Research Article
BibTex RIS Cite

Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması

Year 2023, , 438 - 447, 03.05.2023
https://doi.org/10.35414/akufemubid.1133802

Abstract

Bu çalışma, 24 Ocak 2020 Elazığ-Sivrice depremi sonrasında kontrollü bir şekilde yıkılan binalardan
ortaya çıkan geri dönüştürülmüş beton agregaları kullanılarak üretilen geri dönüşüm iri agregalı
betonların (GDİAB) ve doğal agregalı betonların (DAB) çevresel etki sonuçlarını karşılaştırmayı
amaçlamaktadır. Bu amaçla 12 farklı beton serisi üretilmiş ve çevresel etki değerlendirmeleri
karşılaştırılmıştır. Karşılaştırmalar yapılırken çevresel etki kategorilerinden Enerji Tüketimi, Küresel
Isınma Potansiyeli, Atık Üretimi ve Abiyotik Tükenme ele alınmıştır. Üretilen betonların çevresel etki
karşılaştırmalarını yapabilmek için dört farklı senaryo geliştirilmiştir. Senaryolar incelendiğinde geri
dönüşümlü beton agregaların kullanımının büyük çevresel faydalar sağladığı görülmüştür. Deprem
sonrası ortaya çıkan milyonlarca ton atık malzeme ve yeni inşa edilen binalar göz önüne alındığında, atık
malzemelerin geri dönüştürülmesinin büyük önem taşıdığı bir kez daha ortaya çıkmıştır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeler Koordinasyon Birimi

Project Number

MF.21.52

Thanks

Çalışma kapsamında yapılan deneysel çalışmaları MF.21.52 proje numarasıyla destekleyen Fırat Üniversitesi Bilimsel Araştırma Projeler Koordinasyon Birimi'ne teşekkür ederiz.

References

  • Borghi, G., Pantini, S., Rigamonti, L., 2018. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). J. Clean. Prod. 184, 815–825. https://doi.org/10.1016/j.jclepro.2018.02.287
  • Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., 2018. Life cycle assessment of recycled concretes: A case study in southern Italy. Sci. Total Environ. 615, 1506–1517. https://doi.org/10.1016/j.scitotenv.2017.09.107
  • Demir, T., Ulucan, M., Alyamac, K.E., 2022. Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat Univ. J. Eng. Sci. 34, 105–114. https://doi.org/10.35234/fumbd.972829
  • EN ISO 14040, 2006. Environmental management — Life cycle assessment — Principles and framework.
  • EN ISO 14044, 2006. Environmental management: life cycle assessment; Principles and Framework. ISO.
  • Fraj, A. Ben, Idir, R., 2017. Concrete based on recycled aggregates–Recycling and environmental analysis: A case study of paris’ region. Constr. Build. Mater. 157, 952–964. https://doi.org/10.1016/j.conbuildmat.2017.09.059
  • González-Quintero, R., Bolívar-Vergara, D.M., Chirinda, N., Arango, J., Pantevez, H., Barahona-Rosales, R., Sánchez-Pinzón, M.S., 2021. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci. Total Environ. 773, 145573. https://doi.org/10.1016/j.scitotenv.2021.145573
  • Guo, Z., Tu, A., Chen, C., Lehman, D.E., 2018. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates. J. Clean. Prod. 199, 136–149. https://doi.org/10.1016/j.jclepro.2018.07.069
  • Gutiérrez, A., 2004. Influence of recycled aggregate quality on concrete properties, in: International RILEM Conference on the Use of Recycled Materials in Building and Structures. RILEM Publications SARL, pp. 545–553.
  • Huuhka, S., Kolkwitz, M., 2021. Stocks and flows of buildings: Analysis of existing, demolished, and constructed buildings in Tampere, Finland, 2000–2018. J. Ind. Ecol.
  • Jain, S., Singhal, S., Pandey, S., 2020. Environmental life cycle assessment of construction and demolition waste recycling: A case of urban India. Resour. Conserv. Recycl. 155, 104642. https://doi.org/10.1016/j.resconrec.2019.104642
  • Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications. https://doi.org/https://openknowledge.worldbank.org/handle/10986/30317
  • Kisku, N., Joshi, H., Ansari, M., Panda, S.K., Nayak, S., Dutta, S.C., 2017. A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
  • Majhi, R.K., Nayak, A.N., Mukharjee, B.B., 2018. Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater. 159, 417–430. https://doi.org/10.1016/j.conbuildmat.2017.10.118
  • Marinković, S., Radonjanin, V., Malešev, M., Ignjatović, I., 2010. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012
  • Medina, C., Zhu, W., Howind, T., de Rojas, M.I.S., Frías, M., 2014. Influence of mixed recycled aggregate on the physical–mechanical properties of recycled concrete. J. Clean. Prod. 68, 216–225. https://doi.org/10.1016/j.jclepro.2014.01.002
  • Meglin, R., Kytzia, S., Habert, G., 2021. Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input‐Output Analyses, and Life Cycle Assessment. J. Ind. Ecol. https://doi.org/https://doi.org/10.1111/jiec.13205
  • Nuaklong, P., Sata, V., Chindaprasirt, P., 2016. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 112, 2300–2307. https://doi.org/10.1016/j.jclepro.2015.10.109
  • Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H., Clement, J., 2019. Global resources outlook: 2019. International Resource Panel, United Nations Envio. https://doi.org/https://doi.org/10.1787/9789264307452-en
  • OECD., 2020. Environment at a Glance 2020. OECD Publishing. https://doi.org/https://doi.org/10.1787/19964064
  • Ossa, A., García, J.L., Botero, E., 2016. Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. J. Clean. Prod. 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088
  • Peña, L.V.D.L., Taelman, S.E., Préat, N., Boone, L., Van der Biest, K., Custódio, M., Lucas, S.H., Everaert, G., Dewulf, J., 2022. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 808, 152125. https://doi.org/10.1016/j.scitotenv.2021.152125
  • Pomponi, F., Moncaster, A., 2017. Circular economy for the built environment: A research framework. J. Clean. Prod. 143, 710–718. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.055
  • Poon, C.S., Lam, C.S., 2008. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30, 283–289. https://doi.org/10.1016/j.cemconcomp.2007.10.005
  • Proske, T., Hainer, S., Rezvani, M., Graubner, C.-A., 2014. Eco-friendly concretes with reduced water and cement content–Mix design principles and application in practice. Constr. Build. Mater. 67, 413–421. https://doi.org/10.1016/j.conbuildmat.2013.12.066
  • Ram, V.G., Kishore, K.C., Kalidindi, S.N., 2020. Environmental benefits of construction and demolition debris recycling: Evidence from an Indian case study using life cycle assessment. J. Clean. Prod. 255, 120258. https://doi.org/10.1016/j.jclepro.2020.120258
  • Ulas, M.A., Alyamac, K.E., Ulucan, Z.C., 2019. Influence of Aggregate Gradation on the Workability, Mechanical Properties and Cost of Steel Fiber–Reinforced Concrete. Adv. Civ. Eng. Mater. 8, 209–223. https://doi.org/10.1520/ACEM20190009
  • Ulucan, M., Alyamac, K.E., 2022. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Manag. 146, 53–65. https://doi.org/10.1016/j.wasman.2022.04.045
  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
  • Wijayasundara, M., Mendis, P., Crawford, R.H., 2018. Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 174, 591–604. https://doi.org/10.1016/j.jclepro.2017.10.301
  • Xiao, J., Ma, Z., Ding, T., 2016. Reclamation chain of waste concrete: A case study of Shanghai. Waste Manag. 48, 334–343. https://doi.org/10.1016/j.wasman.2015.09.018
  • Xiao, J., Wang, C., Ding, T., Akbarnezhad, A., 2018. A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868–881. https://doi.org/10.1016/j.jclepro.2018.07.210

Environmental Impact Assessment of Recycled Aggregate Concretes

Year 2023, , 438 - 447, 03.05.2023
https://doi.org/10.35414/akufemubid.1133802

Abstract

This study aims to compare the environmental impact results of recycled coarse aggregate concrete
(RCAC) produced using recycled concrete aggregates (RCA) that emerged the demolished buildings in a
controlled manner after January 24, 2020, Elazig-Sivrice earthquake, recycled coarse aggregate
concrete (RCAC), and natural aggregate concrete (NAC). For this purpose, 12 different concrete series
were produced, and their environmental impact assessments were compared. While making
comparisons, Energy Consumption, Global Warming Potential, Waste Generation, and Abiotic
Depletion, which are environmental impact categories, were discussed. Four different scenarios were
developed to make environmental impact comparisons of the produced concretes. When the scenarios
were examined, it was seen that the use of recycled concrete aggregate provides great environmental
benefits. Considering the millions of tons of waste materials and newly constructed buildings that
emerged after the earthquake, it has once again emerged that recycling waste materials is of great
importance.

Project Number

MF.21.52

References

  • Borghi, G., Pantini, S., Rigamonti, L., 2018. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). J. Clean. Prod. 184, 815–825. https://doi.org/10.1016/j.jclepro.2018.02.287
  • Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., 2018. Life cycle assessment of recycled concretes: A case study in southern Italy. Sci. Total Environ. 615, 1506–1517. https://doi.org/10.1016/j.scitotenv.2017.09.107
  • Demir, T., Ulucan, M., Alyamac, K.E., 2022. Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat Univ. J. Eng. Sci. 34, 105–114. https://doi.org/10.35234/fumbd.972829
  • EN ISO 14040, 2006. Environmental management — Life cycle assessment — Principles and framework.
  • EN ISO 14044, 2006. Environmental management: life cycle assessment; Principles and Framework. ISO.
  • Fraj, A. Ben, Idir, R., 2017. Concrete based on recycled aggregates–Recycling and environmental analysis: A case study of paris’ region. Constr. Build. Mater. 157, 952–964. https://doi.org/10.1016/j.conbuildmat.2017.09.059
  • González-Quintero, R., Bolívar-Vergara, D.M., Chirinda, N., Arango, J., Pantevez, H., Barahona-Rosales, R., Sánchez-Pinzón, M.S., 2021. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci. Total Environ. 773, 145573. https://doi.org/10.1016/j.scitotenv.2021.145573
  • Guo, Z., Tu, A., Chen, C., Lehman, D.E., 2018. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates. J. Clean. Prod. 199, 136–149. https://doi.org/10.1016/j.jclepro.2018.07.069
  • Gutiérrez, A., 2004. Influence of recycled aggregate quality on concrete properties, in: International RILEM Conference on the Use of Recycled Materials in Building and Structures. RILEM Publications SARL, pp. 545–553.
  • Huuhka, S., Kolkwitz, M., 2021. Stocks and flows of buildings: Analysis of existing, demolished, and constructed buildings in Tampere, Finland, 2000–2018. J. Ind. Ecol.
  • Jain, S., Singhal, S., Pandey, S., 2020. Environmental life cycle assessment of construction and demolition waste recycling: A case of urban India. Resour. Conserv. Recycl. 155, 104642. https://doi.org/10.1016/j.resconrec.2019.104642
  • Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications. https://doi.org/https://openknowledge.worldbank.org/handle/10986/30317
  • Kisku, N., Joshi, H., Ansari, M., Panda, S.K., Nayak, S., Dutta, S.C., 2017. A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
  • Majhi, R.K., Nayak, A.N., Mukharjee, B.B., 2018. Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater. 159, 417–430. https://doi.org/10.1016/j.conbuildmat.2017.10.118
  • Marinković, S., Radonjanin, V., Malešev, M., Ignjatović, I., 2010. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012
  • Medina, C., Zhu, W., Howind, T., de Rojas, M.I.S., Frías, M., 2014. Influence of mixed recycled aggregate on the physical–mechanical properties of recycled concrete. J. Clean. Prod. 68, 216–225. https://doi.org/10.1016/j.jclepro.2014.01.002
  • Meglin, R., Kytzia, S., Habert, G., 2021. Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input‐Output Analyses, and Life Cycle Assessment. J. Ind. Ecol. https://doi.org/https://doi.org/10.1111/jiec.13205
  • Nuaklong, P., Sata, V., Chindaprasirt, P., 2016. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 112, 2300–2307. https://doi.org/10.1016/j.jclepro.2015.10.109
  • Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H., Clement, J., 2019. Global resources outlook: 2019. International Resource Panel, United Nations Envio. https://doi.org/https://doi.org/10.1787/9789264307452-en
  • OECD., 2020. Environment at a Glance 2020. OECD Publishing. https://doi.org/https://doi.org/10.1787/19964064
  • Ossa, A., García, J.L., Botero, E., 2016. Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. J. Clean. Prod. 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088
  • Peña, L.V.D.L., Taelman, S.E., Préat, N., Boone, L., Van der Biest, K., Custódio, M., Lucas, S.H., Everaert, G., Dewulf, J., 2022. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 808, 152125. https://doi.org/10.1016/j.scitotenv.2021.152125
  • Pomponi, F., Moncaster, A., 2017. Circular economy for the built environment: A research framework. J. Clean. Prod. 143, 710–718. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.055
  • Poon, C.S., Lam, C.S., 2008. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30, 283–289. https://doi.org/10.1016/j.cemconcomp.2007.10.005
  • Proske, T., Hainer, S., Rezvani, M., Graubner, C.-A., 2014. Eco-friendly concretes with reduced water and cement content–Mix design principles and application in practice. Constr. Build. Mater. 67, 413–421. https://doi.org/10.1016/j.conbuildmat.2013.12.066
  • Ram, V.G., Kishore, K.C., Kalidindi, S.N., 2020. Environmental benefits of construction and demolition debris recycling: Evidence from an Indian case study using life cycle assessment. J. Clean. Prod. 255, 120258. https://doi.org/10.1016/j.jclepro.2020.120258
  • Ulas, M.A., Alyamac, K.E., Ulucan, Z.C., 2019. Influence of Aggregate Gradation on the Workability, Mechanical Properties and Cost of Steel Fiber–Reinforced Concrete. Adv. Civ. Eng. Mater. 8, 209–223. https://doi.org/10.1520/ACEM20190009
  • Ulucan, M., Alyamac, K.E., 2022. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Manag. 146, 53–65. https://doi.org/10.1016/j.wasman.2022.04.045
  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
  • Wijayasundara, M., Mendis, P., Crawford, R.H., 2018. Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 174, 591–604. https://doi.org/10.1016/j.jclepro.2017.10.301
  • Xiao, J., Ma, Z., Ding, T., 2016. Reclamation chain of waste concrete: A case study of Shanghai. Waste Manag. 48, 334–343. https://doi.org/10.1016/j.wasman.2015.09.018
  • Xiao, J., Wang, C., Ding, T., Akbarnezhad, A., 2018. A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868–881. https://doi.org/10.1016/j.jclepro.2018.07.210
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Muhammed Ulucan 0000-0001-7629-6846

Kürşat Esat Alyamaç 0000-0002-3226-4073

Project Number MF.21.52
Early Pub Date April 28, 2023
Publication Date May 3, 2023
Submission Date June 23, 2022
Published in Issue Year 2023

Cite

APA Ulucan, M., & Alyamaç, K. E. (2023). Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 438-447. https://doi.org/10.35414/akufemubid.1133802
AMA Ulucan M, Alyamaç KE. Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2023;23(2):438-447. doi:10.35414/akufemubid.1133802
Chicago Ulucan, Muhammed, and Kürşat Esat Alyamaç. “Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 2 (May 2023): 438-47. https://doi.org/10.35414/akufemubid.1133802.
EndNote Ulucan M, Alyamaç KE (May 1, 2023) Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 438–447.
IEEE M. Ulucan and K. E. Alyamaç, “Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, pp. 438–447, 2023, doi: 10.35414/akufemubid.1133802.
ISNAD Ulucan, Muhammed - Alyamaç, Kürşat Esat. “Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (May 2023), 438-447. https://doi.org/10.35414/akufemubid.1133802.
JAMA Ulucan M, Alyamaç KE. Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:438–447.
MLA Ulucan, Muhammed and Kürşat Esat Alyamaç. “Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, 2023, pp. 438-47, doi:10.35414/akufemubid.1133802.
Vancouver Ulucan M, Alyamaç KE. Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):438-47.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.