Research Article
BibTex RIS Cite

Lactobacillus Plantarum LP299v Suşu Hücre İçermeyen Süpernatanının RAW 264.7 Makrofaj Hücrelerinde İmmünmodülatör Aktivitelerinin Analizleri

Year 2023, , 1356 - 1362, 28.12.2023
https://doi.org/10.35414/akufemubid.1302005

Abstract

İnsan bağışıklık sistemi, vücudu, zararlı iç ve dış unsurlara karşı savunmak için gereklidir; bağışıklık, doğuştan gelen ve edinilmiş bağışıklığı içerir. Doğuştan gelen bağışıklık sisteminin temel bileşeni olan makrofajlar, ölü hücrelerin ve tümör hücrelerinin yanı sıra fagositozu tetikleyerek yabancı maddelerin temizlenmesi için çok önemlidir. Ayrıca salgıladıkları sitokinler ve aracı moleküller ile adaptif yanıtta da rol oynarlar. Probiyotiklerin önemli bir sınıfı olan laktik asit bakterileri (LAB), konakçı sağlığını iyileştirmek ve fonksiyonel bir gıda olarak kullanılmak için güçlü bir potansiyele sahiptir. Bazı LAB suşlarının bağışıklık sistemini uyarıcı etkileri olduğu bildirilmiştir. Bununla birlikte, bazı LAB suşlarından elde edilen hücresiz süpernatantların (CFS) makrofaj aktivasyonu üzerindeki etkileri son yıllarda önemli bir araştırma alanı haline gelmiştir. Bu çalışmanın temel amacı, Lactobacillus plantarum LP299v'nin RAW 264.7 makrofaj hücre hattındaki immünostimülatör aktivitelerini karakterize etmektir. Bu amaçla, ilgili suşun CFS'sinin immünomodülatör aktivitesi, makrofaj hücre hattı kullanılarak proliferasyon, fagositoz yeteneği ve nitrik oksit (NO) üretimi parametreleri açısından sırasıyla MTT, nötral kırmızı testi ve Griess reaksiyonu ile değerlendirilmiştir. Çalışmalar, bu suşun RAW264.7 makrofaj hücrelerinde proliferasyon, fagositoz ve NO seviyelerini önemli ölçüde artırdığını göstermiştir. Bu sonuçlar birlikte ele alındığında, bu çalışmada seçilen Lactobacillus plantarum LP299v'den elde edilen hücresiz süpernatanın immünostimülatör aktiviteye sahip aday bileşikler için yararlı olabileceğini göstermektedir.

Project Number

-

References

  • Das, T. K., Pradhan, S., Chakrabarti, S., Mondal, K. C., & Ghosh, K., 2022. Current status of probiotic and related health benefits. Applied Food Research, 3, 100185. https://doi.org/10.1016/j.afres.2022.100185
  • De Marco, S., Sichetti, M., Muradyan, D., Piccioni, M., Traina, G., Pagiotti, R., & Pietrella, D., 2018. Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evidence-Based Complementary and Alternative Medicine, 201. https://doi.org/10.1155/2018/1756308
  • Geum, N. G., Eo, H. J., Kim, H. J., Park, G. H., Son, H. J., & Jeong, J. B., 2020. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264. 7 cells and immunosuppressed mice. Journal of Functional Foods, 73,104139. https://doi.org/10.1016/j.jff.2020.104139
  • Hirayama, D., Iida, T., & Nakase, H., 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International journal of molecular sciences, 19(1), 92. https://doi.org/10.3390/ijms19010092
  • Huang, D., ang, L., Wang, C., Ma, S., Cui, L., Huang, S., ... & Xu, M., 2014. Immunostimulatory activity of protein hydrolysate from oviductus ranae on macrophage in vitro. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/180234
  • Jeong, M., Kim, J. H., Lee, J. S., Dal Kang, S., Shim, S., Jung, M. Y., ... & Lee, K. W., 2020. Heat-killed Lactobacillus brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the TAK1 pathway. Journal of microbiology and biotechnology, 30(9),1395. https://doi.org/10.4014/jmb.2002.02004
  • Kang, C. H., Kim, J. S., Kim, H., Park, H. M., & Paek, N. S., 2021. Heat-killed lactic acid bacteria inhibit nitric oxide production via inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. Probiotics and Antimicrobial Proteins, 13(6), 1530-1538. https://doi.org/10.1007/s12602-021-09781-9
  • Lee, J., Kim, S., & Kang, C. H., 2022. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms, 10(11), 2247. https://doi.org/10.3390/microorganisms10112247.
  • Lee, J. Y., Kang, J. H., Jung, Y. R., & Kang, C. H., 2023. Lactobacillus gasseri MG4247 and Lacticaseibacillus paracasei MG4272 and MG4577 modulate allergic inflammatory response in RAW 264.7 and RBL-2H3 cells. Probiotics and Antimicrobial Proteins, 15(5), 1092-1101. https://doi.org/10.1007/s12602-022-09950-4
  • Maghsood, F., Mirshafiey, A., Farahani, M. M., Modarressi, M. H., Jafari, P., & Motevaseli, E., 2018. Dual effects of cell free supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in regulation of MMP-9 by up-regulating TIMP-1 and down-regulating CD147 in PMA-differentiated THP-1 cells. Cell Journal (Yakhteh), 19(4),559. https://doi.org/10.22074/cellj.2018.4447
  • Palmieri, E. M., McGinity, C., Wink, D. A., & McVicar, D. W., 2020. Nitric oxide in macrophage immunometabolism: hiding in plain sight. Metabolites, 10(11),429. https://doi.org/ 10.3390/metabo10110429
  • Taciak, B., Białasek, M., Braniewska, A., Sas, Z., Sawicka, P., Kiraga, Ł., Król, M., 2018. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Plos one, 13(6), e0198943. https://doi.org/10.1371/journal.pone.0198943
  • Tranberg, A., Klarin, B., Johansson, J., & Påhlman, L. I. , 2021. Efficacy of Lactiplantibacillus plantarum 299 and 299v against nosocomial oropharyngeal pathogens in vitro and as an oral prophylactic treatment in a randomized, controlled clinical trial. Microbiology Open, 10(1), e1151. https://doi.org/10.1002/mbo3.1151
  • Vidanapathirana, A. K., Goyne, J. M., Williamson, A. E., Pullen, B. J., Chhay, P., Sandeman, L., ... & Bursill, C. A., 2022. Biological Sensing of Nitric Oxide in Macrophages and Atherosclerosis Using a Ruthenium-Based Sensor. Biomedicines, 10(8), 1807. https://doi.org/10.3390/biomedicines10081807
  • Vincenti, J. E., 2010. The influence of cell-free Lactobacillus rhamnosus GG supernatant on the phagocytic activity of macrophages. Bioscience Horizons, 3(2), 105-112. https://doi.org/ 10.1093/biohorizons/hzq014
  • Wu, C., Xu, Y., & Zhao, Y., 2022. Two kinds of macrophage memory: innate and adaptive immune-like macrophage memory. Cellular & Molecular Immunology, 19(7), 852-854. https://doi.org/10.1038/s41423-022-00885-y
  • Xiu, L., Zhang, H., Hu, Z., Liang, Y., Guo, S., Yang, M., ... & Wang, X., 2018. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food and agricultural immunology, 29(1), 1086-1105. https://doi.org/ 10.1080/09540105.2018.1513994
  • Xu, Y., Cui, Y., Wang, X., Yue, F., Shan, Y., Liu, B., ... & Lü, X., 2019. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. International journal of biological macromolecules, 128, 480-492. https://doi.org/10.1016/j.ijbiomac.2019.01.117
  • Yeşilyurt, N., Yılmaz, B., Ağagündüz, D., & Capasso, R., 2021. Involvement of probiotics and postbiotics in the immune system modulation. Biologics, 1(2), 89-110. https://doi.org/10.3390/biologics1020006
  • Zheng, D., Liwinski, T., & Elinav, E., 2020. Interaction between microbiota and immunity in health and disease. Cell research, 30(6), 492-506. https://doi.org/10.1038/s41422-020-0332-7

Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells

Year 2023, , 1356 - 1362, 28.12.2023
https://doi.org/10.35414/akufemubid.1302005

Abstract

The human immune system is essential for defending the body against harmful internal and external elements; immunity includes innate and acquired immunity. Macrophages, the innate immune system's key components, are crucial for the clearance of dead cells and tumor cells, as well as foreign substances by triggering phagocytosis. They also play a role in the adaptive response with the cytokines and mediator molecules they secrete. Lactic acid bacteria (LAB), an important probiotics class, have a strong potential to improve host health and can be used as a functional food. There have been reports of certain LAB strains having immunostimulating effects. However, the effects of cell-free supernatants (CFS) gathered from some LAB strains on macrophage activation have become an important research area in recent years. This study's main objective was to characterize the immunostimulatory activities of Lactobacillus plantarum LP299v in the RAW 264.7 macrophage cell line. For this purpose, the immunomodulatory activity of CFS of the related strain was evaluated by MTT, neutral red assay, and Griess reaction respectively, in terms of proliferation, phagocytosis ability, and nitric oxide (NO) production parameters using the macrophage cell line. Studies have shown that this strain significantly increased proliferation, phagocytosis, and NO levels in RAW264.7 macrophage cells. When considered, these results suggest that the cell-free supernatant, obtained from Lactobacillus plantarum LP299v selected in this study, may be helpful for candidate compounds with immunostimulatory activity.

Supporting Institution

-

Project Number

-

Thanks

We thank Aksaray University Scientific and Technological Application and Research Center (ASÜBTAM) for their support in this study and Dokuz Eylül University Oncology Institute for the supply of RAW 264.7 cells.

References

  • Das, T. K., Pradhan, S., Chakrabarti, S., Mondal, K. C., & Ghosh, K., 2022. Current status of probiotic and related health benefits. Applied Food Research, 3, 100185. https://doi.org/10.1016/j.afres.2022.100185
  • De Marco, S., Sichetti, M., Muradyan, D., Piccioni, M., Traina, G., Pagiotti, R., & Pietrella, D., 2018. Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evidence-Based Complementary and Alternative Medicine, 201. https://doi.org/10.1155/2018/1756308
  • Geum, N. G., Eo, H. J., Kim, H. J., Park, G. H., Son, H. J., & Jeong, J. B., 2020. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264. 7 cells and immunosuppressed mice. Journal of Functional Foods, 73,104139. https://doi.org/10.1016/j.jff.2020.104139
  • Hirayama, D., Iida, T., & Nakase, H., 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International journal of molecular sciences, 19(1), 92. https://doi.org/10.3390/ijms19010092
  • Huang, D., ang, L., Wang, C., Ma, S., Cui, L., Huang, S., ... & Xu, M., 2014. Immunostimulatory activity of protein hydrolysate from oviductus ranae on macrophage in vitro. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/180234
  • Jeong, M., Kim, J. H., Lee, J. S., Dal Kang, S., Shim, S., Jung, M. Y., ... & Lee, K. W., 2020. Heat-killed Lactobacillus brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the TAK1 pathway. Journal of microbiology and biotechnology, 30(9),1395. https://doi.org/10.4014/jmb.2002.02004
  • Kang, C. H., Kim, J. S., Kim, H., Park, H. M., & Paek, N. S., 2021. Heat-killed lactic acid bacteria inhibit nitric oxide production via inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. Probiotics and Antimicrobial Proteins, 13(6), 1530-1538. https://doi.org/10.1007/s12602-021-09781-9
  • Lee, J., Kim, S., & Kang, C. H., 2022. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms, 10(11), 2247. https://doi.org/10.3390/microorganisms10112247.
  • Lee, J. Y., Kang, J. H., Jung, Y. R., & Kang, C. H., 2023. Lactobacillus gasseri MG4247 and Lacticaseibacillus paracasei MG4272 and MG4577 modulate allergic inflammatory response in RAW 264.7 and RBL-2H3 cells. Probiotics and Antimicrobial Proteins, 15(5), 1092-1101. https://doi.org/10.1007/s12602-022-09950-4
  • Maghsood, F., Mirshafiey, A., Farahani, M. M., Modarressi, M. H., Jafari, P., & Motevaseli, E., 2018. Dual effects of cell free supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in regulation of MMP-9 by up-regulating TIMP-1 and down-regulating CD147 in PMA-differentiated THP-1 cells. Cell Journal (Yakhteh), 19(4),559. https://doi.org/10.22074/cellj.2018.4447
  • Palmieri, E. M., McGinity, C., Wink, D. A., & McVicar, D. W., 2020. Nitric oxide in macrophage immunometabolism: hiding in plain sight. Metabolites, 10(11),429. https://doi.org/ 10.3390/metabo10110429
  • Taciak, B., Białasek, M., Braniewska, A., Sas, Z., Sawicka, P., Kiraga, Ł., Król, M., 2018. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Plos one, 13(6), e0198943. https://doi.org/10.1371/journal.pone.0198943
  • Tranberg, A., Klarin, B., Johansson, J., & Påhlman, L. I. , 2021. Efficacy of Lactiplantibacillus plantarum 299 and 299v against nosocomial oropharyngeal pathogens in vitro and as an oral prophylactic treatment in a randomized, controlled clinical trial. Microbiology Open, 10(1), e1151. https://doi.org/10.1002/mbo3.1151
  • Vidanapathirana, A. K., Goyne, J. M., Williamson, A. E., Pullen, B. J., Chhay, P., Sandeman, L., ... & Bursill, C. A., 2022. Biological Sensing of Nitric Oxide in Macrophages and Atherosclerosis Using a Ruthenium-Based Sensor. Biomedicines, 10(8), 1807. https://doi.org/10.3390/biomedicines10081807
  • Vincenti, J. E., 2010. The influence of cell-free Lactobacillus rhamnosus GG supernatant on the phagocytic activity of macrophages. Bioscience Horizons, 3(2), 105-112. https://doi.org/ 10.1093/biohorizons/hzq014
  • Wu, C., Xu, Y., & Zhao, Y., 2022. Two kinds of macrophage memory: innate and adaptive immune-like macrophage memory. Cellular & Molecular Immunology, 19(7), 852-854. https://doi.org/10.1038/s41423-022-00885-y
  • Xiu, L., Zhang, H., Hu, Z., Liang, Y., Guo, S., Yang, M., ... & Wang, X., 2018. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo. Food and agricultural immunology, 29(1), 1086-1105. https://doi.org/ 10.1080/09540105.2018.1513994
  • Xu, Y., Cui, Y., Wang, X., Yue, F., Shan, Y., Liu, B., ... & Lü, X., 2019. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. International journal of biological macromolecules, 128, 480-492. https://doi.org/10.1016/j.ijbiomac.2019.01.117
  • Yeşilyurt, N., Yılmaz, B., Ağagündüz, D., & Capasso, R., 2021. Involvement of probiotics and postbiotics in the immune system modulation. Biologics, 1(2), 89-110. https://doi.org/10.3390/biologics1020006
  • Zheng, D., Liwinski, T., & Elinav, E., 2020. Interaction between microbiota and immunity in health and disease. Cell research, 30(6), 492-506. https://doi.org/10.1038/s41422-020-0332-7
There are 20 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Tugce Karaduman 0000-0003-0728-0968

Project Number -
Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date May 24, 2023
Published in Issue Year 2023

Cite

APA Karaduman, T. (2023). Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1356-1362. https://doi.org/10.35414/akufemubid.1302005
AMA Karaduman T. Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1356-1362. doi:10.35414/akufemubid.1302005
Chicago Karaduman, Tugce. “Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus Plantarum LP299v Strain in RAW 264.7 Macrophage Cells”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1356-62. https://doi.org/10.35414/akufemubid.1302005.
EndNote Karaduman T (December 1, 2023) Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1356–1362.
IEEE T. Karaduman, “Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1356–1362, 2023, doi: 10.35414/akufemubid.1302005.
ISNAD Karaduman, Tugce. “Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus Plantarum LP299v Strain in RAW 264.7 Macrophage Cells”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1356-1362. https://doi.org/10.35414/akufemubid.1302005.
JAMA Karaduman T. Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1356–1362.
MLA Karaduman, Tugce. “Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus Plantarum LP299v Strain in RAW 264.7 Macrophage Cells”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1356-62, doi:10.35414/akufemubid.1302005.
Vancouver Karaduman T. Immunomodulatory Activity Analyses of Cell-Free Supernatant of Lactobacillus plantarum LP299v Strain in RAW 264.7 Macrophage Cells. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1356-62.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.