10.
  • [3] Turgay, Ö., Çelik, E. (2016). Kırmızı biberden pigment ekstraksiyonunda kullanılan yöntemler. KSU Mühendislik Bilimleri Dergisi, 19(3), 184–188.
  • [4] Cerit, İ. (2015). Kırmızı biberin (Capsicum Annuum L.) fonksiyonel ve mikrobiyal özellikleri üzerine modifiye atmosferde paketleme etkisi. Yüksek Lisans Tezi, Sakarya Üniversitesi, 2015.
  • [5] Minguez-Mosquera, M.I., Hornero-Mendez, D. (1994). Comparative study of the effect of paprika processing on the carotenoids in peppers (Capsicum annuum) of the Bola and Agridulce varieties. Journal of Agricultural and Food Chemistry, 42(7), 1555–1560.
  • [6] Levy, A., Harel, S., Palevitch, D., Akiri, B., Menagem, E., Kanner, J. (1995). Carotenoid pigments and .beta.-carotene in paprika fruits (Capsicum spp.) with different genotypes. Journal of Agricultural and Food Chemistry, 43(2), 362–366.
  • [7] Anon (2025). Pepper production statistics. Food and Agriculture Organization of the United Nations, Erişim tarihi: 01.07.2025, https://www.fao.org/statistics/en/
  • [8] Doymaz, İ. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61(3), 359–364.
  • [9] Erbay, B., Küçükönder, E. (2008). Gıda endüstrisinde kullanılan farklı kurutma sistemleri. In Türkiye 10. Gıda Kongresi, 21-23 Mayıs 2008, Erzurum, Kongre Kitapçığı, 1045-1048.
  • [10] Barbosa de Lima, A.G., da Silva, J. V., Pereira, E.M.A., dos Santos, I.B., de Lima, W.M.P.B. (2016). Drying of bioproducts: quality and energy aspects. In Drying and Energy Technologies, Edited by J.M.P.Q Delgado, A.G. Barbosa de Lima, Springer, 1–18 p.
  • [11] Sonmete, M.H., Mengeş, H.O., Ertekin, C., Özcan, M.M. (2017). Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 11(2), 629–638.
  • [12] Kovacı, T., Dikmen, E., Şencan-Şahin, A. (2018). Kurutma sistemleri, enerji tüketimleri ve ürün kalitesine etkileri ve örnek sistem tasarımı. Teknik Bilimleri Dergisi, 8(2), 25–39.
  • [13] Begüm Tepe, F., Kağan Tepe, T. (2025). Improvement of intermittent microwave drying of red peppers: Effect of ethanol and blanching pretreatments on drying behavior, modeling, energy consumption and some quality attributes. Thermal Science and Engineering Progress, 63, 103734.
  • [14] El-Mesery, H.S., Mwithiga, G. (2015). Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer. Journal of Food Science and Technology, 52(5), 2721–2730.
  • [15] İçier, F., Çokgezme, Ö. (2024). Kızılötesi kurutma teknolojisi. In Gıdaların Kurutulmasında Kullanılan Yenilikçi Kurutma Teknolojileri, Ed: F. Ertekin-Kaymak (Ed.), 1st ed., Türkiye Klinikleri, Ankara, 46–53p.
  • [16] Sabbaghi, H., Nguyen, P.N. (2025). Infrared drying in food technology: principles and practical insights. In Novel Drying Technologies in Food Science, Edited by: Chandrapala, J., Chapter 8, IntechOpen, 1-22p.
  • [17] Onwude, D.I., Hashim, N., Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145.
  • [18] Arslan, A., Soysal, Y., Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Tekirdağ Ziraat Fakültesi Dergisi, 18(2), 260–272.
  • [19] Tezcan, D., Sabancı, S., Cevik, M., Cokgezme, O.F., Icier, F. (2021). Infrared drying of dill leaves: Drying characteristics, temperature distributions, performance analyses and colour changes. Food Science and Technology International, 27(1), 32–45.
  • [20] Icier, F., Ozmen, D., Cevik, M., Cokgezme, O.F. (2021). Drying of licorice root by novel radiative methods. Journal of Food Processing and Preservation, 45(3), e15214.
  • [21] Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chemistry, 117(4), 647–653.
  • [22] Nasiroglu, S., Kocabıyık, H. (2009). Thin‐layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering, 32(1), 1–16.
  • [23] Cao, Z., Zhou, L., Bi, J., Yi, J., Chen, Q., Wu, X., Zheng J.K., Li, S.R. (2016). Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96(10), 3596–3603.
  • [24] Deng, L.-Z., Yang, X.-H., Mujumdar, A.S., Zhao, J.-H., Wang, D., Zhang, Q., Wang, J., Gao, Z.J., Xiao, H.W. (2018). Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893–907.
  • [25] Demiray, E., Tülek, Y. (2020). Color and ascorbic acid degradation kinetics of red pepper (Capsicum annuum L.) slices during vacuum drying. Akademik Gıda, 18(1), 19–26.
  • [26] Getahun, E., Ebissa, D.T. (2024). Investigation of optimal drying conditions of red chili peppers in a hot air cabinet dryer. Case Studies in Thermal Engineering, 59, 104586.
  • [27] Bayana, D. (2022). Gün ışığı benzetimli ve fotovoltaik destekli kurutucu sistemi kurulumu, performans değerlendirmesi ve domates posasının kurutulmasında kullanımının incelenmesi. Doktora Tezi, Ege Üniversitesi, Fen Bilimleri, Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İzmir.
  • [28] Bohm, M., Holmer, I., Nilsson, H., Noren, O. (2002). Thermal effect of glazing in driver’s cabs. Evaluation of the impact of different types of glazing on the thermal comfort. JTI-rapport-1-82p.
  • [29] Bayana, D., İçier, F. (2022). Drying of tomato pomace in daylight simulated photovoltaic‐assisted drying system: Effects of daylight intensity and application mode. Journal of Food Process Engineering, 45(3), e13990.
  • [30] Bayana, D., İçier, F. (2024). Effects of process conditions on drying of tomato pomace in a novel daylight simulated photovoltaic-assisted drying system. Food and Bioprocess Technology, 17(12), 5000–5022.
  • [31] Poonia, A., Pandey, S., Vasundhara (2022). Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. Food Production, Processing and Nutrition, 4(1), 1-8.
  • [32] Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.
  • [33] Uslu, G., Demirci, A., Regan, J.M. (2015). Efficacy of pulsed UV-light treatment on wastewater effluent disinfection and suspended solid reduction. Journal of Environmental Engineering, 141(6), 04014090.
  • [34] Wekhof, A., Trompeter, F., and Franken, O. (2001). Pulsed UV disintegration (PUVD): a new sterilisation mechanism for packaging and broad medical-hospital applications. In The First International Conference on Ultraviolet Technologies, Washington D.C., Book of Proceedings, 1–15 p.
  • [35] Liu, L.H., Zabaras, D., Bennett, L.E., Aguas, P., Woonton, B.W. (2009). Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry, 115(2), 495–500.
  • [36] Wu, B., Pan, Z., Qu, W., Wang, B., Wang, J., Ma, H. (2014). Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices. LWT - Food Science and Technology, 57(1), 90–98.
  • [37] Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., Wang, K., Hu, W. (2019). Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, 251, 73–79.
  • [38] Minguez-Mosquera, M.I., Hornero-Mendez, D. (1994). Formation and transformation of pigments during the fruit ripening of Capsicum annuum Cv. Bola and Agridulce. Journal of Agricultural and Food Chemistry, 42(1), 38–44.
  • [39] Hornero-Méndez, D., Mínguez-Mosquera, M.I. (2000). Carotenoid pigments in Rosa mosqueta Hips, an alternative carotenoid source for foods. Journal of Agricultural and Food Chemistry, 48(3), 825–828.
  • [40] Wang, J., Yang, X.-H., Mujumdar, A.S., Fang, X.-M., Zhang, Q., Zheng, Z.-A., Gao, Z.J., Xiao, H.W. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food Chemistry, 259, 65–72.
  • [41] Nour, V., Ionica, M.E., Trandafir, I. (2015). Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. Journal of Food Science and Technology, 52(12), 8260–8267.
  • [42] Cemeroğlu, B.S. (2010). Gıda Analizleri. Gıda Teknolojisi Dernegi Yayınları, Ankara.
  • [43] Erbay, Z., Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–64.
  • [44] Lewis, W.K. (1921). The rate of drying of solid materials. I&EC-Symposium of Drying, Book of Proceedings, 3(5), 42p.
  • [45] Page, G.E. (1949). Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers. M.S.Thesis, Purdue University, West Lafayette, Indiana.
  • [46] Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169–174.
  • [47] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39, 337–344.
  • [48] Chandra, P.K., Singh, R.P. (1995). Applied Numerical Methods For Food And Agricultural Engineers. CRC Press, Boca Raton, FL, 163–167p.
  • [49] Sharaf-Eldeen, Y. I., Blaisdell, J.L., Hamdy, M.Y. (1980). A model for ear corn drying. Transaction of the ASAE, 23, 1261–1271.
  • [50] Kaseem, A.S. (1998). Comparative studies on thin layer drying models for wheat. In 13th International Congress on Agricultural Engineering, Vol. 6, 2–6 February, Book of Proceedings, Morocco.
  • [51] Verma, L.R., Bucklin, R.A, Ednan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transaction of the ASAE, 28, 296–301.
  • [52] Kaymak‐Ertekin, F. (2002). Drying and rehydrating kinetics of green and red peppers. Journal of Food Science, 67(1), 168–175.
  • [53] Mazza, G., Lemaguer, M. (1980). Dehydration of onion: some theoretical and practical considerations. International Journal of Food Science & Technology, 15(2), 181–194.
  • [54] Mulet, A., Berna, A., Borr, M., Pinaga, F. (1987). Effect of air flow rate on carrot dryıng. Drying Technology, 5(2), 245–258.
  • [55] Magee, T.., Wilkinson, C. (1992). Influence of process variables on the drying of potato slices. International Journal of Food Science & Technology, 27(5), 541–549.
  • [56] Akpinar, E.K., Bicer, Y., Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99–104.
  • [57] Rabha, D.K., Muthukumar, P., Somayaji, C. (2017). Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable Energy, 105, 583–589.
  • [58] Soysal, Y., Keskin, M., Arslan, A., Şekerli, Y. (2018). Infrared drying characteristics of pepper at different maturity stages. In International Conference on Energy Research, Alanya, Turkey, Book of Proceedings, 293–304p.
  • [59] İncedayı, B. (2020). Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper. Turkısh Journal of Agrıculture and Forestry, 44(6), 543–556.
  • [60] Fratianni, A., Niro, S., Messia, M.C., Cinquanta, L., Panfili, G., Albanese, D., Matteo, M.D. (2017). Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.). Food Research International, 99, 862–867.
  • [61] Yang, X.-H., Deng, L.-Z., Mujumdar, A.S., Xiao, H.-W., Zhang, Q., Kan, Z. (2018). Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, 101–108.
  • [62] Aczél, A. (1986). Application of overpressured layer chromatography in red pepper analysis. Study of the carotenoids responsible for the red color in ground red pepper. Journal of High Resolution Chromatography, 9(7), 407–408.
  • [63] Ngamwonglumlert, L., Devahastin, S., Chiewchan, N., Raghavan, V. (2020). Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1561–1604.
  • [64] Speranza, G., Lo Scalzo, R., Morelli, C.F., Rabuffetti, M., Bianchi, G. (2019). Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). Journal of Food Biochemistry, 43(11), e13031.
  • [65] Liu, C., Wan, H., Yang, Y., Ye, Q., Zhou, G., Wang, X., Ahammed, G.J., Cheng, Y. (2022). Post-Harvest LED light irradiation affects firmness, bioactive substances, and amino acid compositions in chili pepper (Capsicum annum L.). Foods, 11(17), 2712.
  • [66] Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kiriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H. (2015). Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biology and Technology, 99, 99–104.
  • [67] Howard, L.R., Talcott, S.T., Brenes, C.H., Villalon, B. (2000). Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry, 48(5), 1713–1720.
  • [68] Zhou, L., Cao, Z., Bi, J., Yi, J., Chen, Q., Wu, X., Zhou, M. (2016). Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. International Journal of Food Science & Technology, 51(4), 842–853.
  • [69] Meckelmann, S.W., Riegel, D.W., van Zonneveld, M., Ríos, L., Peña, K., Mueller-Seitz, E., Petz, M. (2015). Capsaicinoids, flavonoids, tocopherols, antioxidant capacity and color attributes in 23 native Peruvian chili peppers (Capsicum spp.) grown in three different locations. European Food Research and Technology, 240(2), 273–283.
  • [70] Maroga, G.M., Soundy, P., Sivakumar, D. (2019). Different postharvest responses of fresh-cut sweet peppers related to quality and antioxidant and phenylalanine Ammonia Lyase activities during exposure to light-emitting diode treatments. Foods, 8(9), 359.
  • [71] Nasıroğlu, Ş. (2007). Kırmızı biber, elma ve pırasanın kurutulmasında infrared kurutma tekniğinin kullanılması. Yüksek lisans tezi, Çanakkale Onsekiz Mart Üniversitesi, 2007.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Drying Technologies
Journal Section Research Papers
Authors

Eren Deniz Konak This is me 0000-0002-5128-9292

Filiz İçier 0000-0002-9555-3390

Project Number FYL-2021-23539
Publication Date July 20, 2025
Submission Date June 12, 2025
Acceptance Date July 17, 2025
Published in Issue Year 2025 Volume: 23 Issue: 2

Cite

APA Konak, E. D., & İçier, F. (2025). Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması. Akademik Gıda, 23(2), 140-155. https://doi.org/10.24323/akademik-gida.1746650
AMA Konak ED, İçier F. Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması. Akademik Gıda. July 2025;23(2):140-155. doi:10.24323/akademik-gida.1746650
Chicago Konak, Eren Deniz, and Filiz İçier. “Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması”. Akademik Gıda 23, no. 2 (July 2025): 140-55. https://doi.org/10.24323/akademik-gida.1746650.
EndNote Konak ED, İçier F (July 1, 2025) Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması. Akademik Gıda 23 2 140–155.
IEEE E. D. Konak and F. İçier, “Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması”, Akademik Gıda, vol. 23, no. 2, pp. 140–155, 2025, doi: 10.24323/akademik-gida.1746650.
ISNAD Konak, Eren Deniz - İçier, Filiz. “Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması”. Akademik Gıda 23/2 (July2025), 140-155. https://doi.org/10.24323/akademik-gida.1746650.
JAMA Konak ED, İçier F. Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması. Akademik Gıda. 2025;23:140–155.
MLA Konak, Eren Deniz and Filiz İçier. “Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması”. Akademik Gıda, vol. 23, no. 2, 2025, pp. 140-55, doi:10.24323/akademik-gida.1746650.
Vancouver Konak ED, İçier F. Kırmızıbiberin Gün Işığı Benzetimli Kurutma Sisteminde Kurutulması. Akademik Gıda. 2025;23(2):140-55.