Research Article
BibTex RIS Cite

Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi

Year 2025, Volume: 23 Issue: 3, 219 - 230, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793621

Abstract

Bu çalışmada elma (Malus domestica) dilimleri tek fanlı (TF) ve çift fanlı (ÇF) ankastre tip fırında tel örgü sepet yapısında (TEL) ve standart fırın tepsileri (STD) üzerinde kurutulmuştur. Üç farklı yöntem (TF-STD, ÇF-TEL ve ÇF-STD) ve sıcaklıkta (65, 75 ve 85°C) kurutulan elma dilimlerinin kurutma kinetikleri, enerji tüketimi, ısıl verimliliği ve son ürünün fiziksel, kimyasal ve duyusal özellikleri incelenmiştir. Kuruma eğrileri altı farklı matematiksel modelde analiz edilip ve Wang ve Singh Modeli ile Midilli ve Diğerleri Modeli en yüksek adj-R2 ve en düşük RMSE değerleri ile elma dilimlerinin kurutma davranışını en iyi yansıtmıştır. ÇF-TEL kurutma yönteminin tüm sıcaklıklarda en kısa kurutma süresi ve yüksek ısıl verimlilik değerlerine sahip olduğu tespit edilmiştir. ÇF-TEL yöntemi ile kurutulan elma dilimlerinin düşük nem oranına sahip olması nedeniyle son ürünün pH ve titrasyon asitliğini, rengini ve tekstürünü etkilemiştir. Bununla birlikte, ÇF-TEL yöntemi ve 85°C sıcaklıkta kurutulan elma dilimleri panelistler tarafından en yüksek renk, koku, doku, görünüş ve genel kabul edilebilirlik puanını almıştır. Elde edilen sonuçlara göre, ÇF-TEL kurutma yöntemi hem enerji etkinliği hem de ürün kalitesi bakımından elma dilimlerinin kurutulması için uygun yöntem olarak diğer kurutma yöntemlerine göre öne çıkmıştır.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

1139B412300953

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 1139B412300953 proje numarası ile desteklenmiştir.

References

  • [1] Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., Tanaś, W., (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports, 11(1), 9155.
  • [2] Zarein, M., Samadi, S.H., Ghobadian, B., (2013). Kinetic drying and mathematical modeling of apple slices on dehydration process. Journal of Food Processing & Technology, 4, 247.
  • [3] Beigi, M., (2016). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442.
  • [4] Barbosa-Cánovas, G.V., Vega-Mercado, H., (1996). Dehydration of foods. Springer Science & Business Media.
  • [5] Seiiedlou, S., Ghasemzadeh, H.R., Hamdami, N., Talati, F., Moghaddam, M., (2010). Convective drying of apple: Mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology,12(2). 171-178.
  • [6] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., Hu, X., (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39-46.
  • [7] Soysal, Y., (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2). 167–173.
  • [8] Demiray, E., Tulek, Y. (2012). Thin layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat and Mass Transfer, 48, 841-847.
  • [9] Adeyeye, S.A.O., Ashaolu, T.J., Babu, A.S., (2022). Food Drying: A Review. Agricultural Reviews, 1(8).
  • [10] Sahin, A.Z., Dincer, I., (2005). Prediction of drying times for irregular shaped multi-dimensional moist solids. Journal of Food Engineering, 71(1), 119–126.
  • [11] Karathanos, V.T., Belessiotis, V.G., (1999) Application of a thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural and Engineering Research, 74(4), 355-361.
  • [12] El-Mesery, H.S., Ashiagbor, K., Hu, Z., Rostom, M., (2024). Mathematical modeling of thin‐layer drying kinetics and moisture diffusivity study of apple slices using infrared conveyor‐belt dryer. Journal of Food Science, 89(3), 1658-1671.
  • [13] Menges, H.O., Ertekin, C., (2006). Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, 77(1), 119-125.
  • [14] Onwude, D.I., Hashim N., Janius, R.B., Nawi, N.M., Abdan, K., (2016). Modeling the thin-layer drying of fruits and vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618.
  • [15] Inyang, U.E., Oboh, I.O., Etuk, B.R., (2018). Kinetic models for drying techniques-Food materials. Advances in Chemical Engineering and Science, 8(2), 27-48.
  • [16] Lewis, W.K., (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.
  • [17] Page, G.E., (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers [MS thesis]. West Lafayette, IN, USA: Purdue University.
  • [18] Yaldiz, O., Ertekin, C., Uzun, H.I., (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5), 457-465.
  • [19] Hendorson, S.M., Pabis, S. (1961). Grain drying theory (i) temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [20] Chandra, P.K., Singh, R.P., (2017). Applied numerical methods for food and agricultural engineers. CRC Press.
  • [21] Rahman, M.S., Perera, C. O., Thebaud, C., (1997). Desorption isotherm and heat pump drying kinetics of peas. Food Research International, 30(7), 485–491.
  • [22] Wang, C.Y., Singh, R.P., (1978). A single layer drying equation for rough rice. ASAE Paper, No. 78-3001 (St. Joseph, MI, USA).
  • [23] Singh, F., Katiyar, V.K., Singh, B.P., (2014). Mathematical modeling to study drying characteristic of apple and potato. International Conference on Chemical, Environment & Biological Sciences (CEBS-2014), Sept. 17-18, 2014, Kuala Lumpur, Malaysia.
  • [24] Corzo, O., Bracho, N., Pereira, A., Vásquez, A., (2008). Weibull distribution for modeling air drying of coroba slices. LWT-Food Science and Technology, 41(10), 2023–2028.
  • [25] Midilli, A., Kucuk, H., Yapar, Z., (2002). A new model for single layer drying. Drying Technology, 20(7), 1503–1513.
  • [26] Kidane, H., Farkas, I., Buzás, J., (2025). Mathematical modelling of golden apple drying and performance evaluation of solar drying systems using energy and exergy approach. Scientific Reports, 15(1), 7805.
  • [27] Fang, S., Wang, L.P., Wu, T., (2015). Mathematical modeling and effect of blanching pretreatment on the drying kinetics of Chinese yam (Dioscorea opposita). Chemical Industry and Chemical Engineering Quarterly, 21(4), 511-518.
  • [28] Cengel, Y.A., Cimbala, J.M., Ghajar, A.J., (2021). Fundamentals of Thermal-Fluid Sciences, 6th Edition, McGraw-Hill, New York.
  • [29] El-Mesery, H.S., Farag, H.A., Kamel, R.M., Alshaer, W.G., (2023). Convective hot air drying of grapes: drying kinetics, mathematical modeling, energy, thermal analysis. Journal of Thermal Analysis and Calorimetry, 148(14), 6893-6908.
  • [30] Ghinea, C., Prisacaru, A.E., Leahu, A., (2022). Physico-chemical and sensory quality of oven-dried and dehydrator-dried apples of the Starkrimson, Golden Delicious and Florina cultivars. Applied Sciences, 12(5), 2350.
  • [31] Yusufe, M., Mohammed, A., Satheesh, N., (2017). Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) cochoro variety. Acta Universitatis Cibiniensis, Series E: Food Technology, 21(1), 41–50.
  • [32] Kahraman, O., Malvandi, A., Vargas, L., Feng, H., (2021). Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrasonics Sonochemistry, 73, 105510.
  • [33] Sadler, G.D., Murphy, P.A., (2010). pH and titratable acidity. In Food analysis (pp. 219-238). Boston, MA: Springer USA.
  • [34] Darvishi, H., Khoshtaghaza, M.H., Minaee, S., (2014). Drying kinetics and colour change of lemon slices. International Agrophysics, 28(1), 1-6.
  • [35] Zielinska, M., Sadowski, P., Błaszczak, W., (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT- Food Science and Technology, 62(1), 555-563.
  • [36] Heybeli, N., Ertekin, C., (2007). Elma dilimlerinin ince tabaka halinde kuruma karakteristiği. Tarım Makinaları Bilimi Dergisi, 3(3), 179-187.
  • [37] Khawas, P., Dash, K.K., Das, A.J., Deka, S.C., (2015). Drying characteristics and assessment of physicochemical and microstructural properties of dried culinary banana slices. International Journal of Food Engineering, 11(5), 667-678.
  • [38] El-Mesery, H.S., Ashiagbor, K., Hu, Z., Alshaer, W.G., (2023). A novel infrared drying technique for processing of apple slices: Drying characteristics and quality attributes. Case Studies in Thermal Engineering, 52, 103676.
  • [39] Chandramohan, V.P., (2018). Influence of air flow velocity and temperature on drying parameters: An experimental analysis with drying correlations. International Conference on Mechanical, Materials and Renewable Energy Dec 8–10, 2017, Sikkim, Hindistan.
  • [40] Akpinar, E.K., Bicer, Y., Yildiz, C., (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99-104.
  • [41] Mayor, L., Sereno, A.M., (2004). Modelling shrinkage during convective drying of food materials: A review. Journal of Food Engineering, 61(3), 373-386.
  • [42] Mujumdar, A.S., (2006). Handbook of Industrial Drying (3rd ed.). CRC Press.
  • [43] Motevali, A., Minaei, S., Khoshtagaza, M.H., (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52 (2), 1192-1199.
  • [44] Kudra T., (2004). Energy aspects in drying. Drying Technology, 22(5), 917-932.
  • [45] EL-Mesery, H.S., (2022). Improving the thermal efficiency and energy consumption of convective dryer using various energy sources for tomato drying. Alexandria Engineering Journal, 61(12), 10245-10261.
  • [46] Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Khoshtaghaza, M.H., (2014). Comparison of energy parameters in various dryers. Energy Conversion and Management, 87, 711-725.
  • [47] Rakyat, M., Yeunyongkul, P., Wuttikid, K., Promdan, S., Nuntapap, N., Chaichana, C., Hokpunna, A., Chungcharoen, T., Ruttanadech, N., Srichai, P., Munsin, R., (2021). Study of air distribution in tray dryer using computational fluid dynamics. Engineering and Applied Science Research, 48(6), 684-693.
  • [48] Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., Uyttendaele, M., (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1056-1066.
  • [49] Kaya, A., Aydin, O., Demirtas, C., Akgün, M., (2007). An experimental study on the drying kinetics of quince. Desalination, 212(1-3), 328-343.
  • [50] Sandulachi, E., (2012). Water activity concept and its role in food preservation. Meridian Ingineresc, (4), 40-48.
  • [51] Fernández, V.M., (2011). Water Activity. In Encyclopedia of Astrobiology, Edited by Gargaud, M., Irvine W.M., Amils R., et al., Springer-Verlag, Berlin Heidelberg, 1763-1764p.
  • [52] Leistner, L., Gorris, L.G., (1995). Food preservation by hurdle technology. Trends in Food Science and Technology, 6(2), 41-46.
  • [53] Fellows, P.J., (2009). Properties of food processing. In Food Science, Technology and Nutrition, Food Processing Technology (Third Edition), Edited by P.J Fellows, Woodhead Publishing Limited, Oxford, England, 11-95p.
  • [54] Jay, J.M., (1992). Modern Food Microbiology. Spinger Science+Business Media, Inc, New York, USA.
  • [55] Owusu, J., Ma, H., Wang, Z., Amissah, A., (2012). Effect of drying methods on physicochemical properties of pretreated tomato (Lycopersicon esculentum Mill.) slices. Croatian Journal of Food Technology, Biotechnology and Nutrition, 7(1-2), 106-111.
  • [56] Koyuncu, M., Bayındır, D., (2013). Scarlet spur elma çeşidinin normal ve kontrollü atmosfer koşullarında depolanması. Anadolu Tarım Bilimleri Dergisi, 28(2), 71-76.
  • [57] Coşkun, A.L., Ünsal, F., (2020). Ticari olarak satışı yapılan baharatlar ve kuru meyvelerin bazı kalite özelliklerinin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 9(3), 99-111.
  • [58] Souto Ribeiro, W., Sant’Ana Silva, A., Ferreira da Silva, Á.G., Marinho do Nascimento, A., Rocha Limão, M.A., Bezerra da Costa, F., Augusto de Souza, P., José de Melo Queiroz, A., Soares da Silva, O., Oliveira Galdino, P., Feitosa de Figueirêdo, R.M., de Melo Silva, S., Luiz Finger, F., (2021). Handmade solar dryer: an environmentally and economically viable alternative for small and medium producers. Scientific Reports, 11(1), 17177.
  • [59] Lavelli, V., Caronni, P., (2010). Polyphenol oxidase activity and implications on the quality of intermediate moisture and dried apples. European Food Research and Technology, 231(1), 93-100.
  • [60] El‐Hadary, A.E., Ramadan, M.F., (2019). Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. Journal of Food Biochemistry, 43(4), e12803.
  • [61] Zawawi, N.A.F., Hazmi, N.A.M., How, M.S., Kantono, K., Silva, F.V., Sulaiman, A., (2022). Thermal, high pressure, and ultrasound inactivation of various fruit cultivars’ polyphenol oxidase: Kinetic inactivation models and estimation of treatment energy requirement. Applied Sciences, 12(4), 1864.
  • [62] Li, X., Wu, X., Bi, J., Liu, X., Li, X., Guo, C., (2019). Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT, 108, 421-428.
  • [63] Aradwad, P.P., Thirumani Venkatesh, A.K., Mani, I., (2023). Infrared drying of apple (Malus domestica) slices: Effect on drying and color kinetics, texture, rehydration, and microstructure. Journal of Food Process Engineering, 46(2), 1-21.
  • [64] Beigi, M., (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology (Campinas), 36(1), 145-150.
  • [65] Harker, F.R., Johnston, J.W., (2008). Importance of texture in fruit and its interaction with flavour. In Fruit and Vegetable Flavour: Recent Advances and Future Prospects, Edited by B. Bruckner, S.G. Wyllie, CRC Press, Boca Raton, FL, USA, 132–149.
  • [66] Ismail, M. and Gögüs, F., (2023). The effect of drying on the physical and chemical properties of fruits. International Topkapı Congress-II, Oct 20, 2023, İstanbul, Türkiye, 444-450p.
  • [67] Omolola, A.O., Jideani, A.I.O., Kapila, P.F., (2017). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95-108.
  • [68] Yan, Z., Sousa-Gallagher, M.J., Oliveira, F.A., (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84(3), 430-440.
  • [69] de PF Guiné, R., (2006). Influence of drying method on density and porosity of pears. Food and Bioproducts Processing, 84(3), 179-185.
  • [70] Mrad, N.D., Boudhrioua, N., Kechaou, N., Courtois, F., Bonazzi, C., (2012). Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioproducts Processing, 90(3), 433-441.
  • [71] Fraeye, I., De Roeck, A., Duvetter, T., Verlent, I., Hendrickx, M., Van Loey, A., (2007). Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chemistry, 105(2), 555-563.
  • [72] Sila, D.N., Smout, C., Elliot, F., Van Loey, A., Hendrickx, M., (2006). Non-enzymatic depolymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. Journal of Food Science, 71(1), E1-E9.
  • [73] Eminoğlu, G., Şenel, E., (2019). Süt ve ürünlerinin duyusal değerlendirmesinde kemometrik yaklaşımlar. Akademik Gıda, 17(1), 102-110.

Drying Apple Slices in Built-in Ovens: Drying Kinetics, Energy Efficiency and Product Quality

Year 2025, Volume: 23 Issue: 3, 219 - 230, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793621

Abstract

In this study, apple (Malus domestica) slices were dried using built-in single-fan (SF) and double-fan (DF) ovens on mesh wire (MWT) and standard oven trays (SOT). The drying kinetics, energy consumption, thermal efficiency, and the physical, chemical, and sensory properties of the final product were examined for apple slices dried using three different methods (SF-SOT, DF-MWT, and DF-SOT) at three temperatures (65, 75, and 85°C). The drying curves were analyzed using six different mathematical models, and the Wang and Singh Model alongside the Midilli et al. Model provided the best fit for representing the drying behavior of apple slices, with the highest adjusted R² and lowest RMSE values. It was determined that the DF-MWT drying method had the shortest drying time and the highest thermal efficiency values at all temperatures. Due to the low moisture content of the apple slices dried with the DF-MWT method, the method influenced the pH, titratable acidity, color, and texture of the final product. Additionally, apple slices dried using the DF-MWT method at 85°C received the highest scores from panelists in terms of color, aroma, texture, appearance, and overall acceptability. Results indicated that the DF-MWT drying method stood out compared to other drying methods as a suitable option for drying apple slices in terms of both energy efficiency and product quality.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

1139B412300953

Thanks

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 1139B412300953.

References

  • [1] Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., Tanaś, W., (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports, 11(1), 9155.
  • [2] Zarein, M., Samadi, S.H., Ghobadian, B., (2013). Kinetic drying and mathematical modeling of apple slices on dehydration process. Journal of Food Processing & Technology, 4, 247.
  • [3] Beigi, M., (2016). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442.
  • [4] Barbosa-Cánovas, G.V., Vega-Mercado, H., (1996). Dehydration of foods. Springer Science & Business Media.
  • [5] Seiiedlou, S., Ghasemzadeh, H.R., Hamdami, N., Talati, F., Moghaddam, M., (2010). Convective drying of apple: Mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology,12(2). 171-178.
  • [6] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., Hu, X., (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39-46.
  • [7] Soysal, Y., (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2). 167–173.
  • [8] Demiray, E., Tulek, Y. (2012). Thin layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat and Mass Transfer, 48, 841-847.
  • [9] Adeyeye, S.A.O., Ashaolu, T.J., Babu, A.S., (2022). Food Drying: A Review. Agricultural Reviews, 1(8).
  • [10] Sahin, A.Z., Dincer, I., (2005). Prediction of drying times for irregular shaped multi-dimensional moist solids. Journal of Food Engineering, 71(1), 119–126.
  • [11] Karathanos, V.T., Belessiotis, V.G., (1999) Application of a thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural and Engineering Research, 74(4), 355-361.
  • [12] El-Mesery, H.S., Ashiagbor, K., Hu, Z., Rostom, M., (2024). Mathematical modeling of thin‐layer drying kinetics and moisture diffusivity study of apple slices using infrared conveyor‐belt dryer. Journal of Food Science, 89(3), 1658-1671.
  • [13] Menges, H.O., Ertekin, C., (2006). Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, 77(1), 119-125.
  • [14] Onwude, D.I., Hashim N., Janius, R.B., Nawi, N.M., Abdan, K., (2016). Modeling the thin-layer drying of fruits and vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618.
  • [15] Inyang, U.E., Oboh, I.O., Etuk, B.R., (2018). Kinetic models for drying techniques-Food materials. Advances in Chemical Engineering and Science, 8(2), 27-48.
  • [16] Lewis, W.K., (1921). The rate of drying of solid materials. Industrial & Engineering Chemistry, 13(5), 427-432.
  • [17] Page, G.E., (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers [MS thesis]. West Lafayette, IN, USA: Purdue University.
  • [18] Yaldiz, O., Ertekin, C., Uzun, H.I., (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5), 457-465.
  • [19] Hendorson, S.M., Pabis, S. (1961). Grain drying theory (i) temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [20] Chandra, P.K., Singh, R.P., (2017). Applied numerical methods for food and agricultural engineers. CRC Press.
  • [21] Rahman, M.S., Perera, C. O., Thebaud, C., (1997). Desorption isotherm and heat pump drying kinetics of peas. Food Research International, 30(7), 485–491.
  • [22] Wang, C.Y., Singh, R.P., (1978). A single layer drying equation for rough rice. ASAE Paper, No. 78-3001 (St. Joseph, MI, USA).
  • [23] Singh, F., Katiyar, V.K., Singh, B.P., (2014). Mathematical modeling to study drying characteristic of apple and potato. International Conference on Chemical, Environment & Biological Sciences (CEBS-2014), Sept. 17-18, 2014, Kuala Lumpur, Malaysia.
  • [24] Corzo, O., Bracho, N., Pereira, A., Vásquez, A., (2008). Weibull distribution for modeling air drying of coroba slices. LWT-Food Science and Technology, 41(10), 2023–2028.
  • [25] Midilli, A., Kucuk, H., Yapar, Z., (2002). A new model for single layer drying. Drying Technology, 20(7), 1503–1513.
  • [26] Kidane, H., Farkas, I., Buzás, J., (2025). Mathematical modelling of golden apple drying and performance evaluation of solar drying systems using energy and exergy approach. Scientific Reports, 15(1), 7805.
  • [27] Fang, S., Wang, L.P., Wu, T., (2015). Mathematical modeling and effect of blanching pretreatment on the drying kinetics of Chinese yam (Dioscorea opposita). Chemical Industry and Chemical Engineering Quarterly, 21(4), 511-518.
  • [28] Cengel, Y.A., Cimbala, J.M., Ghajar, A.J., (2021). Fundamentals of Thermal-Fluid Sciences, 6th Edition, McGraw-Hill, New York.
  • [29] El-Mesery, H.S., Farag, H.A., Kamel, R.M., Alshaer, W.G., (2023). Convective hot air drying of grapes: drying kinetics, mathematical modeling, energy, thermal analysis. Journal of Thermal Analysis and Calorimetry, 148(14), 6893-6908.
  • [30] Ghinea, C., Prisacaru, A.E., Leahu, A., (2022). Physico-chemical and sensory quality of oven-dried and dehydrator-dried apples of the Starkrimson, Golden Delicious and Florina cultivars. Applied Sciences, 12(5), 2350.
  • [31] Yusufe, M., Mohammed, A., Satheesh, N., (2017). Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) cochoro variety. Acta Universitatis Cibiniensis, Series E: Food Technology, 21(1), 41–50.
  • [32] Kahraman, O., Malvandi, A., Vargas, L., Feng, H., (2021). Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrasonics Sonochemistry, 73, 105510.
  • [33] Sadler, G.D., Murphy, P.A., (2010). pH and titratable acidity. In Food analysis (pp. 219-238). Boston, MA: Springer USA.
  • [34] Darvishi, H., Khoshtaghaza, M.H., Minaee, S., (2014). Drying kinetics and colour change of lemon slices. International Agrophysics, 28(1), 1-6.
  • [35] Zielinska, M., Sadowski, P., Błaszczak, W., (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT- Food Science and Technology, 62(1), 555-563.
  • [36] Heybeli, N., Ertekin, C., (2007). Elma dilimlerinin ince tabaka halinde kuruma karakteristiği. Tarım Makinaları Bilimi Dergisi, 3(3), 179-187.
  • [37] Khawas, P., Dash, K.K., Das, A.J., Deka, S.C., (2015). Drying characteristics and assessment of physicochemical and microstructural properties of dried culinary banana slices. International Journal of Food Engineering, 11(5), 667-678.
  • [38] El-Mesery, H.S., Ashiagbor, K., Hu, Z., Alshaer, W.G., (2023). A novel infrared drying technique for processing of apple slices: Drying characteristics and quality attributes. Case Studies in Thermal Engineering, 52, 103676.
  • [39] Chandramohan, V.P., (2018). Influence of air flow velocity and temperature on drying parameters: An experimental analysis with drying correlations. International Conference on Mechanical, Materials and Renewable Energy Dec 8–10, 2017, Sikkim, Hindistan.
  • [40] Akpinar, E.K., Bicer, Y., Yildiz, C., (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99-104.
  • [41] Mayor, L., Sereno, A.M., (2004). Modelling shrinkage during convective drying of food materials: A review. Journal of Food Engineering, 61(3), 373-386.
  • [42] Mujumdar, A.S., (2006). Handbook of Industrial Drying (3rd ed.). CRC Press.
  • [43] Motevali, A., Minaei, S., Khoshtagaza, M.H., (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52 (2), 1192-1199.
  • [44] Kudra T., (2004). Energy aspects in drying. Drying Technology, 22(5), 917-932.
  • [45] EL-Mesery, H.S., (2022). Improving the thermal efficiency and energy consumption of convective dryer using various energy sources for tomato drying. Alexandria Engineering Journal, 61(12), 10245-10261.
  • [46] Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Khoshtaghaza, M.H., (2014). Comparison of energy parameters in various dryers. Energy Conversion and Management, 87, 711-725.
  • [47] Rakyat, M., Yeunyongkul, P., Wuttikid, K., Promdan, S., Nuntapap, N., Chaichana, C., Hokpunna, A., Chungcharoen, T., Ruttanadech, N., Srichai, P., Munsin, R., (2021). Study of air distribution in tray dryer using computational fluid dynamics. Engineering and Applied Science Research, 48(6), 684-693.
  • [48] Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., Uyttendaele, M., (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1056-1066.
  • [49] Kaya, A., Aydin, O., Demirtas, C., Akgün, M., (2007). An experimental study on the drying kinetics of quince. Desalination, 212(1-3), 328-343.
  • [50] Sandulachi, E., (2012). Water activity concept and its role in food preservation. Meridian Ingineresc, (4), 40-48.
  • [51] Fernández, V.M., (2011). Water Activity. In Encyclopedia of Astrobiology, Edited by Gargaud, M., Irvine W.M., Amils R., et al., Springer-Verlag, Berlin Heidelberg, 1763-1764p.
  • [52] Leistner, L., Gorris, L.G., (1995). Food preservation by hurdle technology. Trends in Food Science and Technology, 6(2), 41-46.
  • [53] Fellows, P.J., (2009). Properties of food processing. In Food Science, Technology and Nutrition, Food Processing Technology (Third Edition), Edited by P.J Fellows, Woodhead Publishing Limited, Oxford, England, 11-95p.
  • [54] Jay, J.M., (1992). Modern Food Microbiology. Spinger Science+Business Media, Inc, New York, USA.
  • [55] Owusu, J., Ma, H., Wang, Z., Amissah, A., (2012). Effect of drying methods on physicochemical properties of pretreated tomato (Lycopersicon esculentum Mill.) slices. Croatian Journal of Food Technology, Biotechnology and Nutrition, 7(1-2), 106-111.
  • [56] Koyuncu, M., Bayındır, D., (2013). Scarlet spur elma çeşidinin normal ve kontrollü atmosfer koşullarında depolanması. Anadolu Tarım Bilimleri Dergisi, 28(2), 71-76.
  • [57] Coşkun, A.L., Ünsal, F., (2020). Ticari olarak satışı yapılan baharatlar ve kuru meyvelerin bazı kalite özelliklerinin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 9(3), 99-111.
  • [58] Souto Ribeiro, W., Sant’Ana Silva, A., Ferreira da Silva, Á.G., Marinho do Nascimento, A., Rocha Limão, M.A., Bezerra da Costa, F., Augusto de Souza, P., José de Melo Queiroz, A., Soares da Silva, O., Oliveira Galdino, P., Feitosa de Figueirêdo, R.M., de Melo Silva, S., Luiz Finger, F., (2021). Handmade solar dryer: an environmentally and economically viable alternative for small and medium producers. Scientific Reports, 11(1), 17177.
  • [59] Lavelli, V., Caronni, P., (2010). Polyphenol oxidase activity and implications on the quality of intermediate moisture and dried apples. European Food Research and Technology, 231(1), 93-100.
  • [60] El‐Hadary, A.E., Ramadan, M.F., (2019). Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. Journal of Food Biochemistry, 43(4), e12803.
  • [61] Zawawi, N.A.F., Hazmi, N.A.M., How, M.S., Kantono, K., Silva, F.V., Sulaiman, A., (2022). Thermal, high pressure, and ultrasound inactivation of various fruit cultivars’ polyphenol oxidase: Kinetic inactivation models and estimation of treatment energy requirement. Applied Sciences, 12(4), 1864.
  • [62] Li, X., Wu, X., Bi, J., Liu, X., Li, X., Guo, C., (2019). Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT, 108, 421-428.
  • [63] Aradwad, P.P., Thirumani Venkatesh, A.K., Mani, I., (2023). Infrared drying of apple (Malus domestica) slices: Effect on drying and color kinetics, texture, rehydration, and microstructure. Journal of Food Process Engineering, 46(2), 1-21.
  • [64] Beigi, M., (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology (Campinas), 36(1), 145-150.
  • [65] Harker, F.R., Johnston, J.W., (2008). Importance of texture in fruit and its interaction with flavour. In Fruit and Vegetable Flavour: Recent Advances and Future Prospects, Edited by B. Bruckner, S.G. Wyllie, CRC Press, Boca Raton, FL, USA, 132–149.
  • [66] Ismail, M. and Gögüs, F., (2023). The effect of drying on the physical and chemical properties of fruits. International Topkapı Congress-II, Oct 20, 2023, İstanbul, Türkiye, 444-450p.
  • [67] Omolola, A.O., Jideani, A.I.O., Kapila, P.F., (2017). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95-108.
  • [68] Yan, Z., Sousa-Gallagher, M.J., Oliveira, F.A., (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84(3), 430-440.
  • [69] de PF Guiné, R., (2006). Influence of drying method on density and porosity of pears. Food and Bioproducts Processing, 84(3), 179-185.
  • [70] Mrad, N.D., Boudhrioua, N., Kechaou, N., Courtois, F., Bonazzi, C., (2012). Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioproducts Processing, 90(3), 433-441.
  • [71] Fraeye, I., De Roeck, A., Duvetter, T., Verlent, I., Hendrickx, M., Van Loey, A., (2007). Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chemistry, 105(2), 555-563.
  • [72] Sila, D.N., Smout, C., Elliot, F., Van Loey, A., Hendrickx, M., (2006). Non-enzymatic depolymerization of carrot pectin: Toward a better understanding of carrot texture during thermal processing. Journal of Food Science, 71(1), E1-E9.
  • [73] Eminoğlu, G., Şenel, E., (2019). Süt ve ürünlerinin duyusal değerlendirmesinde kemometrik yaklaşımlar. Akademik Gıda, 17(1), 102-110.
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Drying Technologies
Journal Section Research Papers
Authors

Bilge Baştürk Berk 0000-0002-7405-5288

Sevim Yıldırım This is me 0009-0007-1390-6222

Serra Başar This is me 0009-0002-4565-8466

İrem Bıyıklı This is me 0000-0002-4628-3187

Şebnem Tavman 0000-0002-3069-1709

Project Number 1139B412300953
Publication Date September 30, 2025
Submission Date April 27, 2025
Acceptance Date September 27, 2025
Published in Issue Year 2025 Volume: 23 Issue: 3

Cite

APA Baştürk Berk, B., Yıldırım, S., Başar, S., … Bıyıklı, İ. (2025). Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi. Akademik Gıda, 23(3), 219-230. https://doi.org/10.24323/akademik-gida.1793621
AMA Baştürk Berk B, Yıldırım S, Başar S, Bıyıklı İ, Tavman Ş. Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi. Akademik Gıda. September 2025;23(3):219-230. doi:10.24323/akademik-gida.1793621
Chicago Baştürk Berk, Bilge, Sevim Yıldırım, Serra Başar, İrem Bıyıklı, and Şebnem Tavman. “Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği Ve Ürün Kalitesi”. Akademik Gıda 23, no. 3 (September 2025): 219-30. https://doi.org/10.24323/akademik-gida.1793621.
EndNote Baştürk Berk B, Yıldırım S, Başar S, Bıyıklı İ, Tavman Ş (September 1, 2025) Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi. Akademik Gıda 23 3 219–230.
IEEE B. Baştürk Berk, S. Yıldırım, S. Başar, İ. Bıyıklı, and Ş. Tavman, “Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi”, Akademik Gıda, vol. 23, no. 3, pp. 219–230, 2025, doi: 10.24323/akademik-gida.1793621.
ISNAD Baştürk Berk, Bilge et al. “Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği Ve Ürün Kalitesi”. Akademik Gıda 23/3 (September2025), 219-230. https://doi.org/10.24323/akademik-gida.1793621.
JAMA Baştürk Berk B, Yıldırım S, Başar S, Bıyıklı İ, Tavman Ş. Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi. Akademik Gıda. 2025;23:219–230.
MLA Baştürk Berk, Bilge et al. “Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği Ve Ürün Kalitesi”. Akademik Gıda, vol. 23, no. 3, 2025, pp. 219-30, doi:10.24323/akademik-gida.1793621.
Vancouver Baştürk Berk B, Yıldırım S, Başar S, Bıyıklı İ, Tavman Ş. Elma Dilimlerinin Ev Tipi Fırınlarda Kurutulması: Kurutma Kinetiği, Enerji Verimliliği ve Ürün Kalitesi. Akademik Gıda. 2025;23(3):219-30.