Research Article
BibTex RIS Cite

Polysiphonia morrowii Harvey'nin Biyokimyasal ve Fizyolojik Özellikleri Üzerinde Etkili Bir Parametre: Tuzluluk Stresi

Year 2023, , 1339 - 1355, 28.12.2023
https://doi.org/10.35414/akufemubid.1280438

Abstract

Son yıllarda küresel iklim değişikliğine bağlı olarak artan sıcaklıklar, yıllık döngüsünde buzların erken eriyip geç donmasına ve yağışların artmasına neden olarak okyanuslarda tuzluluk azalmaları oluşturabilmektedir. Diğer yandan yüksek sıcaklıklar, buharlaşmayı artırarak deniz suyunun tuzluluğunu bölgesel olarak artırabilmektedir. Deniz suyunun tuzluluğundaki değişikliklerin deniz yosunu topluluklarını etkilemesi beklenmektedir. Bu çalışmada, Polysiphonia morrowii Harvey örnekleri Nisan 2013'te Gemlik Körfezi'ndeki Altıntaş istasyonundan toplanmış ve dört farklı tuz konsantrasyonuna (10‰, 23‰, 33‰, 42‰) sahip ortamda kültüre alınmıştır. Bu türün toplam protein, toplam fenol, fikosiyanin (PC), fikoeritrin (PE), klorofil-a (Chl a), suda çözünen antioksidan, yağda çözünen antioksidan, toplam katı organik madde ve karbonik anhidraz aktivitesi miktarlarındaki değişimler belirlenmiştir. Bu çalışma, türün incelenen biyokimyasal ve fizyolojik özelliklerinin tuzluluk değişimlerinden etkilendiğini açıkça göstermiştir. P. morrowii türünün çeşitli savunma stratejileri ile değişen tuzluluk koşullarına uyum sağlayabilen toleranslı bir tür olduğu da tespit edilmiştir.

References

  • Beer, S. and Eshel, A., 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine Freshwater Research, 36, 785-92.
  • Bengil, F. and Mavruk, S., 2018. Warming in Turkish seas: comparative multidecadal assessment. Turkish Journal of Fisheries and Aquatic Sciences, 19(1), 51-57.
  • Bisson, M.A. and Kirst, G.O., 1995. Osmotic Acclimation and Turgor Pressure Regulation in Algae. Naturwissenschaften, 82, 461-471.
  • Booth, W.A. and Beardall, J., 1991. Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia, 30, 220-225.
  • Bradford, M.M., 1976. A rapid and sensetive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Brown, A.D. and Simpson, J.R., 1972. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Journal of General Microbiology, 72, 589-591.
  • Camarena-Gómez, M. T., Lähteenmäki-Uutela, A. and Spilling, K., 2022. Macroalgae production in Northern Europe: Business and government perspectives on how to regulate a novel blue bioeconomy. Aquaculture, 560, 738434.
  • Cano-Europa, E., Ortiz-Butrón, R., Gallardo-Casas, C.A., Blas-Valdivia, V., Pineda-Reynoso, M., Olvera-Ramírez, R. and Franco-Colin, M., 2010. Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 22, 495-501.
  • Curiel, D., Bellemo, G., Rocca, B. L., Scattolin, M. and Marzocchi, M., 2002. First Report of Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta) in the Mediterranean Sea. Botanica Marina, 45, 66-70.
  • Çetin, M., 2014. Polysiphonia morrowii Harvey Türü Üzerine Tuzluluğun Etkileri. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen bilimleri Enstitüsü, Bursa, 81.
  • Deepika, C., Ravishankar, G. A. and Rao, A. R., 2022. Potential products from macroalgae: An overview. Sustainable Global Resources Of Seaweeds Volume 1: Bioresources, cultivation, trade and multifarious applications, 17-44.
  • Dickson, D.M.J., Wyn Jones, R.G. and Davenport, J., 1982. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta, 155, 409-415.
  • Doğan, M., Avu, A., Can, E.N. and Aktan, A., 2008. Farklı domates tohumlarının çimlenmesi üzerine tuz stresinin etkisi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Edebiyat Fakültesi Dergisi, 3, 174-182.
  • Eggert, A., Nitschke, U., West, J.A., Michalik, D. and Karsten, U., 2007. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. Journal of Experimental Marine Biology and Ecology, 343, 176-186.
  • Erduǧan, H., Aki, C., Acar, O., Dural, B. and Aysel, V., 2009. New record for the East Mediterranean, Dardanelles (Turkey) and its distribution: Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta). Turkish Journal of Fisheries and Aquatic Sciences, 9, 231-232.
  • Fryer, M.J., 1992. The antioxidant effects of thylakoid vitamin E (a- tocopherol). Plant Cell Environment, 15, 381-392.
  • Gao, G., Liu, Y., Li, X., Feng, Z. and Xu, J., 2016. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS One, 11(12), e0169040.
  • Gossett, D.R., Millhollon, E.P. and Lucas, M.C., 1994. Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706-714.
  • Haglund, K., Björk, M., Ramazanov, Z., García-Reina, G. and Pedersén, M., 1992. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta, 187, 275-281.
  • Harvey, W.H., 1856. Algae, in Asa Gray, list of dried plants collected in Japan by S W Williams, Esq., and Dr. J Morrow. Memoirs of the American Academy of Arts and Sciences, 2, 331-332.
  • Hernández, J.A., Jiménez, A., Mullineaux, P. and Sevilia, F., 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell and Environment, 23, 853-862.
  • Inskeep, W.P. and Bloom, P.R., 1985. Extinction coefficients of chlorophyll a and b in N,N-Dimethylformamide and 80% acetone. Plant Physiology, 77, 483-485.
  • IPCC, Climate Change, 2007. The physical science basis. Contribution of Working Group I to the fourth assessment. Cambridge. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996, 113-119. Israel, A., Martinez-Goss, M. and Friedlander, M. 1999. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology,11, 543-549.
  • Jahnke, L.S. and White, A.L., 2003. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. Journal of Plant Physiology, 160, 1193-1202.
  • Kakinuma, M., Coury, D.A., Kuno, Y., Itoh, S., Kozawa, Y., Inagaki, E. and Yoshiura, Y., 2006. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology, 149, 97-106.
  • Kakinuma, M., Kuno, Y. and Amano, H., 2004. Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Fisheries Science, 70, 1177-1179.
  • Kang, J.W., 1966. On the geographical distribution of marine algae in Korea.
  • Karsten, U., Barrow, K.D., Nixdorf, O. and King, R.J., 1996. The compability with enzyme activity of unusual organic osmolytes from mangrove red algae. Australian Journal of Plant Physiology, 23, 577-582.
  • Karsten, U., Wiencke, C. and Kirst, G.O., 1991. The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile: II Intracellular inorganic ions and organic compounds. Journal of Experimental Botany, 42, 1533-1539.
  • Kim, M.S., Yang, E.C., Mansilla, A. and Boo, S.M., 2004. Recent introduction of Polysiphonia morrowii (Ceramiales, Rhodophyta) to Punta Arenas, Chile. Botanica Marina, 47, 389-394.
  • Kim, S.Y., Lim, J.H., Park, M.R., Kim, Y.J., Park, T.I., Seo, Y.W., Choi, K.G. and Yun, S.J., 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 38, 218-224.
  • Kirst, G.O., 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 21-53. Kremer, B.P., 1978. Patterns of photoassimilatory products in Pacific Rhodophyceae. Canadian Journal of Botany, 56, 1655-1659.
  • Kumar, K.S., Ganesan, K. and Rao, P.V.S., 2008. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-an edible seaweed. Food Chemistry, 107, 289-295.
  • Kumar, M., Kumari, P., Gupta, V., Reddy, C.R.K. and Jha, B., 2010. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. Journal of Experimental Marine Biology and Ecology, 391, 27-34.
  • Lartigue, J., Neill, A., Hayden, B.L, Pulfer, J. and Cebrian, J., 2003. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75, 339-350.
  • Liu, W., Ming, Y., Li, P. and Huang, Z., 2012. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry, 54, 43-48.
  • Lu, I.F., Sung, M.S. and Lee, T.M., 2006. Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Marine Biology, 150, 1-15.
  • Luo, M.B. and Liu, F., 2011. Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. Journal of Experimental Marine Biology and Ecology, 409, 223-228.
  • Macler, B.A., 1988. Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga Gelidium coulteri. Plant Physiology, 88, 690-694.
  • Marzocchi, M., Bellemo, G., Miotti, C., Curiel, D. and Scattolin, M., 2001. Le Macroalghe Dei Substrati Duri Del Canal Grande (Centro Storico Di Venezia): Prime Considerazioni. BolL Mus. civ. St. Nat. Venezia, 52, 25-39.
  • Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K. and Ming, CH., 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology, 20, 367-373.
  • Munda, I.M. and Kremer, B.P., 1977. Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Marine Biology, 42, 9-15.
  • Munné-Bosch, S. and Alegre, L., 2002. The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences, 21, 31-57.
  • Noctor, G. and Foyer, C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279.
  • Oğuz, T. and Öztürk, B., 2011. Mechanisms impeding natural Mediterranization process of Black Sea fauna. Journal of Black Sea/Mediterranean Environment, 17(3), 234-253.
  • Parida, A.K., Das, A.B., Sanada, Y. and Mohanty, P., 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77-87.
  • Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantition of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337-341.
  • Provasoli, L., 1968. Media and prospects for the cultivation of marine algae: Cultures and collections of algae. Japan Society of Plant Physiology, 63-75.
  • Ramlov, F., de Souza, J.M.C., Farias, A., Maraschin, M., Horta, P.A. and Yokoya, N.S., 2012. Effects of temperature, salinity, irradiance, and nutrients on the development of carposporelings and tetrasporophytes in Gracilaria domingensis (Kütz.) Sonder ex Dickie (Rhodophyta, Gracilariales). Botanica Marina, 55, 253-259.
  • Rautenberger, R., Fernandez, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L. and Roleda, M. Y., 2015. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and evolution, 5(4), 874-888.
  • Reed, R.H., 1983. The osmotic responses of Polysiphonia lanosa (L.) Tandy from marine and estuarine sites: Evidence for incomplete recovery of turgor. Journal of Experimental Marine Biology and Ecology, 68, 169-193.
  • Reed, R.H., Collins, J.C. and Russell, G., 1980. The Effects of Salinity upon Galactosyl-Glycerol Content and Concentration of the Marine Red alga Porphyra purpurea (Roth) C. Ag. Journal of Experimental Botany, 31, 1539-1554.
  • Rodrigo, R. and Bosco, C., 2006. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 142, 317-327.
  • Scherner, F., Ventura, R., Barufi, J.B. and Horta, P.A., 2013. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: Providing baselines for potential shifts on seaweed assemblages. Marine Environmental Research, 91, 14-25.
  • Seemann, J.R. and Critchley, C., 1985. Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta, 164, 151-162.
  • Symon, C. (Ed.), 2005. Arctic Climate Impact Assessment-Scientific Report. Cambridge University Press.
  • Taga, M.S., Miller, E.E. and Pratt, D.E., 1984. Chia seeds as a source of natural lipid antioxidants. Journal of American Oil Chemistry Society, 61, 928-931.
  • Taşkın, E., 2016. Biodiversity of Macroflora of The Sea of Marmara, Turkey. The Sea of, 344-365.
  • Taşkın, E., Tsiamis, K. and Orfanidis, S., 2018. Ecological quality of the Sea of Marmara (Turkey) assessed by the Marine Floristic Ecological Index (MARFEI). Journal of the Black Sea/Mediterranean Environment, 24(2), 97-114.
  • Taşkın, E., Çakır, M., Akçalı, B. and Sungur, Ö., 2019. Benthic marine flora of the Marmara Sea (TURKEY). Journal of Black Sea/Mediterranean Environment, 25(1), 1-28.
  • Taşkın, E., 2022. The change of the macroflora of the Sea of Marmara from the past to today. In: Proceedings of the Marmara Sea 2022 Symposium, (eds., Öztürk, B., Ergül, H.A., Yalçıner, A.C., Öztürk, H., Salihoğlu, B.), Turkish Marine Research Foundation, Publication no: 63, İstanbul, Türkiye, 425-428.
  • Tribollet, A.D. and Vroom, P.S., 2007. Temporal and spatial comparison of the relative abundance of macroalgae across the Mariana Archipelago between 2003 and 2005. Phycologia, 46, 187-197.
  • Turan, C., Erguden, D. and Gürlek, M., 2016. Climate change and biodiversity effects in Turkish Seas. Natural and Engineering Sciences, 1(2), 15-24. Ünlü, S. and Alpar, B., 2009. Evolution of potential ecological impacts of the bottom sediment from the gulf of Gemlik; Marmara Sea, Turkey. Bulletin of Environmental Contamination and Toxicology, 83, 903-906.
  • Woelkerling, W.J., Spencer, K.G. and West, J.A., 1983. Studies on selected Corallinaceae (Rhodophyta) and other algae in a defined marine culture medium. Journal of Experimental of Marine Biology and Ecology, 67, 61-77.
  • Yamada, Y. and Tanaka, T., 1944. Marine algae in the vicinity of the Akkeshi Marine Biological Station. Scientific Papers of the Institute of Algological Research, Faculty of Science, Hokkaido University, 3, 47-77.
  • Yoon, H.Y., 1986. A Taxonomic study of genus Polysiphonia (Rhodophyta) from Korea. The Korean Journal of Phycology, 1, 3-86.

An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress

Year 2023, , 1339 - 1355, 28.12.2023
https://doi.org/10.35414/akufemubid.1280438

Abstract

In recent years, rising temperatures due to global climate change can constitute a decrease in salinity in the oceans by causing the ice to melt early and freeze late in its annual cycle and increased precipitation. On the other hand, high temperatures can increase the salinity of seawater locally by enhancing evaporation. It is expected that the changes in salinity of sea water would affect communities of seaweeds. In this study, Polysiphonia morrowii Harvey samples were collected from Altıntaş station in the Gulf of Gemlik in April 2013, and cultured in mediums with four different salt concentrations (10‰, 23‰, 33‰, 42‰). The changes of this species in the amounts of total protein, total phenol, phycocyanin (PC), phycoerythrin (PE), chlorophyll-a (Chl a), water-soluble antioxidant, oil-soluble antioxidant, total solid organic matter and the activity of the carbonic anhydrase were determined. The study clearly showed that studied biochemical and physiological properties of the species were affected by salinity changes. It is also detected that P. morrowii is a tolerant species that can adapt to changing salinity conditions with various defense strategies.

References

  • Beer, S. and Eshel, A., 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine Freshwater Research, 36, 785-92.
  • Bengil, F. and Mavruk, S., 2018. Warming in Turkish seas: comparative multidecadal assessment. Turkish Journal of Fisheries and Aquatic Sciences, 19(1), 51-57.
  • Bisson, M.A. and Kirst, G.O., 1995. Osmotic Acclimation and Turgor Pressure Regulation in Algae. Naturwissenschaften, 82, 461-471.
  • Booth, W.A. and Beardall, J., 1991. Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia, 30, 220-225.
  • Bradford, M.M., 1976. A rapid and sensetive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Brown, A.D. and Simpson, J.R., 1972. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Journal of General Microbiology, 72, 589-591.
  • Camarena-Gómez, M. T., Lähteenmäki-Uutela, A. and Spilling, K., 2022. Macroalgae production in Northern Europe: Business and government perspectives on how to regulate a novel blue bioeconomy. Aquaculture, 560, 738434.
  • Cano-Europa, E., Ortiz-Butrón, R., Gallardo-Casas, C.A., Blas-Valdivia, V., Pineda-Reynoso, M., Olvera-Ramírez, R. and Franco-Colin, M., 2010. Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 22, 495-501.
  • Curiel, D., Bellemo, G., Rocca, B. L., Scattolin, M. and Marzocchi, M., 2002. First Report of Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta) in the Mediterranean Sea. Botanica Marina, 45, 66-70.
  • Çetin, M., 2014. Polysiphonia morrowii Harvey Türü Üzerine Tuzluluğun Etkileri. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen bilimleri Enstitüsü, Bursa, 81.
  • Deepika, C., Ravishankar, G. A. and Rao, A. R., 2022. Potential products from macroalgae: An overview. Sustainable Global Resources Of Seaweeds Volume 1: Bioresources, cultivation, trade and multifarious applications, 17-44.
  • Dickson, D.M.J., Wyn Jones, R.G. and Davenport, J., 1982. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta, 155, 409-415.
  • Doğan, M., Avu, A., Can, E.N. and Aktan, A., 2008. Farklı domates tohumlarının çimlenmesi üzerine tuz stresinin etkisi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Edebiyat Fakültesi Dergisi, 3, 174-182.
  • Eggert, A., Nitschke, U., West, J.A., Michalik, D. and Karsten, U., 2007. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. Journal of Experimental Marine Biology and Ecology, 343, 176-186.
  • Erduǧan, H., Aki, C., Acar, O., Dural, B. and Aysel, V., 2009. New record for the East Mediterranean, Dardanelles (Turkey) and its distribution: Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta). Turkish Journal of Fisheries and Aquatic Sciences, 9, 231-232.
  • Fryer, M.J., 1992. The antioxidant effects of thylakoid vitamin E (a- tocopherol). Plant Cell Environment, 15, 381-392.
  • Gao, G., Liu, Y., Li, X., Feng, Z. and Xu, J., 2016. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS One, 11(12), e0169040.
  • Gossett, D.R., Millhollon, E.P. and Lucas, M.C., 1994. Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706-714.
  • Haglund, K., Björk, M., Ramazanov, Z., García-Reina, G. and Pedersén, M., 1992. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta, 187, 275-281.
  • Harvey, W.H., 1856. Algae, in Asa Gray, list of dried plants collected in Japan by S W Williams, Esq., and Dr. J Morrow. Memoirs of the American Academy of Arts and Sciences, 2, 331-332.
  • Hernández, J.A., Jiménez, A., Mullineaux, P. and Sevilia, F., 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell and Environment, 23, 853-862.
  • Inskeep, W.P. and Bloom, P.R., 1985. Extinction coefficients of chlorophyll a and b in N,N-Dimethylformamide and 80% acetone. Plant Physiology, 77, 483-485.
  • IPCC, Climate Change, 2007. The physical science basis. Contribution of Working Group I to the fourth assessment. Cambridge. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996, 113-119. Israel, A., Martinez-Goss, M. and Friedlander, M. 1999. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology,11, 543-549.
  • Jahnke, L.S. and White, A.L., 2003. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. Journal of Plant Physiology, 160, 1193-1202.
  • Kakinuma, M., Coury, D.A., Kuno, Y., Itoh, S., Kozawa, Y., Inagaki, E. and Yoshiura, Y., 2006. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology, 149, 97-106.
  • Kakinuma, M., Kuno, Y. and Amano, H., 2004. Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Fisheries Science, 70, 1177-1179.
  • Kang, J.W., 1966. On the geographical distribution of marine algae in Korea.
  • Karsten, U., Barrow, K.D., Nixdorf, O. and King, R.J., 1996. The compability with enzyme activity of unusual organic osmolytes from mangrove red algae. Australian Journal of Plant Physiology, 23, 577-582.
  • Karsten, U., Wiencke, C. and Kirst, G.O., 1991. The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile: II Intracellular inorganic ions and organic compounds. Journal of Experimental Botany, 42, 1533-1539.
  • Kim, M.S., Yang, E.C., Mansilla, A. and Boo, S.M., 2004. Recent introduction of Polysiphonia morrowii (Ceramiales, Rhodophyta) to Punta Arenas, Chile. Botanica Marina, 47, 389-394.
  • Kim, S.Y., Lim, J.H., Park, M.R., Kim, Y.J., Park, T.I., Seo, Y.W., Choi, K.G. and Yun, S.J., 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 38, 218-224.
  • Kirst, G.O., 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 21-53. Kremer, B.P., 1978. Patterns of photoassimilatory products in Pacific Rhodophyceae. Canadian Journal of Botany, 56, 1655-1659.
  • Kumar, K.S., Ganesan, K. and Rao, P.V.S., 2008. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-an edible seaweed. Food Chemistry, 107, 289-295.
  • Kumar, M., Kumari, P., Gupta, V., Reddy, C.R.K. and Jha, B., 2010. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. Journal of Experimental Marine Biology and Ecology, 391, 27-34.
  • Lartigue, J., Neill, A., Hayden, B.L, Pulfer, J. and Cebrian, J., 2003. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75, 339-350.
  • Liu, W., Ming, Y., Li, P. and Huang, Z., 2012. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry, 54, 43-48.
  • Lu, I.F., Sung, M.S. and Lee, T.M., 2006. Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Marine Biology, 150, 1-15.
  • Luo, M.B. and Liu, F., 2011. Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. Journal of Experimental Marine Biology and Ecology, 409, 223-228.
  • Macler, B.A., 1988. Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga Gelidium coulteri. Plant Physiology, 88, 690-694.
  • Marzocchi, M., Bellemo, G., Miotti, C., Curiel, D. and Scattolin, M., 2001. Le Macroalghe Dei Substrati Duri Del Canal Grande (Centro Storico Di Venezia): Prime Considerazioni. BolL Mus. civ. St. Nat. Venezia, 52, 25-39.
  • Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K. and Ming, CH., 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology, 20, 367-373.
  • Munda, I.M. and Kremer, B.P., 1977. Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Marine Biology, 42, 9-15.
  • Munné-Bosch, S. and Alegre, L., 2002. The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences, 21, 31-57.
  • Noctor, G. and Foyer, C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279.
  • Oğuz, T. and Öztürk, B., 2011. Mechanisms impeding natural Mediterranization process of Black Sea fauna. Journal of Black Sea/Mediterranean Environment, 17(3), 234-253.
  • Parida, A.K., Das, A.B., Sanada, Y. and Mohanty, P., 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77-87.
  • Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantition of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337-341.
  • Provasoli, L., 1968. Media and prospects for the cultivation of marine algae: Cultures and collections of algae. Japan Society of Plant Physiology, 63-75.
  • Ramlov, F., de Souza, J.M.C., Farias, A., Maraschin, M., Horta, P.A. and Yokoya, N.S., 2012. Effects of temperature, salinity, irradiance, and nutrients on the development of carposporelings and tetrasporophytes in Gracilaria domingensis (Kütz.) Sonder ex Dickie (Rhodophyta, Gracilariales). Botanica Marina, 55, 253-259.
  • Rautenberger, R., Fernandez, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L. and Roleda, M. Y., 2015. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and evolution, 5(4), 874-888.
  • Reed, R.H., 1983. The osmotic responses of Polysiphonia lanosa (L.) Tandy from marine and estuarine sites: Evidence for incomplete recovery of turgor. Journal of Experimental Marine Biology and Ecology, 68, 169-193.
  • Reed, R.H., Collins, J.C. and Russell, G., 1980. The Effects of Salinity upon Galactosyl-Glycerol Content and Concentration of the Marine Red alga Porphyra purpurea (Roth) C. Ag. Journal of Experimental Botany, 31, 1539-1554.
  • Rodrigo, R. and Bosco, C., 2006. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 142, 317-327.
  • Scherner, F., Ventura, R., Barufi, J.B. and Horta, P.A., 2013. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: Providing baselines for potential shifts on seaweed assemblages. Marine Environmental Research, 91, 14-25.
  • Seemann, J.R. and Critchley, C., 1985. Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta, 164, 151-162.
  • Symon, C. (Ed.), 2005. Arctic Climate Impact Assessment-Scientific Report. Cambridge University Press.
  • Taga, M.S., Miller, E.E. and Pratt, D.E., 1984. Chia seeds as a source of natural lipid antioxidants. Journal of American Oil Chemistry Society, 61, 928-931.
  • Taşkın, E., 2016. Biodiversity of Macroflora of The Sea of Marmara, Turkey. The Sea of, 344-365.
  • Taşkın, E., Tsiamis, K. and Orfanidis, S., 2018. Ecological quality of the Sea of Marmara (Turkey) assessed by the Marine Floristic Ecological Index (MARFEI). Journal of the Black Sea/Mediterranean Environment, 24(2), 97-114.
  • Taşkın, E., Çakır, M., Akçalı, B. and Sungur, Ö., 2019. Benthic marine flora of the Marmara Sea (TURKEY). Journal of Black Sea/Mediterranean Environment, 25(1), 1-28.
  • Taşkın, E., 2022. The change of the macroflora of the Sea of Marmara from the past to today. In: Proceedings of the Marmara Sea 2022 Symposium, (eds., Öztürk, B., Ergül, H.A., Yalçıner, A.C., Öztürk, H., Salihoğlu, B.), Turkish Marine Research Foundation, Publication no: 63, İstanbul, Türkiye, 425-428.
  • Tribollet, A.D. and Vroom, P.S., 2007. Temporal and spatial comparison of the relative abundance of macroalgae across the Mariana Archipelago between 2003 and 2005. Phycologia, 46, 187-197.
  • Turan, C., Erguden, D. and Gürlek, M., 2016. Climate change and biodiversity effects in Turkish Seas. Natural and Engineering Sciences, 1(2), 15-24. Ünlü, S. and Alpar, B., 2009. Evolution of potential ecological impacts of the bottom sediment from the gulf of Gemlik; Marmara Sea, Turkey. Bulletin of Environmental Contamination and Toxicology, 83, 903-906.
  • Woelkerling, W.J., Spencer, K.G. and West, J.A., 1983. Studies on selected Corallinaceae (Rhodophyta) and other algae in a defined marine culture medium. Journal of Experimental of Marine Biology and Ecology, 67, 61-77.
  • Yamada, Y. and Tanaka, T., 1944. Marine algae in the vicinity of the Akkeshi Marine Biological Station. Scientific Papers of the Institute of Algological Research, Faculty of Science, Hokkaido University, 3, 47-77.
  • Yoon, H.Y., 1986. A Taxonomic study of genus Polysiphonia (Rhodophyta) from Korea. The Korean Journal of Phycology, 1, 3-86.
There are 66 citations in total.

Details

Primary Language English
Subjects Structural Biology, Hydrobiology
Journal Section Articles
Authors

Mihriban Özen 0000-0003-2088-2314

Gamze Yıldız 0000-0001-6461-0850

Şükran Dere 0000-0002-6780-1270

Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date April 10, 2023
Published in Issue Year 2023

Cite

APA Özen, M., Yıldız, G., & Dere, Ş. (2023). An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1339-1355. https://doi.org/10.35414/akufemubid.1280438
AMA Özen M, Yıldız G, Dere Ş. An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1339-1355. doi:10.35414/akufemubid.1280438
Chicago Özen, Mihriban, Gamze Yıldız, and Şükran Dere. “An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia Morrowii Harvey: Salinity Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1339-55. https://doi.org/10.35414/akufemubid.1280438.
EndNote Özen M, Yıldız G, Dere Ş (December 1, 2023) An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1339–1355.
IEEE M. Özen, G. Yıldız, and Ş. Dere, “An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1339–1355, 2023, doi: 10.35414/akufemubid.1280438.
ISNAD Özen, Mihriban et al. “An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia Morrowii Harvey: Salinity Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1339-1355. https://doi.org/10.35414/akufemubid.1280438.
JAMA Özen M, Yıldız G, Dere Ş. An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1339–1355.
MLA Özen, Mihriban et al. “An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia Morrowii Harvey: Salinity Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1339-55, doi:10.35414/akufemubid.1280438.
Vancouver Özen M, Yıldız G, Dere Ş. An Effective Parameter on the Biochemical and Physiological Properties of Polysiphonia morrowii Harvey: Salinity Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1339-55.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.