Research Article
BibTex RIS Cite

Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro

Year 2022, , 454 - 464, 30.06.2022
https://doi.org/10.35414/akufemubid.1030781

Abstract

Stem cells and nanotechnology are two of the most talented research areas and a new area called stem cell nanotechnology has emerged. With knowledge of nanoparticles’s inter- and intra-cellular transport abilities, developments on stem cell nanotechnology increases. The aim of this study is to investigate the effects of different featured nanoparticles silver, titaniumdioxide and titaniumdioxide-silver combination on human adipose tissue derived mesenchymal stem cells (ADMSCs), for the first time. Cell culture experiments and characterization parameters were practiced for ADMSCs. Moreover, nanoparticles were synthesized, Zeta and SEM characterization protocols were performed. MTT assay was performed for cytotoxicity. Cells were differentiated into adipocytes and osteocytes. The effects of nanoparticles on ADMSC differentiation were studied by staining protocols. Results showed effects of nanoparticles differ from each other. TiO2 NPs were non-toxic up to 20 μg/mL. Ag NPs have a significant proliferative effect at 1 μg/mL. TiO2@Ag NPs showed a high proliferative effect at all concentrations that applied. Evaluation of TiO2@Ag NPs particularly showed that, effects of combination of TiO2 and Ag NPs are different for same cell line. Results also support further investigation of nanoparticles solely and combinations on stem cell viability, cellular functions and cell fates, and also advantages for tissue engineering as an extra cellular matrix unit.

Supporting Institution

The authors gratefully acknowledge the Scientific Research Council of Yildiz Technical University

Project Number

Project No: 2011-07-04-KAP06

Thanks

We thank to Prof. Dr. Cengiz Kaya and Prof. Dr. Figen Kaya for their nanoparticle support for this study.

References

  • Abamor, E.S., Allahverdiyev, A.M., 2016. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TiO2@Ag nanoparticles - Nigella sativa oil combinations. Experimental Parasitology, 166, 150-163.
  • Abamor, E.S., Allahverdiyev, A.M., Bagirova, M., Rafailovich, M., 2017. Meglumine antimoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Tropica, 169, 30-42.
  • Accomasso, L., Gallina, C., Turinetto, V., Giachino, C., 2016. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes, An Overview. Stem Cells International. 2016 7920358.
  • Allahverdiyev, A.M., Abamor, Em.S., Bagirova, M., Yesilkir Baydar, S., Canim Ates, S., Kaya, F., Kaya, C., Rafailovich, M., 2013, Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro Experimental Parasitology. 135, 55-63.
  • Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich. M., 2011a. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology, 6, 933-940.
  • Allahverdiyev, A.M., Bagirova, M., Elcicek, S., Koc, R.C., Baydar, S.Y., Findikli, N., Oztel, O.N., 2011b. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis. American Journal of Tropical Medicine and Hygene, 85, 535-539.
  • Allahverdiyev, A.M., Baydar, S.Y., Bagirova, M., Findikli, N., 2012. Microcapillary culture method: a novel tool for in vitro expansion of stem cells from scarce sources. Archieves of Medical Researches, 43, 23-430.
  • Angeli, E., Buzio, R., Firpo, G., Magrassi, R., Mussi, V., Repetto, L., Valbusa, U., 2008. Nanotechnology applications in medicine. Tumori Journal, 94, 206-215.
  • Asharani, P.V., Hande, M.P., Valiyaveettil, S., 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology. 10, 65.
  • Asharani, P.V., Lian, Wu, Y., Gong, Z., Valiyaveettil, S., 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.
  • Berry. C.C., Wells, S., Charles, S., Aitchison, G., Curtis, A.S., 2004. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25, 5405-5413.
  • Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy S.F., Lafranconi, M., West, J., Gordon, S.C. 2015. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73, 137-150.
  • Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.C., 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences,88, 412-419.
  • Chen, H., Titushkin, I., Stroscio, M., Cho, M., 2007. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophysical Journal, 92, 1399-1408.
  • Chithrani, B.D., Stewart, J., Allen, C., Jaffray, D.A., 2009. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine, 5, 118-127.
  • de la Fuente, J.M., Berry, C.C., Riehle, M.O., Curtis, A.S., 2006. Nanoparticle targeting at cells. Langmuir, 22, 3286-3293.
  • Donaldson, K., Stone, V., Tran, C.L., Kreyling, W., Borm, P.J., 2004. Nanotoxicology. Occupational and Environmental Medicine, 61, 727-728.
  • El-Sadik, A.O., El-Ansary, A., Sabry, S.M., 2010. Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clinical Pharmacolology, 2, 9-16.
  • Freitas, R.A. Jr., 2005. What is nanomedicine?. Nanomedicine, 1, 2-9.
  • Greish, K., Thiagarajan, G., Herd, H., Price, R., Bauer, H., Hubbard, D., Burckle, A., Sadekar, S., Yu, T., Anwar, A., Ray, A., Ghandehari, H., 2012. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 6, 713-723.
  • Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., Koller, M., 2011. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomaterial, 7, 347-354.
  • Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T.J., Marei, H.E., 2018. Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637-5655.
  • Hu, Y., Fine, D.H., Tasciotti, E., Bouamrani, A., Ferrari, M., 2011. Nanodevices in diagnostics. Wiley Nanomedicine and Nanobiotechnology, 3, 11-32.
  • Hyung, W., Ko, H., Park, J., Lim, E., Park, B.S., Park, Y.J., Yoon, H.G., Suh, J.S., Haam, S., Huh, Y.M., 2008. Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnology and Bioengineering, 99, 442-454.
  • Iavicoli, I., Leso, V., Fontana, L., Bergamaschi, A., 2011. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. European Review for Medical and Pharmacological Sciences, 15, 481-508.
  • Khang, D., Kim, S.Y., Liu-Snyder, P., Palmore, G.T., Durbin, S.M., Webster, T.J., 2007. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials, 28, 4756-4768.
  • Khare, P., Sonane, M., Nagar, Y., Moin, N., Ali, S., Gupta, K.C., Satish, A., 2015. Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology, 9, 423-432.
  • Kroeze, R.J., Knippenberg, M., Helder, M.N., 2011. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods in Molecular Biology, 702, 233-248.
  • Kuppusamy, P., Yusoff, M.M., Maniam, G.P., Govindan, N., 2016. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmacology Journal, 24, 473-484.
  • Lansdown, A.B., 2002. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair and Regeneration, 10, 130-132.
  • Larsen, S.T., Roursgaard, M., Jensen, K.A., Nielsen, G.D., 2010. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic and Clinical Pharmacology and Toxicolog, 106, 114-117.
  • Medintz, I.L., Mattoussi, H., Clapp, A.R., 2008. Potential clinical applications of quantum dots. International Journal of Nanomedicine, 3, 151-167.
  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353.
  • Moss, O.R., Wong, V.A., 2006. When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function. Inhalation Toxicology, 18, 711-716.
  • Muller, L., Riediker, M., Wick, P., Mohr, M., Gehr, P., Rothen-Rutishauser, B., 2010. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. Journal of The Royal Society Interface 1, 27-40.
  • Nepple, K.G., Yang, L., Grubb, R.L., Strope, S.A., 2012. Population based analysis of the increasing incidence of kidney cancer in the United States: evaluation of age specific trends from 1975 to 2006. Journal of Urology, 187, 32-38.
  • Nielsen, G.D., Roursgaard, M., Jensen, K.A., Poulsen, S.S., Larsen, S.T., 2008. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clinical Pharmacology and Toxicology, 103, 197-208.
  • Oberdorster, G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of International Medicine, 267, 89-105.
  • Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspective, 113, 823-839.
  • Ogawa, R., Mizuno, H., Watanabe, A., Migita, M., Hyakusoku, H., Shimada, T., 2004. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice-including relationship of sex differences. Biochemical and Biophysical Research Communications, 319, 511-517.
  • Pan, Z., Lee, W., Slutsky, L., Clark, R.A., Pernodet. N., Rafailovich. M.H., 2009. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 5, 511-520.
  • Panacek, A., Kvitek, L., Prucek, R., Kolar M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R., 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110, 16248-16253.
  • Radomska, A., Leszczyszyn, J., Radomski, M.W., 2016. The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges. Advances in Clinical and Experimental Medicine, 25, 151-162.
  • Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V., 2004. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38, 3001-3008.
  • Sauer, U.G., 2009. Animal and non-animal experiments in nanotechnology - the results of a critical literature survey. Altex, 26, 109-128.
  • Schafer, D.A., 2002. Coupling actin dynamics and membrane dynamics during endocytosis. Current Opinion in Cell Biology, 14, 76-81.
  • Swai, H., Semete, B., Kalombo, L., Chelule, P., Kisich, K., Sievers, B. 2009. Nanomedicine for respiratory diseases. Wiley Interdisciplinary Review Nanomedicine and Nanobiotechnology, 1, 255-263.
  • Taylor, P.L., Ussher, A.L., Burrell, R.E., 2005 Impact of heat on nanocrystalline silver dressings. Part I: Chemical and Biological Properties Biomaterials, 26, 7221-7229.
  • Ullah, R., Dutta, J., 2008. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156, 194-200.
  • Xu, J., Sun, Y., Huang, J., Chen, C., Liu, G., Jiang, Y., Zhao, Y., Jiang, Z., 2007. Photokilling cancer cells using highly cell-specific antibody-TiO(2) bioconjugates and electroporation. Bioelectrochemistry, 71, 217-222.
  • Zou, X., Shi, J., Zhang, H., 2014. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquatic Toxicology, 154, 168-175.

TiO2, Ag ve TiO2@Ag Nanopartiküllerinin Sentezi, Karakterizasyonu ve Kök Hücreler Üzerindeki Etkilerinin in vitro Değerlendirilmesi

Year 2022, , 454 - 464, 30.06.2022
https://doi.org/10.35414/akufemubid.1030781

Abstract

Kök hücre ve nanoteknoloji son yılların en hızlı gelişen araştırma alanlarındandır ve bu iki önemli alanın birleşmesi ile kök hücre nanoteknolojisi adı verilen yeni bir branş ortaya çıkmıştır. Yapılan çalışmalar ile nanoparçacıkların hücre içine girebildiği ve hücreler arası taşınabildiğinin belirlenmesinin ardından kök hücre nanoteknolojisindeki gelişmelerin arttığı görülmektedir. Bu çalışmanın amacı, ilk kez olarak, farklı karakteristik özelliklere sahip olduğu bilinen gümüş ve titanyumdioksit nanopartikülleri ile bu nanopartiküllerin kombinasyonu ile elde edilen titanyumdioksit-gümüş nanopartikülünün insan yağ dokusu kaynaklı mezenkimal kök hücreler (hADMKH'ler) üzerindeki etkilerini araştırmaktır. hADMKH'ler hücre kültürü yapılarak çoğaltılmıştır. Diğer taraftan nanopartiküller sentezlenmiş, elde edilen nanopartiküller için Zeta potansiyeli tayin edilip SEM ile görüntüleme yapılmıştır. Üç farklı nanopartikül türünün farklı konsantrasyonlarının hücreler üzerindeki toksisitesi MTT testi ile belirlenmiştir. Ayrıca nanopartiküllere maruz bırakılan hücrelerin adipojenik ve osteojenik farklılaşma potansiyelleri Oil Red O ve Alizarin Red S boyama ile incelenmiştir. Elde edilen sonuçlar aynı hücre hattı üzerinde her bir nanopartikül türünün farklı konsantrasyonlarının etkilerinin birbirinden farklı olduğunu göstermiştir. TiO2 nanopartikülleri 20 μg/mL'ye kadar toksik değilken Ag nanopartiküllerinin 1 μg/mL'de hücreler üzerinde önemli bir proliferatif etkisi vardır. TiO2@Ag nanopartikülleri ise tüm konsantrasyonlarda proliferatif etkide artış göstermiştir. Sonuç olarak tek başına kullanılan nanopartiküllerin hücreler üzerinde gösterdikleri etkilerinin yanı sıra nanopartikül kombinasyonlarının da ayrıca incelenmesine ve nanopartiküllerin kök hücre canlılığı, hücresel fonksiyonlar üzerindeki etkileri ve hücrelerin akıbeti üzerinde araştırmalar yapılmasına ihtiyaç duyulmaktadır. Ayrıca nanopartiküllerin ve kombinasyonlarının özellikle doku mühendisliği uygulamaları için hücre dışı bir matris elemanı olarak etkilerinin belirlenmesine yönelik çalışmaların artırılması gerekliliği ortaya çıkmaktadır.

Project Number

Project No: 2011-07-04-KAP06

References

  • Abamor, E.S., Allahverdiyev, A.M., 2016. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TiO2@Ag nanoparticles - Nigella sativa oil combinations. Experimental Parasitology, 166, 150-163.
  • Abamor, E.S., Allahverdiyev, A.M., Bagirova, M., Rafailovich, M., 2017. Meglumine antimoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Tropica, 169, 30-42.
  • Accomasso, L., Gallina, C., Turinetto, V., Giachino, C., 2016. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes, An Overview. Stem Cells International. 2016 7920358.
  • Allahverdiyev, A.M., Abamor, Em.S., Bagirova, M., Yesilkir Baydar, S., Canim Ates, S., Kaya, F., Kaya, C., Rafailovich, M., 2013, Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro Experimental Parasitology. 135, 55-63.
  • Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich. M., 2011a. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology, 6, 933-940.
  • Allahverdiyev, A.M., Bagirova, M., Elcicek, S., Koc, R.C., Baydar, S.Y., Findikli, N., Oztel, O.N., 2011b. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis. American Journal of Tropical Medicine and Hygene, 85, 535-539.
  • Allahverdiyev, A.M., Baydar, S.Y., Bagirova, M., Findikli, N., 2012. Microcapillary culture method: a novel tool for in vitro expansion of stem cells from scarce sources. Archieves of Medical Researches, 43, 23-430.
  • Angeli, E., Buzio, R., Firpo, G., Magrassi, R., Mussi, V., Repetto, L., Valbusa, U., 2008. Nanotechnology applications in medicine. Tumori Journal, 94, 206-215.
  • Asharani, P.V., Hande, M.P., Valiyaveettil, S., 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology. 10, 65.
  • Asharani, P.V., Lian, Wu, Y., Gong, Z., Valiyaveettil, S., 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.
  • Berry. C.C., Wells, S., Charles, S., Aitchison, G., Curtis, A.S., 2004. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25, 5405-5413.
  • Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy S.F., Lafranconi, M., West, J., Gordon, S.C. 2015. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73, 137-150.
  • Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.C., 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences,88, 412-419.
  • Chen, H., Titushkin, I., Stroscio, M., Cho, M., 2007. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophysical Journal, 92, 1399-1408.
  • Chithrani, B.D., Stewart, J., Allen, C., Jaffray, D.A., 2009. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine, 5, 118-127.
  • de la Fuente, J.M., Berry, C.C., Riehle, M.O., Curtis, A.S., 2006. Nanoparticle targeting at cells. Langmuir, 22, 3286-3293.
  • Donaldson, K., Stone, V., Tran, C.L., Kreyling, W., Borm, P.J., 2004. Nanotoxicology. Occupational and Environmental Medicine, 61, 727-728.
  • El-Sadik, A.O., El-Ansary, A., Sabry, S.M., 2010. Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clinical Pharmacolology, 2, 9-16.
  • Freitas, R.A. Jr., 2005. What is nanomedicine?. Nanomedicine, 1, 2-9.
  • Greish, K., Thiagarajan, G., Herd, H., Price, R., Bauer, H., Hubbard, D., Burckle, A., Sadekar, S., Yu, T., Anwar, A., Ray, A., Ghandehari, H., 2012. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 6, 713-723.
  • Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., Koller, M., 2011. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomaterial, 7, 347-354.
  • Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T.J., Marei, H.E., 2018. Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637-5655.
  • Hu, Y., Fine, D.H., Tasciotti, E., Bouamrani, A., Ferrari, M., 2011. Nanodevices in diagnostics. Wiley Nanomedicine and Nanobiotechnology, 3, 11-32.
  • Hyung, W., Ko, H., Park, J., Lim, E., Park, B.S., Park, Y.J., Yoon, H.G., Suh, J.S., Haam, S., Huh, Y.M., 2008. Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnology and Bioengineering, 99, 442-454.
  • Iavicoli, I., Leso, V., Fontana, L., Bergamaschi, A., 2011. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. European Review for Medical and Pharmacological Sciences, 15, 481-508.
  • Khang, D., Kim, S.Y., Liu-Snyder, P., Palmore, G.T., Durbin, S.M., Webster, T.J., 2007. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials, 28, 4756-4768.
  • Khare, P., Sonane, M., Nagar, Y., Moin, N., Ali, S., Gupta, K.C., Satish, A., 2015. Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology, 9, 423-432.
  • Kroeze, R.J., Knippenberg, M., Helder, M.N., 2011. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods in Molecular Biology, 702, 233-248.
  • Kuppusamy, P., Yusoff, M.M., Maniam, G.P., Govindan, N., 2016. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmacology Journal, 24, 473-484.
  • Lansdown, A.B., 2002. Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair and Regeneration, 10, 130-132.
  • Larsen, S.T., Roursgaard, M., Jensen, K.A., Nielsen, G.D., 2010. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic and Clinical Pharmacology and Toxicolog, 106, 114-117.
  • Medintz, I.L., Mattoussi, H., Clapp, A.R., 2008. Potential clinical applications of quantum dots. International Journal of Nanomedicine, 3, 151-167.
  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353.
  • Moss, O.R., Wong, V.A., 2006. When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function. Inhalation Toxicology, 18, 711-716.
  • Muller, L., Riediker, M., Wick, P., Mohr, M., Gehr, P., Rothen-Rutishauser, B., 2010. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. Journal of The Royal Society Interface 1, 27-40.
  • Nepple, K.G., Yang, L., Grubb, R.L., Strope, S.A., 2012. Population based analysis of the increasing incidence of kidney cancer in the United States: evaluation of age specific trends from 1975 to 2006. Journal of Urology, 187, 32-38.
  • Nielsen, G.D., Roursgaard, M., Jensen, K.A., Poulsen, S.S., Larsen, S.T., 2008. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clinical Pharmacology and Toxicology, 103, 197-208.
  • Oberdorster, G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of International Medicine, 267, 89-105.
  • Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspective, 113, 823-839.
  • Ogawa, R., Mizuno, H., Watanabe, A., Migita, M., Hyakusoku, H., Shimada, T., 2004. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice-including relationship of sex differences. Biochemical and Biophysical Research Communications, 319, 511-517.
  • Pan, Z., Lee, W., Slutsky, L., Clark, R.A., Pernodet. N., Rafailovich. M.H., 2009. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 5, 511-520.
  • Panacek, A., Kvitek, L., Prucek, R., Kolar M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T., Zboril, R., 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110, 16248-16253.
  • Radomska, A., Leszczyszyn, J., Radomski, M.W., 2016. The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges. Advances in Clinical and Experimental Medicine, 25, 151-162.
  • Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V., 2004. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38, 3001-3008.
  • Sauer, U.G., 2009. Animal and non-animal experiments in nanotechnology - the results of a critical literature survey. Altex, 26, 109-128.
  • Schafer, D.A., 2002. Coupling actin dynamics and membrane dynamics during endocytosis. Current Opinion in Cell Biology, 14, 76-81.
  • Swai, H., Semete, B., Kalombo, L., Chelule, P., Kisich, K., Sievers, B. 2009. Nanomedicine for respiratory diseases. Wiley Interdisciplinary Review Nanomedicine and Nanobiotechnology, 1, 255-263.
  • Taylor, P.L., Ussher, A.L., Burrell, R.E., 2005 Impact of heat on nanocrystalline silver dressings. Part I: Chemical and Biological Properties Biomaterials, 26, 7221-7229.
  • Ullah, R., Dutta, J., 2008. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156, 194-200.
  • Xu, J., Sun, Y., Huang, J., Chen, C., Liu, G., Jiang, Y., Zhao, Y., Jiang, Z., 2007. Photokilling cancer cells using highly cell-specific antibody-TiO(2) bioconjugates and electroporation. Bioelectrochemistry, 71, 217-222.
  • Zou, X., Shi, J., Zhang, H., 2014. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquatic Toxicology, 154, 168-175.
There are 51 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology, Tissue Engineering, Nanotechnology
Journal Section Articles
Authors

Serap Yeşilkır Baydar 0000-0001-6311-4302

Melahat Bağırova This is me 0000-0002-6018-832X

Adil Allahverdiyev 0000-0002-7031-5986

Emrah Şefik Abamor 0000-0002-9174-4528

Project Number Project No: 2011-07-04-KAP06
Publication Date June 30, 2022
Submission Date December 7, 2021
Published in Issue Year 2022

Cite

APA Yeşilkır Baydar, S., Bağırova, M., Allahverdiyev, A., Abamor, E. Ş. (2022). Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 454-464. https://doi.org/10.35414/akufemubid.1030781
AMA Yeşilkır Baydar S, Bağırova M, Allahverdiyev A, Abamor EŞ. Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2022;22(3):454-464. doi:10.35414/akufemubid.1030781
Chicago Yeşilkır Baydar, Serap, Melahat Bağırova, Adil Allahverdiyev, and Emrah Şefik Abamor. “Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in Vitro”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 3 (June 2022): 454-64. https://doi.org/10.35414/akufemubid.1030781.
EndNote Yeşilkır Baydar S, Bağırova M, Allahverdiyev A, Abamor EŞ (June 1, 2022) Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 454–464.
IEEE S. Yeşilkır Baydar, M. Bağırova, A. Allahverdiyev, and E. Ş. Abamor, “Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, pp. 454–464, 2022, doi: 10.35414/akufemubid.1030781.
ISNAD Yeşilkır Baydar, Serap et al. “Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in Vitro”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (June 2022), 454-464. https://doi.org/10.35414/akufemubid.1030781.
JAMA Yeşilkır Baydar S, Bağırova M, Allahverdiyev A, Abamor EŞ. Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:454–464.
MLA Yeşilkır Baydar, Serap et al. “Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in Vitro”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, 2022, pp. 454-6, doi:10.35414/akufemubid.1030781.
Vancouver Yeşilkır Baydar S, Bağırova M, Allahverdiyev A, Abamor EŞ. Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):454-6.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.