C-Bant Heliks TWT’de Destek Çubuğu Halkaları Kullanılarak Empedans Eşleştirilmesi
Year 2024,
, 1046 - 1052, 01.10.2024
Ferhat Bozduman
,
Lütfi Öksüz
Abstract
C bant aralığında çalışan bir heliks (Yavaş Dalga Yapısı SWS) ilerleyen dalga tüpü (TWT) CST yazılımı kullanılarak tasarlanmıştır. Modellemeye dayalı olarak TWT bileşenleri üretildi. Empedans hattını eşleştirmek ve montaj kolaylığı sağlamak için iletken destek çubuk halkaları kullanıldı. Modellemeye göre sinyal kazancı 30 dB olarak belirlendi. Ayrıca yazılım yardımı ile montaj halkalarının empedans iyileştirmelerine etkisini gözlemlemek için Zaman Tanım Alanlı Reflektometre (TDR) analizleri yapılmıştır. Sonuç olarak C bant sarmal TWT sistemlerinde daha önce kullanılmamış olan destek çubuk halkalarının montaj kolaylığını ve empedans iyileştirmesini olumlu yönde etkilediği tespit edilmiştir.
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma 1140075 numaralı Tubitak projesi tarafından desteklenmiştir. Ayrıca deneysel ve teorik çalışmalara ev sahipliği yapan PlazmaTek firmasına desteklerinden dolayı teşekkür ederiz.
References
- Carter, R.G., 2018. Microwave and RF Vacuum Electronic Power Sources. ed. S.C. Cripps, Press, UK: Cambridge University, 508-509.
Deng, W.K., Hu, Y.L., Li, G.B., Yang, Z.H., Li, B. and Huang, T., 2023. Performance Improvement of Helix Traveling- Wave Tubes Based on Multiobjective Optimization Technique. IEEE Transactions Electron Devices, 70, 2840-2845.
https://doi.org/10.1109/TED.2022.3207711
- Edgecombe, C., 1993. Gyrotron Oscillators. ed. C J Edgecombe, London: CRC Press, 40-41.
Gilmour, A.S., 2020. Microwave and millimeter-wave vacuum electron devices: inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. ed. J Gomes, Boston: Artech House, 357-358.
- Harper, R. and Puri, M.P., 1986. Heat transfer and power capabilities of EFH helix TWT's. International Electron Devices Meeting, 498-500.
Lakshminarasimhan, R., Venkatesh, V., Ravindra, M. and Nanjundaswamy, T.S., 2011. Development of 60 W C-Band TWT for space. IEEE International Vacuum Electronics Conference (IVEC), (Bangalore, Karnataka, India: IEEE), 77-78.
https://doi.org/10.1109/IVEC.2011.5746883
- Paoloni, C., Gamzina, D., Letizia, R., Zheng, Y. and Luhmann, N.C., 2021. Millimeter wave traveling wave tubes for the 21st Century. Journal of Electromagnetic Waves and Applications, 35, 567-603. https://doi.org/10.1080/09205071.2020.1848643
- Peebles, P.Z., 1998. Radar Principles. New York: Wiley, 1.
Prakash, D.J., Dwyer, M.M., Argudo, M.M., Debasu, M.L., Dibaji, H., Lagally, M.G., Van Der Weide, D.W. and Cavallo, F., 2021. Self-Winding Helices as Slow-Wave Structures for Sub-Millimeter Traveling-Wave Tubes. ACS Nano, 15, 1229-1239.
https://doi.org/10.1021/acsnano.0c08296
- Putz, J.L. and Cascone, M.J., 1979. Effective Use of Dispersion Shaping in Broadband Helix TWT Circuits. International Electron Devices Meeting, 422-424.
- Santos, G.M.S., Xavier, C.C. and Motta, C.C., 2011. A Study of a PPM Focusing System for a C Band Power TWT. International Conference on Microwave and Optoelectronics, Natal, Brazil: IEEE, 941-945. https://doi.org/10.1109/IMOC.2011.6169399
- Trubetskov, D.I. and Vdovina, G.M., 2020. Traveling wave tubes: a history of people and fates. Physics-Uspekhi,63,503. https://doi.org/10.3367/ufne.2019.12.038707
- Whitaker, J.C., 2001. The resource handbook of electronics. ed. J C Whitaker, Boca Raton, Fla: CRC Press, 45-46.
Wong, P., Zhang, P. and Luginsland, J., 2020. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2, 1-19. https://doi.org/10.1088/2516-1067/ab9730
- Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Yue, L., Xu, J., Zhao, G., Park, G.S. and Wei, Y., 2020. Design and Experimental Measurement of Input and Output Couplers for a 6–18-GHz High-Power Helix Traveling Wave Tube Amplifier. IEEE Transactions Electron Devices,67,1826-1831. https://doi.org/10.1109/TED.2020.2975645
- Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Fang, S., Yue, L., Xu, J., Zhao, G., Wang, W. and Wei, Y., 2020. Design of a Pseudoperiodic Slow Wave Structure for a 6-kW-Level Broadband Helix Traveling-Wave Tube Amplifier. IEEE Transactions Plasma Science, 48, 1910-1916.
https://doi.org/10.1109/TPS.2020.2971149
Impedance Matching Using Support Rod Rings in C-Band Helix TWT
Year 2024,
, 1046 - 1052, 01.10.2024
Ferhat Bozduman
,
Lütfi Öksüz
Abstract
A helical (Slow Wave Structure SWS) traveling wave tube (TWT) operating in the C bandwidth was designed using CST software. Based on modelling, TWT components were produced. Conductor support rod rings were used to matching the impedance line and provide ease of assembly. According to the modelling, the signal gain was determined as 30 dB. In addition, Time Domain Reflectometer (TDR) analyses were performed to observe the effect of mounting rings on impedance improvements with the help of software. As a result, it has been determined that the support rod rings, which have not been used before in C band helix TWT systems, positively affect the ease of assembly and impedance improvement.
Supporting Institution
TÜBİTAK
Thanks
This work was supported by Tubitak project number 1140075. We would also like to thank PlazmaTek company, which hosts experimental and theoretical studies, for their support.
References
- Carter, R.G., 2018. Microwave and RF Vacuum Electronic Power Sources. ed. S.C. Cripps, Press, UK: Cambridge University, 508-509.
Deng, W.K., Hu, Y.L., Li, G.B., Yang, Z.H., Li, B. and Huang, T., 2023. Performance Improvement of Helix Traveling- Wave Tubes Based on Multiobjective Optimization Technique. IEEE Transactions Electron Devices, 70, 2840-2845.
https://doi.org/10.1109/TED.2022.3207711
- Edgecombe, C., 1993. Gyrotron Oscillators. ed. C J Edgecombe, London: CRC Press, 40-41.
Gilmour, A.S., 2020. Microwave and millimeter-wave vacuum electron devices: inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. ed. J Gomes, Boston: Artech House, 357-358.
- Harper, R. and Puri, M.P., 1986. Heat transfer and power capabilities of EFH helix TWT's. International Electron Devices Meeting, 498-500.
Lakshminarasimhan, R., Venkatesh, V., Ravindra, M. and Nanjundaswamy, T.S., 2011. Development of 60 W C-Band TWT for space. IEEE International Vacuum Electronics Conference (IVEC), (Bangalore, Karnataka, India: IEEE), 77-78.
https://doi.org/10.1109/IVEC.2011.5746883
- Paoloni, C., Gamzina, D., Letizia, R., Zheng, Y. and Luhmann, N.C., 2021. Millimeter wave traveling wave tubes for the 21st Century. Journal of Electromagnetic Waves and Applications, 35, 567-603. https://doi.org/10.1080/09205071.2020.1848643
- Peebles, P.Z., 1998. Radar Principles. New York: Wiley, 1.
Prakash, D.J., Dwyer, M.M., Argudo, M.M., Debasu, M.L., Dibaji, H., Lagally, M.G., Van Der Weide, D.W. and Cavallo, F., 2021. Self-Winding Helices as Slow-Wave Structures for Sub-Millimeter Traveling-Wave Tubes. ACS Nano, 15, 1229-1239.
https://doi.org/10.1021/acsnano.0c08296
- Putz, J.L. and Cascone, M.J., 1979. Effective Use of Dispersion Shaping in Broadband Helix TWT Circuits. International Electron Devices Meeting, 422-424.
- Santos, G.M.S., Xavier, C.C. and Motta, C.C., 2011. A Study of a PPM Focusing System for a C Band Power TWT. International Conference on Microwave and Optoelectronics, Natal, Brazil: IEEE, 941-945. https://doi.org/10.1109/IMOC.2011.6169399
- Trubetskov, D.I. and Vdovina, G.M., 2020. Traveling wave tubes: a history of people and fates. Physics-Uspekhi,63,503. https://doi.org/10.3367/ufne.2019.12.038707
- Whitaker, J.C., 2001. The resource handbook of electronics. ed. J C Whitaker, Boca Raton, Fla: CRC Press, 45-46.
Wong, P., Zhang, P. and Luginsland, J., 2020. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2, 1-19. https://doi.org/10.1088/2516-1067/ab9730
- Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Yue, L., Xu, J., Zhao, G., Park, G.S. and Wei, Y., 2020. Design and Experimental Measurement of Input and Output Couplers for a 6–18-GHz High-Power Helix Traveling Wave Tube Amplifier. IEEE Transactions Electron Devices,67,1826-1831. https://doi.org/10.1109/TED.2020.2975645
- Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Fang, S., Yue, L., Xu, J., Zhao, G., Wang, W. and Wei, Y., 2020. Design of a Pseudoperiodic Slow Wave Structure for a 6-kW-Level Broadband Helix Traveling-Wave Tube Amplifier. IEEE Transactions Plasma Science, 48, 1910-1916.
https://doi.org/10.1109/TPS.2020.2971149