Research Article
BibTex RIS Cite

Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties

Year 2023, , 1516 - 1524, 28.12.2023
https://doi.org/10.35414/akufemubid.1346816

Abstract

In this study, it is aimed to prepare a 1:1 ratio PLA blend with PEG-b-PCL diblock copolymer, which is intended to be used as a drug release and biomaterial, and to obtain a biocomposite film with M.neglecta extract in different ratios. The obtained biocomposite films were first characterized by the ATR-IR spectrum and the characteristic functional group signals of the polymers were determined. The thermal analysis results show that the plant extract reduces the thermal stability of the polymer blend. Calorimetric measurements can be interpreted as plant-doped biocomposite films decrease the Tg temperature of the polymer blend, that is, increase the interchain free volume of the polymers. It was observed that swelling degree and moisture content of the plant treated polymer blend biocomposite films decreased with increasing plant percentage, while water solubility increased. It was observed that the plant extract slightly improved this feature of the PEG-b-PCL/PLA blend film, which showed shape memory. Due to the phenolic compounds in the structure of M. neglecta, it increased the antioxidant activities of the biocomposite films by adding it to the polymer blend.

References

  • Akhtar, M.J., Jacquot, M., Jasniewski, J., Jacquot, C., Imran, M., Jamshidian, M. and Desobry, S., 2012. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydrate Polymers, 89(4), 1150-1158. https://doi.org/10.1016/j.carbpol.2012.03.088.
  • Al-Snafi, A.E., 2019. Medical benefit of Malva neglecta-A review. IOSR Journal of Pharmacy, 9(6), 60-67.
  • Angarita, A.V., Umaña-Perez, A. and Perez, L.D., 2020. Enhancing the performance of PEG-b-PCL-based nanocarriers for curcumin through its conjugation with lipophilic biomolecules. Journal of Bioactive and Compatible Polymers, 35(4-5), 399-413. https://doi.org/10.1177/0883911520944416
  • Arias, E.R., Angarita-Villamizar, V., Baena, Y., Parra-Giraldo, C. and Perez, L.D., 2021. Phospholipid-conjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b. Polymers, 13(11), 1747. https://doi.org/10.3390/polym13111747
  • Aziz, M.A., Adnan, M., Khan, A.H., Rehman, A.U., Jan, R. and Khan, J., 2016. Ethno-medicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. Journal of ethnobiology and ethnomedicine, 12(53). https://doi.org/10.1186/s13002-016-0126-7
  • Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M. and Zakir, M, 2016. Poly (lactic acid)/Poly (ethylene glycol) blends: Mechanical, thermal and morphological properties. Paper presented at the AIP Conference Proceedings, 1727(1). https://doi.org/10.1063/1.4945957
  • Brandt, J.V., Piazza, R.D., Dos Santos, C.C., Vega-Chacón, J., Amantéa, B.E., Pinto, G.C. and Primo, F.L., 2019. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids and Surfaces B: Biointerfaces, 177, 228-234. https://doi.org/10.1016/j.colsurfb.2019.02.008
  • Dash, T.K. and Konkimalla, V.B., 2012. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15-33. https://doi.org/10.1016/j.jconrel.2011.09.064
  • DEVECİ, H.A., Gökhan, N., ali KIRPIK, M., HARMANKAYA, A. and YILDIZ, Y., 2016. Fenolik bileşik içeren bitkisel antioksidanlar. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 26-32.
  • Du, Z.-X., Xu, J.-T. and Fan, Z.-Q., 2007. Micellar morphologies of poly (ε-caprolactone)-b-poly (ethylene oxide) block copolymers in water with a crystalline core. Macromolecules, 40(21), 7633-7637. https://doi.org/10.1021/ma070977p
  • El-Hefian, E.A., Nasef, M.M. and Yahaya, A.H., 2010. The preparation and characterization of chitosan/poly (vinyl alcohol) blended films. E-journal of chemistry, 7(4), 1212-1219. https://doi.org/10.1155/2010/626235
  • El Mouzahim, M., Eddarai, E., Eladaoui, S., Guenbour, A., Bellaouchou, A., Zarrouk, A. and Boussen, R., 2023. Food packaging composite film based on chitosan, natural kaolinite clay, and Ficus. carica leaves extract for fresh-cut apple slices preservation. International Journal of Biological Macromolecules, 233, 123430. https://doi.org/10.1016/j.ijbiomac.2023.123430
  • Fairley, N., Hoang, B. and Allen, C., 2008. Morphological Control of Poly (ethylene glycol)-block-poly (ε-caprolactone) Copolymer Aggregates in Aqueous Solution. Biomacromolecules, 9(9), 2283-2291. https://doi.org/10.1021/bm800572p
  • Ghafouri, S.E., Mousavi, S.R., Khakestani, M., Mozaffari, S., Ajami, N. and Khonakdar, H.A., 2022. Electrospun nanofibers of poly (lactic acid)/poly (ε‐caprolactone) blend for the controlled release of levetiracetam. Polymer engineering & science, 62(12), 4070-4081. https://doi.org/10.1002/pen.26167
  • Grossen, P., Witzigmann, D., Sieber, S. and Huwyler, J., 2017. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260, 46-60. https://doi.org/10.1016/j.jconrel.2017.05.028
  • Güder, A. (2008). Urtica dioica L. ve Malva neglecta Wallr. bitkilerinin ve karışımlarının antioksidant aktivitesinin belirlenmesi. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü.
  • Gürler, N., Pekdemir, M.E., Torğut, G. and Kök, M., 2023. Binary PCL–waste photopolymer blends for biodegradable food packaging applications. Journal of Molecular Structure, 1279, 134990. https://doi.org/10.1016/j.molstruc.2023.134990
  • Hassanpour Amnieh, A., Jooyandeh, H., Nasehi, B. and Hojjati, M., 2018. Investigation on physicochemical and rheological properties of malva leaves gum (Malva neglecta). Journal of Food Technology and Nutrition, 15(2), 19-30. https://jftn.srbiau.ac.ir/article_11638_dc685103cce91cdd3c0050c559620c02.pdf?lang=en
  • Huang, Y., Li, L. and Li, G., 2015. An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: Synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 18(8), 799-806. https://doi.org/10.1080/15685551.2015.1078113
  • Ingole, R.D., Thalkari, A.B., Karwa, P.N. and Shinde, P.S., 2020. A god gifted plant. Research Journal of Pharmacognosy and Phytochemistry, 12(4), 227-230. 10.5958/0975-4385.2020.00038.2
  • Khalid, S. and Saleem, U., 2018. Phytochemical and pharmacological importance of Malva neglecta: An updated review. PharmacologyOnLine, 2, 52-62.
  • Labet, M. and Thielemans, W., 2009. Synthesis of polycaprolactone: a review. Chemical society reviews, 38(12), 3484-3504. https://doi.org/10.1039/B820162P
  • Leonés, A., Sonseca, A., López, D., Fiori, S. and Peponi, L., 2019. Shape memory effect on electrospun PLA-based fibers tailoring their thermal response. European Polymer Journal, 117, 217-226. https://doi.org/10.1016/j.eurpolymj.2019.05.014
  • Li, Z. and Tan, B.H., 2014. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Materials Science and Engineering: C, 45, 620-634. https://doi.org/10.1016/j.msec.2014.06.003
  • Lipinsky, E. and Sinclair, R., 1986. Is lactic acid a commodity chemical. Chemical Engineering Progress, 82(8), 26-32. http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8777347
  • Liu, J., Liu, S., Wu, Q., Gu, Y., Kan, J. and Jin, C., 2017. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food hydrocolloids, 73, 90-100. https://doi.org/10.1016/j.foodhyd.2017.06.035
  • Mabasa, X., Mathomu, L., Madala, N., Musie, E. and Sigidi, M., 2021. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochemistry Research International. https://doi.org/10.1155/2021/2854217
  • Mennati, A., Rostamizadeh, K., Manjili, H.K., Mousavi, M.A., Zhiani, M., Sabouri, I. and Danafar, H., 2021. Synthesis of methoxy poly (ethylene glycol)-poly (ε-caprolactone) diblock copolymers hybridized with DDAB cationic lipid as the efficient nanocarriers for in vitro delivery of lycopene into MCF-7 breast cancer cells. Journal of Drug Delivery Science and Technology, 66, 102806. https://doi.org/10.1016/j.jddst.2021.102806
  • Niksarlıoğlu, S., Akman, F., Pekdemir, M.E., Kuzu, S.Y., Kaçal, M.R. and Yılmaz, M., 2023. An extensive investigation on gamma shielding properties of PLA/Gd2O3 nanocomposites. Radiation Physics and Chemistry, 208, 110936.https://doi.org/10.1016/j.radphy schem.2023.110936
  • Ozer, I., Tomak, A., Zareie, H.M., Baran, Y. and Bulmus, V., 2017. Effect of molecular architecture on cell interactions and stealth properties of PEG. Biomacromolecules, 18(9), 2699-2710. https://doi.org/10.1021/acs.biomac.7b00443
  • Pekdemir, M.E., Aydin, D., Selçuk Pekdemir, S., Erecevit Sönmez, P. and Aksoy, E., 2023. Shape Memory Polymer-Based Nanocomposites Magnetically Enhanced with Fe3O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 33, 1147-1155.https: //doi.org/10.1007/s10904-023-02566-3
  • Pekdemir, M.E., Kaya, M., Coşkun, M., Aydoğdu, Y., Kök, M. and Kuzu, S.Y., 2023. Physicochemical properties of magnetically enhanced shape memory polymer composites doped with NiMnGa. Journal of Polymer Research, 30(8), 293. https://doi.org/10.1007/s10965-023-03679-6
  • Pekdemir, M.E., Kök, M., Kanca, M.S., Özen Öner, E., Pekdemir, S., Inci, Ş. and Tatar, B., 2023. B2O3 reinforced polylactic acid/thermoplastic polyethylene glycol shape memory composites. Polymers for Advanced Technologies, 34(2), 605-612. https://doi.org/10.1002/pat.5912
  • Pekdemir, M.E., Pekdemir, S., İnci, Ş., Kırbağ, S. and Çiftci, M., 2021. Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum. Iranian Journal of Science and Technology, Transactions A: Science, 45(5), 1579-1586. https://doi.org/10.1007/s40995-021-01167-4
  • Pekdemir, S., Çiftci, M. and Karatepe, M., 2020. Elazığ’da yetişen Polygonum cognatum Meissn (madımak) bitki ekstraktlarının in vitro biyolojik aktiviteleri ve bazı fitokimyasal bileşenlerinin belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 18, 368-378. https://doi.org/10.31590/ejosat.690867
  • Pekdemir, S., Özen Öner, E., Pekdemir, M.E., Dalkılıç, S. and Kadıoğlu Dalkılıç, L., 2022. An investigation into the influence of C. moschata leaves extract on physicochemical and biological properties of biodegradable PCL/PLA blend film. Journal of Polymers and the Environment, 30(9), 3645-3655. https://doi.org/10.1007/s10924-022-02460-y
  • Piazza, R.D., Brandt, J.V., Gobo, G.G., Tedesco, A.C., Primo, F.L., Marques, R.F.C. and Junior, M.J., 2018. mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 142-149. https://doi.org/10.1016/j.colsurfa.2018.06.076
  • Pinela, J., Barros, L., Antonio, A.L., Carvalho, A.M., Oliveira, M.B.P. and Ferreira, I.C., 2016. Quality control of gamma irradiated dwarf oxidant parameters. Molecules, 21(4), 467. https://doi.org/10.3390/molecules21040467
  • Sinha, V., Bansal, K., Kaushik, R., Kumria, R. and Trehan, A., 2004. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International journal of pharmaceutics, 278(1), 1-23. https://doi.org/10.1016/j.ijpharm.2004.01.044
  • Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A. and Fernandes, F.M.B., 2017. Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056
  • Taşgin, Y., Pekdemir, M.E., Yilmaz, M., Kanca, M.S. and Kök, M., 2023. Physical and shielding properties of Er2O3 rare earth oxide compound content on PCL/PEG blend. Polymer bulletin. https://doi.org/10.1007/s00289-023-04818-1
  • Vieira, I.R.S., de Carvalho, A.P.A.d. and Conte‐Junior, C.A., 2022. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Comprehensive reviews in food science and food safety, 21(4), 3673-3716. https://doi.org/10.1111/1541-4337.12990
  • Woodruff, M.A. and Hutmacher, D.W., 2010. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science, 35(10), 1217-1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
  • Yang, J., Li, M., Wang, Y., Wu, H., Zhen, T., Xiong, L. and Sun, Q., 2019. Double cross-linked chitosan composite films developed with oxidized tannic acid and ferric ions exhibit high strength and excellent water resistance. Biomacromolecules, 20(2), 801-812. https://doi.org/10.1021/acs.biomac.8b01420
  • Yang, W., Qi, G., Ding, H., Xu, P., Dong, W., Zhu, X. and Ma, P., 2020. Biodegradable poly (lactic acid)-poly (ε-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance. Composites Communications, 22, 100497. https://doi.org/10.1016/j.coco.2020.100497
  • Yang, Z., Yang, Z., Zeng, J., Yang, J. and Cao, X., 2023. Preparation and Properties of Biodegradable Shape Memory Polylactic Acid/Poly (ε‐caprolactone) Blends under Volume Elongational Deformation. Macromolecular Materials and Engineering, 308(1), 2200342. https://doi.org/10.1002/mame.202200342
  • Yilmaz, M., Pekdemir, M.E. and Öner, E.Ö., 2023. Evaluation of Pb doped Poly (lactic acid)(PLA)/Poly (ethylene glycol)(PEG) blend composites regarding physicochemical and radiation shielding properties. Radiation Physics and Chemistry, 202, 110509. https://doi.org/10.1016/j.radphyschem.2022.110509
  • Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J. and Liu, J., 2019. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food hydrocolloids, 94, 80-92. https://doi.org/10.1016/j.foodhyd.2019.03.009

Malva neglecta Yaprak Özü / Biyobozunur Diblock Kopolimer Karışım Biyokompozitleri: Fizikokimyasal ve Antioksidan Özellikler

Year 2023, , 1516 - 1524, 28.12.2023
https://doi.org/10.35414/akufemubid.1346816

Abstract

Bu çalışma ilaç salınımı ve biyomalzeme olarak kullanılması hedeflenen PEG-b-PCL diblok kopolimeri ile 1:1 oranında PLA blendinin hazırlanarak farklı oranlarda M.neglecta ekstraktıyla biyokompozit film eldesini hedeflenmektedir. Elde edilen biyokompozit filmleri öncelikle ATR-IR spektrumu ile karekterize edilmiş ve polimerlerin karekteristik fonksiyonel grup sinyalleri belirlenmiştir. Termal analiz sonuçları, bitki ekstraktının polimer blendin termal kararlılığını azalttığını göstermektedir. Kalorimetrik ölçümler ise bitki katkılı biyokompozit filmlerin, polimer blendin Tg sıcaklığını düşürdüğü yani polimerlerin zincirler arası serbest hacmini arttırması şeklinde yorumlanabilir. Bitki ile etkileştirilmiş polimer blend biyokompozit filmlerinin şişme derecesi ve nem içeriğinin artan bitki yüzdesiyle azaldığı görülürken, sudaki çözünürlüğünün ise arttığı görüldü. Şekil hatırlama özelliği gösteren PEG-b-PCL/PLA blend filminin bu özelliğini bitki ekstraktının da az da olsa iyileştirdiği görülmüştür. M. neglecta yapısında bulunan fenolik bileşiklerden dolayı, polimer blende katkılanmasıyla, biyokompozit filmlerin antioksidant aktivitelerinin artmasını sağlamıştır.

References

  • Akhtar, M.J., Jacquot, M., Jasniewski, J., Jacquot, C., Imran, M., Jamshidian, M. and Desobry, S., 2012. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydrate Polymers, 89(4), 1150-1158. https://doi.org/10.1016/j.carbpol.2012.03.088.
  • Al-Snafi, A.E., 2019. Medical benefit of Malva neglecta-A review. IOSR Journal of Pharmacy, 9(6), 60-67.
  • Angarita, A.V., Umaña-Perez, A. and Perez, L.D., 2020. Enhancing the performance of PEG-b-PCL-based nanocarriers for curcumin through its conjugation with lipophilic biomolecules. Journal of Bioactive and Compatible Polymers, 35(4-5), 399-413. https://doi.org/10.1177/0883911520944416
  • Arias, E.R., Angarita-Villamizar, V., Baena, Y., Parra-Giraldo, C. and Perez, L.D., 2021. Phospholipid-conjugated peg-b-pcl copolymers as precursors of micellar vehicles for amphotericin b. Polymers, 13(11), 1747. https://doi.org/10.3390/polym13111747
  • Aziz, M.A., Adnan, M., Khan, A.H., Rehman, A.U., Jan, R. and Khan, J., 2016. Ethno-medicinal survey of important plants practiced by indigenous community at Ladha subdivision, South Waziristan agency, Pakistan. Journal of ethnobiology and ethnomedicine, 12(53). https://doi.org/10.1186/s13002-016-0126-7
  • Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M. and Zakir, M, 2016. Poly (lactic acid)/Poly (ethylene glycol) blends: Mechanical, thermal and morphological properties. Paper presented at the AIP Conference Proceedings, 1727(1). https://doi.org/10.1063/1.4945957
  • Brandt, J.V., Piazza, R.D., Dos Santos, C.C., Vega-Chacón, J., Amantéa, B.E., Pinto, G.C. and Primo, F.L., 2019. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids and Surfaces B: Biointerfaces, 177, 228-234. https://doi.org/10.1016/j.colsurfb.2019.02.008
  • Dash, T.K. and Konkimalla, V.B., 2012. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15-33. https://doi.org/10.1016/j.jconrel.2011.09.064
  • DEVECİ, H.A., Gökhan, N., ali KIRPIK, M., HARMANKAYA, A. and YILDIZ, Y., 2016. Fenolik bileşik içeren bitkisel antioksidanlar. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 26-32.
  • Du, Z.-X., Xu, J.-T. and Fan, Z.-Q., 2007. Micellar morphologies of poly (ε-caprolactone)-b-poly (ethylene oxide) block copolymers in water with a crystalline core. Macromolecules, 40(21), 7633-7637. https://doi.org/10.1021/ma070977p
  • El-Hefian, E.A., Nasef, M.M. and Yahaya, A.H., 2010. The preparation and characterization of chitosan/poly (vinyl alcohol) blended films. E-journal of chemistry, 7(4), 1212-1219. https://doi.org/10.1155/2010/626235
  • El Mouzahim, M., Eddarai, E., Eladaoui, S., Guenbour, A., Bellaouchou, A., Zarrouk, A. and Boussen, R., 2023. Food packaging composite film based on chitosan, natural kaolinite clay, and Ficus. carica leaves extract for fresh-cut apple slices preservation. International Journal of Biological Macromolecules, 233, 123430. https://doi.org/10.1016/j.ijbiomac.2023.123430
  • Fairley, N., Hoang, B. and Allen, C., 2008. Morphological Control of Poly (ethylene glycol)-block-poly (ε-caprolactone) Copolymer Aggregates in Aqueous Solution. Biomacromolecules, 9(9), 2283-2291. https://doi.org/10.1021/bm800572p
  • Ghafouri, S.E., Mousavi, S.R., Khakestani, M., Mozaffari, S., Ajami, N. and Khonakdar, H.A., 2022. Electrospun nanofibers of poly (lactic acid)/poly (ε‐caprolactone) blend for the controlled release of levetiracetam. Polymer engineering & science, 62(12), 4070-4081. https://doi.org/10.1002/pen.26167
  • Grossen, P., Witzigmann, D., Sieber, S. and Huwyler, J., 2017. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260, 46-60. https://doi.org/10.1016/j.jconrel.2017.05.028
  • Güder, A. (2008). Urtica dioica L. ve Malva neglecta Wallr. bitkilerinin ve karışımlarının antioksidant aktivitesinin belirlenmesi. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü.
  • Gürler, N., Pekdemir, M.E., Torğut, G. and Kök, M., 2023. Binary PCL–waste photopolymer blends for biodegradable food packaging applications. Journal of Molecular Structure, 1279, 134990. https://doi.org/10.1016/j.molstruc.2023.134990
  • Hassanpour Amnieh, A., Jooyandeh, H., Nasehi, B. and Hojjati, M., 2018. Investigation on physicochemical and rheological properties of malva leaves gum (Malva neglecta). Journal of Food Technology and Nutrition, 15(2), 19-30. https://jftn.srbiau.ac.ir/article_11638_dc685103cce91cdd3c0050c559620c02.pdf?lang=en
  • Huang, Y., Li, L. and Li, G., 2015. An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: Synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 18(8), 799-806. https://doi.org/10.1080/15685551.2015.1078113
  • Ingole, R.D., Thalkari, A.B., Karwa, P.N. and Shinde, P.S., 2020. A god gifted plant. Research Journal of Pharmacognosy and Phytochemistry, 12(4), 227-230. 10.5958/0975-4385.2020.00038.2
  • Khalid, S. and Saleem, U., 2018. Phytochemical and pharmacological importance of Malva neglecta: An updated review. PharmacologyOnLine, 2, 52-62.
  • Labet, M. and Thielemans, W., 2009. Synthesis of polycaprolactone: a review. Chemical society reviews, 38(12), 3484-3504. https://doi.org/10.1039/B820162P
  • Leonés, A., Sonseca, A., López, D., Fiori, S. and Peponi, L., 2019. Shape memory effect on electrospun PLA-based fibers tailoring their thermal response. European Polymer Journal, 117, 217-226. https://doi.org/10.1016/j.eurpolymj.2019.05.014
  • Li, Z. and Tan, B.H., 2014. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Materials Science and Engineering: C, 45, 620-634. https://doi.org/10.1016/j.msec.2014.06.003
  • Lipinsky, E. and Sinclair, R., 1986. Is lactic acid a commodity chemical. Chemical Engineering Progress, 82(8), 26-32. http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8777347
  • Liu, J., Liu, S., Wu, Q., Gu, Y., Kan, J. and Jin, C., 2017. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food hydrocolloids, 73, 90-100. https://doi.org/10.1016/j.foodhyd.2017.06.035
  • Mabasa, X., Mathomu, L., Madala, N., Musie, E. and Sigidi, M., 2021. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochemistry Research International. https://doi.org/10.1155/2021/2854217
  • Mennati, A., Rostamizadeh, K., Manjili, H.K., Mousavi, M.A., Zhiani, M., Sabouri, I. and Danafar, H., 2021. Synthesis of methoxy poly (ethylene glycol)-poly (ε-caprolactone) diblock copolymers hybridized with DDAB cationic lipid as the efficient nanocarriers for in vitro delivery of lycopene into MCF-7 breast cancer cells. Journal of Drug Delivery Science and Technology, 66, 102806. https://doi.org/10.1016/j.jddst.2021.102806
  • Niksarlıoğlu, S., Akman, F., Pekdemir, M.E., Kuzu, S.Y., Kaçal, M.R. and Yılmaz, M., 2023. An extensive investigation on gamma shielding properties of PLA/Gd2O3 nanocomposites. Radiation Physics and Chemistry, 208, 110936.https://doi.org/10.1016/j.radphy schem.2023.110936
  • Ozer, I., Tomak, A., Zareie, H.M., Baran, Y. and Bulmus, V., 2017. Effect of molecular architecture on cell interactions and stealth properties of PEG. Biomacromolecules, 18(9), 2699-2710. https://doi.org/10.1021/acs.biomac.7b00443
  • Pekdemir, M.E., Aydin, D., Selçuk Pekdemir, S., Erecevit Sönmez, P. and Aksoy, E., 2023. Shape Memory Polymer-Based Nanocomposites Magnetically Enhanced with Fe3O4 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 33, 1147-1155.https: //doi.org/10.1007/s10904-023-02566-3
  • Pekdemir, M.E., Kaya, M., Coşkun, M., Aydoğdu, Y., Kök, M. and Kuzu, S.Y., 2023. Physicochemical properties of magnetically enhanced shape memory polymer composites doped with NiMnGa. Journal of Polymer Research, 30(8), 293. https://doi.org/10.1007/s10965-023-03679-6
  • Pekdemir, M.E., Kök, M., Kanca, M.S., Özen Öner, E., Pekdemir, S., Inci, Ş. and Tatar, B., 2023. B2O3 reinforced polylactic acid/thermoplastic polyethylene glycol shape memory composites. Polymers for Advanced Technologies, 34(2), 605-612. https://doi.org/10.1002/pat.5912
  • Pekdemir, M.E., Pekdemir, S., İnci, Ş., Kırbağ, S. and Çiftci, M., 2021. Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum. Iranian Journal of Science and Technology, Transactions A: Science, 45(5), 1579-1586. https://doi.org/10.1007/s40995-021-01167-4
  • Pekdemir, S., Çiftci, M. and Karatepe, M., 2020. Elazığ’da yetişen Polygonum cognatum Meissn (madımak) bitki ekstraktlarının in vitro biyolojik aktiviteleri ve bazı fitokimyasal bileşenlerinin belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 18, 368-378. https://doi.org/10.31590/ejosat.690867
  • Pekdemir, S., Özen Öner, E., Pekdemir, M.E., Dalkılıç, S. and Kadıoğlu Dalkılıç, L., 2022. An investigation into the influence of C. moschata leaves extract on physicochemical and biological properties of biodegradable PCL/PLA blend film. Journal of Polymers and the Environment, 30(9), 3645-3655. https://doi.org/10.1007/s10924-022-02460-y
  • Piazza, R.D., Brandt, J.V., Gobo, G.G., Tedesco, A.C., Primo, F.L., Marques, R.F.C. and Junior, M.J., 2018. mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 142-149. https://doi.org/10.1016/j.colsurfa.2018.06.076
  • Pinela, J., Barros, L., Antonio, A.L., Carvalho, A.M., Oliveira, M.B.P. and Ferreira, I.C., 2016. Quality control of gamma irradiated dwarf oxidant parameters. Molecules, 21(4), 467. https://doi.org/10.3390/molecules21040467
  • Sinha, V., Bansal, K., Kaushik, R., Kumria, R. and Trehan, A., 2004. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International journal of pharmaceutics, 278(1), 1-23. https://doi.org/10.1016/j.ijpharm.2004.01.044
  • Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A. and Fernandes, F.M.B., 2017. Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107, 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056
  • Taşgin, Y., Pekdemir, M.E., Yilmaz, M., Kanca, M.S. and Kök, M., 2023. Physical and shielding properties of Er2O3 rare earth oxide compound content on PCL/PEG blend. Polymer bulletin. https://doi.org/10.1007/s00289-023-04818-1
  • Vieira, I.R.S., de Carvalho, A.P.A.d. and Conte‐Junior, C.A., 2022. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Comprehensive reviews in food science and food safety, 21(4), 3673-3716. https://doi.org/10.1111/1541-4337.12990
  • Woodruff, M.A. and Hutmacher, D.W., 2010. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science, 35(10), 1217-1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
  • Yang, J., Li, M., Wang, Y., Wu, H., Zhen, T., Xiong, L. and Sun, Q., 2019. Double cross-linked chitosan composite films developed with oxidized tannic acid and ferric ions exhibit high strength and excellent water resistance. Biomacromolecules, 20(2), 801-812. https://doi.org/10.1021/acs.biomac.8b01420
  • Yang, W., Qi, G., Ding, H., Xu, P., Dong, W., Zhu, X. and Ma, P., 2020. Biodegradable poly (lactic acid)-poly (ε-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance. Composites Communications, 22, 100497. https://doi.org/10.1016/j.coco.2020.100497
  • Yang, Z., Yang, Z., Zeng, J., Yang, J. and Cao, X., 2023. Preparation and Properties of Biodegradable Shape Memory Polylactic Acid/Poly (ε‐caprolactone) Blends under Volume Elongational Deformation. Macromolecular Materials and Engineering, 308(1), 2200342. https://doi.org/10.1002/mame.202200342
  • Yilmaz, M., Pekdemir, M.E. and Öner, E.Ö., 2023. Evaluation of Pb doped Poly (lactic acid)(PLA)/Poly (ethylene glycol)(PEG) blend composites regarding physicochemical and radiation shielding properties. Radiation Physics and Chemistry, 202, 110509. https://doi.org/10.1016/j.radphyschem.2022.110509
  • Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J. and Liu, J., 2019. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food hydrocolloids, 94, 80-92. https://doi.org/10.1016/j.foodhyd.2019.03.009
There are 48 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Sibel Selçuk Pekdemir 0000-0002-8643-7590

Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date August 20, 2023
Published in Issue Year 2023

Cite

APA Selçuk Pekdemir, S. (2023). Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1516-1524. https://doi.org/10.35414/akufemubid.1346816
AMA Selçuk Pekdemir S. Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1516-1524. doi:10.35414/akufemubid.1346816
Chicago Selçuk Pekdemir, Sibel. “Malva Neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1516-24. https://doi.org/10.35414/akufemubid.1346816.
EndNote Selçuk Pekdemir S (December 1, 2023) Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1516–1524.
IEEE S. Selçuk Pekdemir, “Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1516–1524, 2023, doi: 10.35414/akufemubid.1346816.
ISNAD Selçuk Pekdemir, Sibel. “Malva Neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1516-1524. https://doi.org/10.35414/akufemubid.1346816.
JAMA Selçuk Pekdemir S. Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1516–1524.
MLA Selçuk Pekdemir, Sibel. “Malva Neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1516-24, doi:10.35414/akufemubid.1346816.
Vancouver Selçuk Pekdemir S. Malva neglecta Leaves Extract / Biodegradable Diblock Copolymer Blend Biocomposites: Physicochemical and Antioxidant Properties. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1516-24.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.