Research Article
BibTex RIS Cite

Approximate Fixed Point Property for f and ψ Fuzyy Contraction Classes in Intuitionistic Fuzzy Normed Spaces

Year 2024, , 1102 - 1112, 01.10.2024
https://doi.org/10.35414/akufemubid.1414484

Abstract

In this paper, new definitions for intuitionistic fuzzy normed spaces of f and ψ contraction map classes in classical analysis will be given. In addition, it will be shown under which conditions these transformations provide the approximate fixed point property in intuitionistic fuzzy normed spaces. The results obtained will be supported with examples.

References

  • Abu Osman, M.T., 1983. Fuzzy metric spaces and fixed fuzzy set theorem, Bull. Malays. Math. Sci. Soc., 6(1), 1-4.
  • Abbas, M., Imdad, M. and Gopal, D., 2011. ψ-Weak contractions in fuzzy metric spaces. Iran. J. Fuzzy Syst., 8, 141-148.
  • Alaca, C., Turkoglu, D. and Yildiz, C. 2006. Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 29(5), 1073-1078 https://doi.org/10.1016/j.chaos.2005.08.066
  • Anoop, S. and Ravindran, K., 2011. On approximate fixed point property and fixed points. International Mathematical Forum, 6, pp. 281-288.
  • Atanassov, K., 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1): 87 – 96. https://doi.org/10.1016/S0165-0114(86)80034-3
  • Atanassov K., 1994. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, 137–142. https://doi.org/10.1016/0165-0114(94)90229-1
  • Banach., S., 1922. Sur les opérations dans les ensembles abstraits et leur applications aux equations intégrales. Fund. Math, 3: 49. https://doi.org/10.4064/fm-3-1-133-181
  • Berinde, M., 2006. Approximate fixed point theorems. Studia Univ. “Babeş-Bolyai” Mathematica, LI (1), 11-15.
  • Berinde, V., 2007. Iterative Approximation of Fixed Points: Springer, Berlin. https://doi.org/10.1109/SYNASC.2007.49
  • Beiranvand, A., Moradi, S., Omid, M. and Pazandeh. H., 2009. Two fixed-point theorems for special mappings., arXiv:0903.1504v1. math.FA.
  • Chang, C. L., 1968. Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24, 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  • Cho, Y. J., Rassias, T. M. and Saadati, R., 2018. Generalized distances and fixed point theorems in fuzzy metric spaces. In Fuzzy Operator Theory in Mathematical Analysis. Springer, Cham., 155-176. https://doi.org/10.1007/978-3-319-93501-0_6
  • Cona, L., 2023. Approximate fixed point property for intuitionistic fuzzy R-Contractıon map in intuitionistic fuzzy normed spaces. Explorations in Mathematical Analysis: A Collection of Diverse Papers, Prof. Dr. İlker Eryılmaz (Editor), Bidge Publications, 298-316.
  • Dey, D. and Saha, M., 2013. Approximate fixed point of reich operator. Acta Math. Univ. Comenianae, 82,119‐123.
  • Dey, D., Laha, A. K. and Saha, M., 2013. Approximate coincidence point of two nonlinear mappings. Journal of Mathematics, Vol 2013, Article ID 962058, 1-4. https://doi.org/10.1155/2013/962058
  • Di Bari, C. and Vetro, C., 2005. Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space. J. Fuzzy Math., 13, 973-982.
  • Dinda, B. ve Samanta, T., 2010. Intuitionistic fuzzy continuity and uniform convergence. Int. J. Open Problems Compt. Math, 3(1), 8-26.
  • El Naschie, M. S., 1998. On the uncertainty of cantorian geometry and two-slit experiment. Chaos, Solitons & Fractals, 9, 517–29. https://doi.org/10.1016/S0960-0779(97)00150-1
  • El Naschie, M.S., 2000. On the verifications of heterotic strings theory and E(oo) theory. Chaos, Solitons & Fractals, 11, 2397–407. https://doi.org/10.1016/S0960-0779(00)00108-9
  • El Naschie, M.S., 2005. On a fuzzy Khaler-Like manifold which is consistent with two slit experiment, Int. J. Nonlinear Sciences and Numerical Simulation, 6, 95-98. https://doi.org/10.1515/IJNSNS.2005.6.2.95
  • Ertürk, M., Karakaya, V., 2013. Correction: n‐tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces. Journal of Inequalities and Applications, 2013: 196. https://doi.org/10.1186/1029-242X-2013-196
  • Ertürk, M., Karakaya, V., 2014. n-tuplet coincidence point theorems in intuitionistic fuzzy normed spaces. Jour. Function Spaces Appl., Volume 2014, Article number 821342, pp. 1-14. https://doi.org/10.1155/2014/821342
  • Ertürk, M., Karakaya, V. and Mursaleen, M., 2022. Approximate fixed Point property in Ifns. TWMS Journal of Applied and Engineering Mathematics, 12(1), 329-346.
  • George, A., Veermani, P. 1997. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. https://doi.org/10.1016/S0165-0114(96)00207-2 Grabiec, M., 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  • Gregori, V. and Romaguera S., 2000. Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115, 485- 489. https://doi.org/10.1016/S0165-0114(98)00281-4
  • Gregori, V. and Sapena, A., 2002. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125, 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
  • Gregori V. and Romaguera, S., 2004. Charancterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144, 411-420. https://doi.org/10.1016/S0165-0114(03)00161-1
  • Gregori, V., Min ̃ana, J.J., Morillas, S. and Sapena, A., 2016. Characterizing a class of compltable fuzzy metric spaces. Topology and its Applications, 203, 3-11. https://doi.org/10.1016/j.topol.2015.12.070
  • Gregori, V. and Min ̃ana, J.J., 2016. On Fuzzy ψ-Contractive Sequences and Fixed Point Theorems. Fuzzy Sets Syst., 300, 93–101. https://doi.org/10.1016/j.fss.2015.12.010
  • Gregori, V., Min ̃ana J.J., Roig B. and Sapena, 2024. On completeness and fixed point theorems in fuzzy metric spaces. Mathematics, 12(2), 287. https://doi.org/10.3390/math12020287
  • Hadzic O., Pap, E., 2002. A fixed point theorem for multivalued mapping inpropbalitistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems, 127, 333-344. https://doi.org/10.1016/S0165-0114(01)00144-0
  • Karakaya, V., Şimşek, N., Ertürk, M. and Gürsoy, F., 2012. Statistical convergence of sequences of functions in intuitionistic fuzzy normed spaces. Abstract and Applied Analysis, Vol. 2012, Issue 2012, 1‐19. https://doi.org/10.1155/2012/157467
  • Kramosil, O., Michalek, J., 1975. Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.
  • Mahmood, Q., Shoaib, A., Rasham, T. and Arshad, M., 2019. Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces. Mathematics, 7(1), 56. https://doi.org/10.3390/math7010056
  • Matouskova, E. and Reich, S., 2003. Reexivity and approximate fixed points. Studia Math., 159, 403-415. https://doi.org/10.4064/sm159-3-5
  • Mihet, D., 2004. A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets and Systems, 144, 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1
  • Mihet, D., 2008. Fuzzy φ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159, 739-744. https://doi.org/10.1016/j.fss.2007.07.006
  • Mursaleen, M. and Mohiuddine, S., 2009. Nonlinear operators between intuitionistic fuzzy normed spaces and Frechet derivative. Chaos, Solitons & Fractals, 42(2), 1010-1015. https://doi.org/10.1016/j.chaos.2009.02.041
  • Mursaleen, M., Lohani, Q.M.D. and Mohiuddine, S.A., 2009. Intuitionistic fuzzy 2-Metric space and its completion. Chaos Solitons Fractals, 42(2), 1258-1265. https://doi.org/10.1016/j.chaos.2009.03.025
  • Mursaleen, M., Karakaya, V. and Mohiuddine, S. A., 2010. Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space. Abstr. Appl. Anal., Vol 2010, Article ID 131868, 1-14. https://doi.org/10.1155/2010/131868
  • Pacurar, M. and Pacurar, R.V., 2007. Approximate fixed point theorems for weak contractions on metric spaces. Carpathian Journal of Mathematics, 23, 149‐155.
  • Park, J.H., 2004. Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22, 1039‐1046. https://doi.org/10.1016/j.chaos.2004.02.051
  • Radu, V., 2002. Some remarks on the probabilistic contractions on fuzzy Menger spaces. Automat.Comput.Appl.Math., 11(2002)125131.
  • Saadati, R. and Vaezpour, S.M., 2005. Some results on fuzzy Banach spaces. J. Appl. Math. & Computing, 17, No.1-2, 475-484. https://doi.org/10.1007/BF02936069
  • Saadati, R. and Park, J. H., 2006. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals, 27(2), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  • Sangurlu Sezen, M and Turkoglu, D. 2017. Some fixed point theorems of (F,ϕ)- fuzzy contractıons in fuzzy metric spaces. Journal of Inequalities and Special Functions, 4(2017), 10-20.
  • Sedghi, S., Shobkolaei, N., Došenović, T. and Radenović, S., 2018. Suzuki-type of common fixed point theorems in fuzzy metric spaces. Mathematica Slovaca, 68(2), 451-462. https://doi.org/10.1515/ms-2017-0115
  • Schwiezer, B. and Sklar, A., 1960. Statistical metric spaces. Pacific Journal of Mathematics, 10, 314-334. https://doi.org/10.2140/pjm.1960.10.313
  • Sola Erduran, F., Yildiz, C. and Kutukcu, S. 2014. A common fixed point theorem in weak nonArchimedean intuitionistic fuzzy metric spaces. International Journal of Open Compt. Math., 7, 1-15. https://doi.org/10.12816/0007248
  • Sola Erduran, F., 2020. Sabit fuzzy nokta teoremleri, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (3), 641-650. https://doi.org/10.17714/gumusfenbil.621967
  • Tiwari, V. and Som, T., 2019. Fixed points for (ϕ, ψ)-contractions in Menger probabilistic metric spaces. In Advances in Mathematical Methods and High Performance Computing. Springer, Cham.,3, 201-208. https://doi.org/10.1007/978-3-030-02487-1_12
  • Turkoglu, D., Alaca, C., Cho, Y. J. and Yildiz, C. 2006. Common fixed point theorems in intuitionistic fuzzy metric spaces. Journal of Applied Mathematics and Computing, 22, 411-424. https://doi.org/10.1007/BF02896489
  • Zadeh, L. A., 1965. Fuzzy sets, Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Wang, G., Zhu, C. and Wu, Z., 2019. Some new coupled fixed point theorems in partially ordered complete Menger probabilistic G-metric spaces. Journal of Computational Analysis & Applications, 26, 326.
  • Wardowski, D., 2013. Fuzzy contractive mappings and fixed Points in fuzzy metric spaces, Fuzzy Sets Syst., 222, 108-114. https://doi.org/10.1016/j.fss.2013.01.012

Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği

Year 2024, , 1102 - 1112, 01.10.2024
https://doi.org/10.35414/akufemubid.1414484

Abstract

Bu çalışmada, klasik analizde ve bulanık metrik uzaylarda tanımlı f ve ψ daralma dönüşüm sınıflarının sezgisel bulanık normlu uzaylar için yeni versiyonları tanımlanacaktır. Ayrıca, bu dönüşümlerin sezgisel bulanık normlu uzaylarda hangi şartlar altında yaklaşık sabit nokta özelliğini sağladığı gösterilecektir. Bulunan sonuç örneklerle desteklenecektir.

References

  • Abu Osman, M.T., 1983. Fuzzy metric spaces and fixed fuzzy set theorem, Bull. Malays. Math. Sci. Soc., 6(1), 1-4.
  • Abbas, M., Imdad, M. and Gopal, D., 2011. ψ-Weak contractions in fuzzy metric spaces. Iran. J. Fuzzy Syst., 8, 141-148.
  • Alaca, C., Turkoglu, D. and Yildiz, C. 2006. Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 29(5), 1073-1078 https://doi.org/10.1016/j.chaos.2005.08.066
  • Anoop, S. and Ravindran, K., 2011. On approximate fixed point property and fixed points. International Mathematical Forum, 6, pp. 281-288.
  • Atanassov, K., 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1): 87 – 96. https://doi.org/10.1016/S0165-0114(86)80034-3
  • Atanassov K., 1994. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, 137–142. https://doi.org/10.1016/0165-0114(94)90229-1
  • Banach., S., 1922. Sur les opérations dans les ensembles abstraits et leur applications aux equations intégrales. Fund. Math, 3: 49. https://doi.org/10.4064/fm-3-1-133-181
  • Berinde, M., 2006. Approximate fixed point theorems. Studia Univ. “Babeş-Bolyai” Mathematica, LI (1), 11-15.
  • Berinde, V., 2007. Iterative Approximation of Fixed Points: Springer, Berlin. https://doi.org/10.1109/SYNASC.2007.49
  • Beiranvand, A., Moradi, S., Omid, M. and Pazandeh. H., 2009. Two fixed-point theorems for special mappings., arXiv:0903.1504v1. math.FA.
  • Chang, C. L., 1968. Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24, 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  • Cho, Y. J., Rassias, T. M. and Saadati, R., 2018. Generalized distances and fixed point theorems in fuzzy metric spaces. In Fuzzy Operator Theory in Mathematical Analysis. Springer, Cham., 155-176. https://doi.org/10.1007/978-3-319-93501-0_6
  • Cona, L., 2023. Approximate fixed point property for intuitionistic fuzzy R-Contractıon map in intuitionistic fuzzy normed spaces. Explorations in Mathematical Analysis: A Collection of Diverse Papers, Prof. Dr. İlker Eryılmaz (Editor), Bidge Publications, 298-316.
  • Dey, D. and Saha, M., 2013. Approximate fixed point of reich operator. Acta Math. Univ. Comenianae, 82,119‐123.
  • Dey, D., Laha, A. K. and Saha, M., 2013. Approximate coincidence point of two nonlinear mappings. Journal of Mathematics, Vol 2013, Article ID 962058, 1-4. https://doi.org/10.1155/2013/962058
  • Di Bari, C. and Vetro, C., 2005. Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space. J. Fuzzy Math., 13, 973-982.
  • Dinda, B. ve Samanta, T., 2010. Intuitionistic fuzzy continuity and uniform convergence. Int. J. Open Problems Compt. Math, 3(1), 8-26.
  • El Naschie, M. S., 1998. On the uncertainty of cantorian geometry and two-slit experiment. Chaos, Solitons & Fractals, 9, 517–29. https://doi.org/10.1016/S0960-0779(97)00150-1
  • El Naschie, M.S., 2000. On the verifications of heterotic strings theory and E(oo) theory. Chaos, Solitons & Fractals, 11, 2397–407. https://doi.org/10.1016/S0960-0779(00)00108-9
  • El Naschie, M.S., 2005. On a fuzzy Khaler-Like manifold which is consistent with two slit experiment, Int. J. Nonlinear Sciences and Numerical Simulation, 6, 95-98. https://doi.org/10.1515/IJNSNS.2005.6.2.95
  • Ertürk, M., Karakaya, V., 2013. Correction: n‐tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces. Journal of Inequalities and Applications, 2013: 196. https://doi.org/10.1186/1029-242X-2013-196
  • Ertürk, M., Karakaya, V., 2014. n-tuplet coincidence point theorems in intuitionistic fuzzy normed spaces. Jour. Function Spaces Appl., Volume 2014, Article number 821342, pp. 1-14. https://doi.org/10.1155/2014/821342
  • Ertürk, M., Karakaya, V. and Mursaleen, M., 2022. Approximate fixed Point property in Ifns. TWMS Journal of Applied and Engineering Mathematics, 12(1), 329-346.
  • George, A., Veermani, P. 1997. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. https://doi.org/10.1016/S0165-0114(96)00207-2 Grabiec, M., 1988. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  • Gregori, V. and Romaguera S., 2000. Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115, 485- 489. https://doi.org/10.1016/S0165-0114(98)00281-4
  • Gregori, V. and Sapena, A., 2002. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125, 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
  • Gregori V. and Romaguera, S., 2004. Charancterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144, 411-420. https://doi.org/10.1016/S0165-0114(03)00161-1
  • Gregori, V., Min ̃ana, J.J., Morillas, S. and Sapena, A., 2016. Characterizing a class of compltable fuzzy metric spaces. Topology and its Applications, 203, 3-11. https://doi.org/10.1016/j.topol.2015.12.070
  • Gregori, V. and Min ̃ana, J.J., 2016. On Fuzzy ψ-Contractive Sequences and Fixed Point Theorems. Fuzzy Sets Syst., 300, 93–101. https://doi.org/10.1016/j.fss.2015.12.010
  • Gregori, V., Min ̃ana J.J., Roig B. and Sapena, 2024. On completeness and fixed point theorems in fuzzy metric spaces. Mathematics, 12(2), 287. https://doi.org/10.3390/math12020287
  • Hadzic O., Pap, E., 2002. A fixed point theorem for multivalued mapping inpropbalitistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems, 127, 333-344. https://doi.org/10.1016/S0165-0114(01)00144-0
  • Karakaya, V., Şimşek, N., Ertürk, M. and Gürsoy, F., 2012. Statistical convergence of sequences of functions in intuitionistic fuzzy normed spaces. Abstract and Applied Analysis, Vol. 2012, Issue 2012, 1‐19. https://doi.org/10.1155/2012/157467
  • Kramosil, O., Michalek, J., 1975. Fuzzy metric and statistical metric spaces. Kybernetica, 11, 326-334.
  • Mahmood, Q., Shoaib, A., Rasham, T. and Arshad, M., 2019. Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces. Mathematics, 7(1), 56. https://doi.org/10.3390/math7010056
  • Matouskova, E. and Reich, S., 2003. Reexivity and approximate fixed points. Studia Math., 159, 403-415. https://doi.org/10.4064/sm159-3-5
  • Mihet, D., 2004. A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets and Systems, 144, 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1
  • Mihet, D., 2008. Fuzzy φ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159, 739-744. https://doi.org/10.1016/j.fss.2007.07.006
  • Mursaleen, M. and Mohiuddine, S., 2009. Nonlinear operators between intuitionistic fuzzy normed spaces and Frechet derivative. Chaos, Solitons & Fractals, 42(2), 1010-1015. https://doi.org/10.1016/j.chaos.2009.02.041
  • Mursaleen, M., Lohani, Q.M.D. and Mohiuddine, S.A., 2009. Intuitionistic fuzzy 2-Metric space and its completion. Chaos Solitons Fractals, 42(2), 1258-1265. https://doi.org/10.1016/j.chaos.2009.03.025
  • Mursaleen, M., Karakaya, V. and Mohiuddine, S. A., 2010. Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space. Abstr. Appl. Anal., Vol 2010, Article ID 131868, 1-14. https://doi.org/10.1155/2010/131868
  • Pacurar, M. and Pacurar, R.V., 2007. Approximate fixed point theorems for weak contractions on metric spaces. Carpathian Journal of Mathematics, 23, 149‐155.
  • Park, J.H., 2004. Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22, 1039‐1046. https://doi.org/10.1016/j.chaos.2004.02.051
  • Radu, V., 2002. Some remarks on the probabilistic contractions on fuzzy Menger spaces. Automat.Comput.Appl.Math., 11(2002)125131.
  • Saadati, R. and Vaezpour, S.M., 2005. Some results on fuzzy Banach spaces. J. Appl. Math. & Computing, 17, No.1-2, 475-484. https://doi.org/10.1007/BF02936069
  • Saadati, R. and Park, J. H., 2006. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals, 27(2), 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  • Sangurlu Sezen, M and Turkoglu, D. 2017. Some fixed point theorems of (F,ϕ)- fuzzy contractıons in fuzzy metric spaces. Journal of Inequalities and Special Functions, 4(2017), 10-20.
  • Sedghi, S., Shobkolaei, N., Došenović, T. and Radenović, S., 2018. Suzuki-type of common fixed point theorems in fuzzy metric spaces. Mathematica Slovaca, 68(2), 451-462. https://doi.org/10.1515/ms-2017-0115
  • Schwiezer, B. and Sklar, A., 1960. Statistical metric spaces. Pacific Journal of Mathematics, 10, 314-334. https://doi.org/10.2140/pjm.1960.10.313
  • Sola Erduran, F., Yildiz, C. and Kutukcu, S. 2014. A common fixed point theorem in weak nonArchimedean intuitionistic fuzzy metric spaces. International Journal of Open Compt. Math., 7, 1-15. https://doi.org/10.12816/0007248
  • Sola Erduran, F., 2020. Sabit fuzzy nokta teoremleri, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (3), 641-650. https://doi.org/10.17714/gumusfenbil.621967
  • Tiwari, V. and Som, T., 2019. Fixed points for (ϕ, ψ)-contractions in Menger probabilistic metric spaces. In Advances in Mathematical Methods and High Performance Computing. Springer, Cham.,3, 201-208. https://doi.org/10.1007/978-3-030-02487-1_12
  • Turkoglu, D., Alaca, C., Cho, Y. J. and Yildiz, C. 2006. Common fixed point theorems in intuitionistic fuzzy metric spaces. Journal of Applied Mathematics and Computing, 22, 411-424. https://doi.org/10.1007/BF02896489
  • Zadeh, L. A., 1965. Fuzzy sets, Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Wang, G., Zhu, C. and Wu, Z., 2019. Some new coupled fixed point theorems in partially ordered complete Menger probabilistic G-metric spaces. Journal of Computational Analysis & Applications, 26, 326.
  • Wardowski, D., 2013. Fuzzy contractive mappings and fixed Points in fuzzy metric spaces, Fuzzy Sets Syst., 222, 108-114. https://doi.org/10.1016/j.fss.2013.01.012
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Topology, Pure Mathematics (Other)
Journal Section Articles
Authors

Lale Cona 0000-0002-2744-1960

Gizem Güzel Tan This is me 0000-0002-7302-8309

Early Pub Date September 10, 2024
Publication Date October 1, 2024
Submission Date January 4, 2024
Acceptance Date June 29, 2024
Published in Issue Year 2024

Cite

APA Cona, L., & Güzel Tan, G. (2024). Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(5), 1102-1112. https://doi.org/10.35414/akufemubid.1414484
AMA Cona L, Güzel Tan G. Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2024;24(5):1102-1112. doi:10.35414/akufemubid.1414484
Chicago Cona, Lale, and Gizem Güzel Tan. “Sezgisel Bulanık Normlu Uzaylarda Sezgisel F Ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 5 (October 2024): 1102-12. https://doi.org/10.35414/akufemubid.1414484.
EndNote Cona L, Güzel Tan G (October 1, 2024) Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 5 1102–1112.
IEEE L. Cona and G. Güzel Tan, “Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, pp. 1102–1112, 2024, doi: 10.35414/akufemubid.1414484.
ISNAD Cona, Lale - Güzel Tan, Gizem. “Sezgisel Bulanık Normlu Uzaylarda Sezgisel F Ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/5 (October 2024), 1102-1112. https://doi.org/10.35414/akufemubid.1414484.
JAMA Cona L, Güzel Tan G. Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1102–1112.
MLA Cona, Lale and Gizem Güzel Tan. “Sezgisel Bulanık Normlu Uzaylarda Sezgisel F Ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, 2024, pp. 1102-1, doi:10.35414/akufemubid.1414484.
Vancouver Cona L, Güzel Tan G. Sezgisel Bulanık Normlu Uzaylarda Sezgisel f ve ψ Bulanık Daralma Dönüşüm Sınıfları için Yaklaşık Sabit Nokta Özelliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(5):1102-1.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.