Research Article
BibTex RIS Cite

F_p R – Linear Skew Constacyclic Codes

Year 2024, , 525 - 530, 27.06.2024
https://doi.org/10.35414/akufemubid.1331180

Abstract

In this paper, we study a special class of linear codes, called skew constacyclic codes, over the ring F_p R, where R=F_p+vF_p, p is an odd prime number and v^2=v. These codes are defined as a subset of the ring F_p^m R^n. For an automorphism θ of R, we investigate the structural properties of skew polynomial ring R[x,θ]. We also determine the generator polynomials and the Gray images of the skew constacyclic codes over the ring F_p R.

References

  • Abualrub, T., Aydın, N., Seneviratne, P., 2012. On θ-cyclic codes over F2 + vF2. Australas. J. Combin., 54, 115-126.
  • Aksoy, R., Çalışkan, F., 2021. Self-dual codes over F2 × (F2 + vF2). Crypto. Commun., 13, 129–141.
  • Al-Ashker, M. M., Abu-Jazar, A. Q. M. 2016. Skew constacyclic codes over Fp + vFp. Palestine Journal of Mathematics, 5, 96-103.
  • Benbelkacem, N., Ezerman, M. F., Abualrub, T., Aydın, N., Batoul, A., 2022. Skew Cyclic Codes over F4R. J. Algebra its Appl., 21, 2250065.
  • Boucher, D., Geiselmann, W., Ulmer, F., 2007. Skew cyclic codes. Appl.Algebra Eng. Commun. Comput, 18, 379–389.
  • Çalışkan, F., Yıldırım, T., Aksoy, R., 2023. Non-Binary Quantum Codes from Cyclic Codes over F_p×(F_p+ vF_p). Int. J. Theor Phys, 62, 29.
  • Delsarte, P., 1973. An algebraic approach to the association schemes of coding theory. Philips Research Reports, 10. Ann Arbor, MI, USA, Historical JRl.
  • Dinh, H.Q., Pathak, S., Bag, T., Upadhyay, K., Chinnakum, W., 2021. A study of FqR-cyclic codes and their applications in constructing quantum codes. IEEE Access, 8, 190049-190063
  • Gao, J., 2013. Skew cyclic codes over Fp + vFp. J. Appl. Math. Informatics, 31, 337-342.
  • Gursoy, F., Siap, I., Yildiz,B., 2014. Construction of skew cyclic codes over Fq+vFq. Adv.Math.Commun, 8, 313-322.
  • Jitman, S., Ling, S., Udomkavanich, P, 2012. Skew constacyclic codes over finite chain rings. Australas. Adv. Math. Commun, 6, 39–63.
  • Lac H. J., 2008. Chinese remainder theorem and its applications, Master Thesis, California State University, 41.
  • Li, J., Gao, J., Fu, F. W., 2021. FqR-Linear skew cyclic codes. J. Algebra Mathematics and Computing, 68, 1719-1741.
  • Li, J., Gao, J., Fu, F. W., 2021. Bounds on covering radius of F2R-linear codes. IEEE Commun. Lett., 25, 23-27.
  • Li, J., Gao, J., Fu, F. W., Ma, F., 2020. FqR-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf. Process, 19, 193.
  • Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K., 2019. Zq (Zq + uZq)-linear skew constacyclic codes. J. Algebra Comb. Discrete Appl., 7, 85-101.
  • Şiap, I., Abualrub, T., Aydın, N., Seneviratne, P., 2011. Skew cyclic codes of arbitrary length. Int. J. Inform. Coding Theory, 2, 10-20.
  • Zhu, S., Wang, Y. Shi, M., 2010. Some results on cyclic codes over F2 +vF2. IEEE Trans. Inform. Theory, 56, 1680-1684.

F_p R – Lineer Çarpık Sabit Devirli Kodlar

Year 2024, , 525 - 530, 27.06.2024
https://doi.org/10.35414/akufemubid.1331180

Abstract

Bu makalede, 〖 F〗_p R halkası üzerinde skew constacyclic kodlar olarak adlandırılan özel bir doğrusal kod sınıfını olan çalışıyoruz, burada R=F_p+vF_p, p tek asal sayıdır ve v^2=v. Bu kodlar F_p^m R^n halkasının bir alt kümesi olarak tanımlanır. R nin bir θ otomorfizması için, R[x,θ] skew polinom halkasının yapısal özelliklerini araştırıyoruz. Ayrıca, F_p R halkası üzerinde skew constacyclic kodların üreteç polinomlarını ve Gray görüntülerini belirliyoruz.

References

  • Abualrub, T., Aydın, N., Seneviratne, P., 2012. On θ-cyclic codes over F2 + vF2. Australas. J. Combin., 54, 115-126.
  • Aksoy, R., Çalışkan, F., 2021. Self-dual codes over F2 × (F2 + vF2). Crypto. Commun., 13, 129–141.
  • Al-Ashker, M. M., Abu-Jazar, A. Q. M. 2016. Skew constacyclic codes over Fp + vFp. Palestine Journal of Mathematics, 5, 96-103.
  • Benbelkacem, N., Ezerman, M. F., Abualrub, T., Aydın, N., Batoul, A., 2022. Skew Cyclic Codes over F4R. J. Algebra its Appl., 21, 2250065.
  • Boucher, D., Geiselmann, W., Ulmer, F., 2007. Skew cyclic codes. Appl.Algebra Eng. Commun. Comput, 18, 379–389.
  • Çalışkan, F., Yıldırım, T., Aksoy, R., 2023. Non-Binary Quantum Codes from Cyclic Codes over F_p×(F_p+ vF_p). Int. J. Theor Phys, 62, 29.
  • Delsarte, P., 1973. An algebraic approach to the association schemes of coding theory. Philips Research Reports, 10. Ann Arbor, MI, USA, Historical JRl.
  • Dinh, H.Q., Pathak, S., Bag, T., Upadhyay, K., Chinnakum, W., 2021. A study of FqR-cyclic codes and their applications in constructing quantum codes. IEEE Access, 8, 190049-190063
  • Gao, J., 2013. Skew cyclic codes over Fp + vFp. J. Appl. Math. Informatics, 31, 337-342.
  • Gursoy, F., Siap, I., Yildiz,B., 2014. Construction of skew cyclic codes over Fq+vFq. Adv.Math.Commun, 8, 313-322.
  • Jitman, S., Ling, S., Udomkavanich, P, 2012. Skew constacyclic codes over finite chain rings. Australas. Adv. Math. Commun, 6, 39–63.
  • Lac H. J., 2008. Chinese remainder theorem and its applications, Master Thesis, California State University, 41.
  • Li, J., Gao, J., Fu, F. W., 2021. FqR-Linear skew cyclic codes. J. Algebra Mathematics and Computing, 68, 1719-1741.
  • Li, J., Gao, J., Fu, F. W., 2021. Bounds on covering radius of F2R-linear codes. IEEE Commun. Lett., 25, 23-27.
  • Li, J., Gao, J., Fu, F. W., Ma, F., 2020. FqR-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf. Process, 19, 193.
  • Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K., 2019. Zq (Zq + uZq)-linear skew constacyclic codes. J. Algebra Comb. Discrete Appl., 7, 85-101.
  • Şiap, I., Abualrub, T., Aydın, N., Seneviratne, P., 2011. Skew cyclic codes of arbitrary length. Int. J. Inform. Coding Theory, 2, 10-20.
  • Zhu, S., Wang, Y. Shi, M., 2010. Some results on cyclic codes over F2 +vF2. IEEE Trans. Inform. Theory, 56, 1680-1684.
There are 18 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Tülay Yıldırım 0000-0001-5933-9752

Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date July 23, 2023
Published in Issue Year 2024

Cite

APA Yıldırım, T. (2024). F_p R – Linear Skew Constacyclic Codes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 525-530. https://doi.org/10.35414/akufemubid.1331180
AMA Yıldırım T. F_p R – Linear Skew Constacyclic Codes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):525-530. doi:10.35414/akufemubid.1331180
Chicago Yıldırım, Tülay. “F_p R – Linear Skew Constacyclic Codes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 525-30. https://doi.org/10.35414/akufemubid.1331180.
EndNote Yıldırım T (June 1, 2024) F_p R – Linear Skew Constacyclic Codes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 525–530.
IEEE T. Yıldırım, “F_p R – Linear Skew Constacyclic Codes”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 525–530, 2024, doi: 10.35414/akufemubid.1331180.
ISNAD Yıldırım, Tülay. “F_p R – Linear Skew Constacyclic Codes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 525-530. https://doi.org/10.35414/akufemubid.1331180.
JAMA Yıldırım T. F_p R – Linear Skew Constacyclic Codes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:525–530.
MLA Yıldırım, Tülay. “F_p R – Linear Skew Constacyclic Codes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 525-30, doi:10.35414/akufemubid.1331180.
Vancouver Yıldırım T. F_p R – Linear Skew Constacyclic Codes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):525-30.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.