Research Article
BibTex RIS Cite

C-Bant Heliks TWT’de Destek Çubuğu Halkaları Kullanılarak Empedans Eşleştirilmesi

Year 2024, , 1046 - 1052, 01.10.2024
https://doi.org/10.35414/akufemubid.1469586

Abstract

C bant aralığında çalışan bir heliks (Yavaş Dalga Yapısı SWS) ilerleyen dalga tüpü (TWT) CST yazılımı kullanılarak tasarlanmıştır. Modellemeye dayalı olarak TWT bileşenleri üretildi. Empedans hattını eşleştirmek ve montaj kolaylığı sağlamak için iletken destek çubuk halkaları kullanıldı. Modellemeye göre sinyal kazancı 30 dB olarak belirlendi. Ayrıca yazılım yardımı ile montaj halkalarının empedans iyileştirmelerine etkisini gözlemlemek için Zaman Tanım Alanlı Reflektometre (TDR) analizleri yapılmıştır. Sonuç olarak C bant sarmal TWT sistemlerinde daha önce kullanılmamış olan destek çubuk halkalarının montaj kolaylığını ve empedans iyileştirmesini olumlu yönde etkilediği tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1140075

Thanks

Bu çalışma 1140075 numaralı Tubitak projesi tarafından desteklenmiştir. Ayrıca deneysel ve teorik çalışmalara ev sahipliği yapan PlazmaTek firmasına desteklerinden dolayı teşekkür ederiz.

References

  • Carter, R.G., 2018. Microwave and RF Vacuum Electronic Power Sources. ed. S.C. Cripps, Press, UK: Cambridge University, 508-509. Deng, W.K., Hu, Y.L., Li, G.B., Yang, Z.H., Li, B. and Huang, T., 2023. Performance Improvement of Helix Traveling- Wave Tubes Based on Multiobjective Optimization Technique. IEEE Transactions Electron Devices, 70, 2840-2845. https://doi.org/10.1109/TED.2022.3207711
  • Edgecombe, C., 1993. Gyrotron Oscillators. ed. C J Edgecombe, London: CRC Press, 40-41. Gilmour, A.S., 2020. Microwave and millimeter-wave vacuum electron devices: inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. ed. J Gomes, Boston: Artech House, 357-358.
  • Harper, R. and Puri, M.P., 1986. Heat transfer and power capabilities of EFH helix TWT's. International Electron Devices Meeting, 498-500. Lakshminarasimhan, R., Venkatesh, V., Ravindra, M. and Nanjundaswamy, T.S., 2011. Development of 60 W C-Band TWT for space. IEEE International Vacuum Electronics Conference (IVEC), (Bangalore, Karnataka, India: IEEE), 77-78. https://doi.org/10.1109/IVEC.2011.5746883
  • Paoloni, C., Gamzina, D., Letizia, R., Zheng, Y. and Luhmann, N.C., 2021. Millimeter wave traveling wave tubes for the 21st Century. Journal of Electromagnetic Waves and Applications, 35, 567-603. https://doi.org/10.1080/09205071.2020.1848643
  • Peebles, P.Z., 1998. Radar Principles. New York: Wiley, 1. Prakash, D.J., Dwyer, M.M., Argudo, M.M., Debasu, M.L., Dibaji, H., Lagally, M.G., Van Der Weide, D.W. and Cavallo, F., 2021. Self-Winding Helices as Slow-Wave Structures for Sub-Millimeter Traveling-Wave Tubes. ACS Nano, 15, 1229-1239. https://doi.org/10.1021/acsnano.0c08296
  • Putz, J.L. and Cascone, M.J., 1979. Effective Use of Dispersion Shaping in Broadband Helix TWT Circuits. International Electron Devices Meeting, 422-424.
  • Santos, G.M.S., Xavier, C.C. and Motta, C.C., 2011. A Study of a PPM Focusing System for a C Band Power TWT. International Conference on Microwave and Optoelectronics, Natal, Brazil: IEEE, 941-945. https://doi.org/10.1109/IMOC.2011.6169399
  • Trubetskov, D.I. and Vdovina, G.M., 2020. Traveling wave tubes: a history of people and fates. Physics-Uspekhi,63,503. https://doi.org/10.3367/ufne.2019.12.038707
  • Whitaker, J.C., 2001. The resource handbook of electronics. ed. J C Whitaker, Boca Raton, Fla: CRC Press, 45-46. Wong, P., Zhang, P. and Luginsland, J., 2020. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2, 1-19. https://doi.org/10.1088/2516-1067/ab9730
  • Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Yue, L., Xu, J., Zhao, G., Park, G.S. and Wei, Y., 2020. Design and Experimental Measurement of Input and Output Couplers for a 6–18-GHz High-Power Helix Traveling Wave Tube Amplifier. IEEE Transactions Electron Devices,67,1826-1831. https://doi.org/10.1109/TED.2020.2975645
  • Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Fang, S., Yue, L., Xu, J., Zhao, G., Wang, W. and Wei, Y., 2020. Design of a Pseudoperiodic Slow Wave Structure for a 6-kW-Level Broadband Helix Traveling-Wave Tube Amplifier. IEEE Transactions Plasma Science, 48, 1910-1916. https://doi.org/10.1109/TPS.2020.2971149

Impedance Matching Using Support Rod Rings in C-Band Helix TWT

Year 2024, , 1046 - 1052, 01.10.2024
https://doi.org/10.35414/akufemubid.1469586

Abstract

A helical (Slow Wave Structure SWS) traveling wave tube (TWT) operating in the C bandwidth was designed using CST software. Based on modelling, TWT components were produced. Conductor support rod rings were used to matching the impedance line and provide ease of assembly. According to the modelling, the signal gain was determined as 30 dB. In addition, Time Domain Reflectometer (TDR) analyses were performed to observe the effect of mounting rings on impedance improvements with the help of software. As a result, it has been determined that the support rod rings, which have not been used before in C band helix TWT systems, positively affect the ease of assembly and impedance improvement.

Supporting Institution

TÜBİTAK

Project Number

1140075

Thanks

This work was supported by Tubitak project number 1140075. We would also like to thank PlazmaTek company, which hosts experimental and theoretical studies, for their support.

References

  • Carter, R.G., 2018. Microwave and RF Vacuum Electronic Power Sources. ed. S.C. Cripps, Press, UK: Cambridge University, 508-509. Deng, W.K., Hu, Y.L., Li, G.B., Yang, Z.H., Li, B. and Huang, T., 2023. Performance Improvement of Helix Traveling- Wave Tubes Based on Multiobjective Optimization Technique. IEEE Transactions Electron Devices, 70, 2840-2845. https://doi.org/10.1109/TED.2022.3207711
  • Edgecombe, C., 1993. Gyrotron Oscillators. ed. C J Edgecombe, London: CRC Press, 40-41. Gilmour, A.S., 2020. Microwave and millimeter-wave vacuum electron devices: inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. ed. J Gomes, Boston: Artech House, 357-358.
  • Harper, R. and Puri, M.P., 1986. Heat transfer and power capabilities of EFH helix TWT's. International Electron Devices Meeting, 498-500. Lakshminarasimhan, R., Venkatesh, V., Ravindra, M. and Nanjundaswamy, T.S., 2011. Development of 60 W C-Band TWT for space. IEEE International Vacuum Electronics Conference (IVEC), (Bangalore, Karnataka, India: IEEE), 77-78. https://doi.org/10.1109/IVEC.2011.5746883
  • Paoloni, C., Gamzina, D., Letizia, R., Zheng, Y. and Luhmann, N.C., 2021. Millimeter wave traveling wave tubes for the 21st Century. Journal of Electromagnetic Waves and Applications, 35, 567-603. https://doi.org/10.1080/09205071.2020.1848643
  • Peebles, P.Z., 1998. Radar Principles. New York: Wiley, 1. Prakash, D.J., Dwyer, M.M., Argudo, M.M., Debasu, M.L., Dibaji, H., Lagally, M.G., Van Der Weide, D.W. and Cavallo, F., 2021. Self-Winding Helices as Slow-Wave Structures for Sub-Millimeter Traveling-Wave Tubes. ACS Nano, 15, 1229-1239. https://doi.org/10.1021/acsnano.0c08296
  • Putz, J.L. and Cascone, M.J., 1979. Effective Use of Dispersion Shaping in Broadband Helix TWT Circuits. International Electron Devices Meeting, 422-424.
  • Santos, G.M.S., Xavier, C.C. and Motta, C.C., 2011. A Study of a PPM Focusing System for a C Band Power TWT. International Conference on Microwave and Optoelectronics, Natal, Brazil: IEEE, 941-945. https://doi.org/10.1109/IMOC.2011.6169399
  • Trubetskov, D.I. and Vdovina, G.M., 2020. Traveling wave tubes: a history of people and fates. Physics-Uspekhi,63,503. https://doi.org/10.3367/ufne.2019.12.038707
  • Whitaker, J.C., 2001. The resource handbook of electronics. ed. J C Whitaker, Boca Raton, Fla: CRC Press, 45-46. Wong, P., Zhang, P. and Luginsland, J., 2020. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2, 1-19. https://doi.org/10.1088/2516-1067/ab9730
  • Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Yue, L., Xu, J., Zhao, G., Park, G.S. and Wei, Y., 2020. Design and Experimental Measurement of Input and Output Couplers for a 6–18-GHz High-Power Helix Traveling Wave Tube Amplifier. IEEE Transactions Electron Devices,67,1826-1831. https://doi.org/10.1109/TED.2020.2975645
  • Wu, G., Yin, H., Xu, Z., Yang, R., Lei, X., Li, Q., Fang, S., Yue, L., Xu, J., Zhao, G., Wang, W. and Wei, Y., 2020. Design of a Pseudoperiodic Slow Wave Structure for a 6-kW-Level Broadband Helix Traveling-Wave Tube Amplifier. IEEE Transactions Plasma Science, 48, 1910-1916. https://doi.org/10.1109/TPS.2020.2971149
There are 11 citations in total.

Details

Primary Language English
Subjects Plasma Physics; Fusion Plasmas; Electrical Discharges, Particle and High Energy Physics (Other)
Journal Section Articles
Authors

Ferhat Bozduman 0000-0002-2669-021X

Lütfi Öksüz 0000-0002-6207-7308

Project Number 1140075
Early Pub Date September 10, 2024
Publication Date October 1, 2024
Submission Date April 17, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024

Cite

APA Bozduman, F., & Öksüz, L. (2024). Impedance Matching Using Support Rod Rings in C-Band Helix TWT. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(5), 1046-1052. https://doi.org/10.35414/akufemubid.1469586
AMA Bozduman F, Öksüz L. Impedance Matching Using Support Rod Rings in C-Band Helix TWT. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2024;24(5):1046-1052. doi:10.35414/akufemubid.1469586
Chicago Bozduman, Ferhat, and Lütfi Öksüz. “Impedance Matching Using Support Rod Rings in C-Band Helix TWT”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 5 (October 2024): 1046-52. https://doi.org/10.35414/akufemubid.1469586.
EndNote Bozduman F, Öksüz L (October 1, 2024) Impedance Matching Using Support Rod Rings in C-Band Helix TWT. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 5 1046–1052.
IEEE F. Bozduman and L. Öksüz, “Impedance Matching Using Support Rod Rings in C-Band Helix TWT”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, pp. 1046–1052, 2024, doi: 10.35414/akufemubid.1469586.
ISNAD Bozduman, Ferhat - Öksüz, Lütfi. “Impedance Matching Using Support Rod Rings in C-Band Helix TWT”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/5 (October 2024), 1046-1052. https://doi.org/10.35414/akufemubid.1469586.
JAMA Bozduman F, Öksüz L. Impedance Matching Using Support Rod Rings in C-Band Helix TWT. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1046–1052.
MLA Bozduman, Ferhat and Lütfi Öksüz. “Impedance Matching Using Support Rod Rings in C-Band Helix TWT”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, 2024, pp. 1046-52, doi:10.35414/akufemubid.1469586.
Vancouver Bozduman F, Öksüz L. Impedance Matching Using Support Rod Rings in C-Band Helix TWT. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(5):1046-52.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.