Research Article
BibTex RIS Cite

Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu

Year 2021, , 1247 - 1258, 31.10.2021
https://doi.org/10.35414/akufemubid.889646

Abstract

Bu çalışmada, yara örtü materyallerinde antimikrobiyal ajan olarak kullanılabilecek jelatin kaplı gümüş nanopartiküller (J-AgNPs) sentezlemek için jelatin proteini hem indirgeme hem de kaplama ajanı olarak kullanılmıştır. J-AgNPs sentezi için, %1’lik jelatin çözeltisi ile belirli derişimde AgNO3 çözeltisi karıştırılmış ve karışım 2 saat boyunca 100 °C’de inkübe edilmiştir. Jelatin çözeltisi eklenen gümüş nitrat çözeltilerinde gözlemlenen sarı renge-kahve renge dönüşüm, Ag(I) iyonunun Ag(0)’a indirgenmiş olduğunu göstermektedir. Bu renk değişimi olduktan sonra, karışım 8 saat boyunca oda sıcaklığında karıştırılmaya devam edilmiştir. J-AgNPs komplekslerinin 300 ile 600 nm arasındaki absorbans spektrası UV-Vis spektrofotometre ile ölçülerek gözlemlenen yüzey plazmon pikleri ile AgNPs oluşumu tespit edilmiştir. J-AgNPs’lerin sudaki kararlılıkları ve boyutları Zetasizer ile incelenmiştir. Sentezlenen bütün J-AgNPs gruplarının zeta potansiyeli pozitif çıkmış ve zeta-boyutlarının 116,3-170 nm aralığında olduğu bulunmuştur. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizleri ile J-AgNPs’lerin kimyasal yapısı incelenmiş ve AgNPs’lerin çevresinde jelatin bulunduğu gösterilmiştir. Yapılan taramalı elektron mikroskobu (SEM) incelemeleri ile sentezlenen J-AgNPs’lerin morfolojilerinin küresel formda olduğu anlaşılmış ve SEM görüntüleri üzerinden yapılan enerji dağılım spektrometresi (EDS) analizleri ile J-AgNPs’lerin yapısında karbon, azot ve gümüş varlığı kanıtlanmıştır. Sentezlenen J-AgNPs’lerin kristal yapısı ve termal özellikleri sırasıyla X-Işını difraktometresi (XRD) ve termogravimetrik analiz (TGA) yöntemleri ile incelenmiştir. XRD analizi ile jelatinin amorf yapısı ve J-AgNPs’lerde metalik gümüş varlığı gösterilmiştir. TGA analiz sonuçlarına göre, J-AgNPs’lerin termal olarak saf jelatine göre daha kararlı olduğu ve 900 °C’nin sonunda arta kalan miktarının gümüş varlığı ile arttığı görülmüştür. İleri çalışmalarla, J-AgNPs’leirn antimikrobiyal ve sitotoksik etkileri incelenecek ve yara örtü materyallerinde antimikrobiyal ajan olarak kullanılma kapasitesine sahip J-AgNPs grupları belirlenecektir.

Supporting Institution

Kırıkkale Üniversitesi

Project Number

YOK

Thanks

Bu çalışma Kırıkkale Üniversitesi bünyesinde bulunan laboratuvarlarda gerçekleştirilmiştir. Desteklerinden dolayı Kırıkkale Üniversitesi teşekkür ederim.

References

  • Akbulut, M., Reddy, N.K., Bechtloff, B., Koltzenburg, S., Vermant, J. and Prudhomme, R.K., 2008. Flow-induced conformational changes in gelatin structure and colloidal stabilization. Langmuir, 24, 9636-9641. https://doi.org/10.1021/la800487b
  • Anjum, S., Gupta, A., Sharma, D., Kumari, S., Sahariah, P., Bora, J., Bhan, S. and Gupta, B., 2017. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 32(3), 263-279. https://doi.org/10.1177/088391151666866 Aramwit, P., Bang, N., Ratanavaraporn, J. and Ekgasit, S., 2014. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Research Letters, 9, 79. https://doi.org/10.1186/1556-276X-9-79
  • Bang, Y.J., Shankar, S. and Rhim, J.W., 2019. In situ synthesis of multi-functional gelatin/resorcinol/silver nanoparticles composite films. Food Packaging and Shelf Life, 22, 100399. https://doi.org/10.1016/j.fpsl.2019.100399
  • Chaloupka, K., Malam, Y. and Seifalian, A.M., 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006
  • Chen, X. and Schluesener, H.J., 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letter, 176, 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
  • Darroudi, M., Ahmad, M.B., Abdullah, A.H. and Ibrahim, N.A., 2011. Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. International Journal of Nanomedicine, 6, 569-574. https://doi.org/0.2147/IJN.S16867
  • Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., Rai, M., 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103, 1931-1944. https://doi.org/10.1002/jps.24001
  • Farhadi, S., Ajerloo, B. and Mohammadi, A., 2017. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chimica Slovenica, 64, 129-143. https://doi.org/10.17344/acsi.2016.2956
  • Goel, A., Meher, M.K., Gupta, P., Gulati, K., Pruthi, V. and Poluri, K.M., 2019. Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydrate Polymers, 206, 854-862. https://doi.org/10.1016/j.carbpol.2018.11.033
  • Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M. and Vargel, İ., 2020. Coating of modified poly(ethylene terephthalate) fibers with sericin‑capped silver nanoparticles for antimicrobial application. Polymer Bulletin, 77, 1649-1665. https://doi.org/10.1007/s00289-019-02820-0
  • Gün Gök, Z., Karayel, M. and Yiğitoğlu, M., 2021a. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Research on Chemical Intermediates, https://doi.org/10.1007/s11164-021-04399-6
  • Gün Gök, Z., Yiğitoğlu, M., Vargel, İ., Şahin, Y. and Alçığr, M.E., 2021b. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Materials Chemistry and Physics, 259, 124043. https://doi.org/10.1016/j.matchemphys.2020.124043
  • Inyang, M., Gao, B., Wu, L., Yao, Y., Zhang, M. and Lin, L., 2013. Filtration of engineered nanoparticles in carbon-based fixed bed columns. Chemical Engineering Journal, 220, 221-227. https://doi.org/10.1016/j.cej.2013.01.054
  • Jain, P. and Pradeep, T., 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90, 59-63. https://doi.org/10.1002/bit.20368
  • Khanh, L.L., Truc, N.T., Dat, N.T., Nghi, N.T.P., Toi, V., Hoai, N.T.T., Quyen, T.N., Loan, T.T.T. and Hiep, N.T., 2019. Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study. Science and Technology of Advanced Materials, 20, 276-290. https://doi.org/10.1080/14686996.2019.1585131
  • Kong, J. and Yu, S., 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549-59. https://doi.org/10.1111/j.1745-7270.2007.00320.x
  • Lavanya, K., Kalaimurugan, D., Shivakumar, M.S. and Venkatesan, S., 2020. Gelatin Stabilized Silver Nanoparticle Provides Higher Antimicrobial Efficiency as Against Chemically Synthesized Silver Nanoparticle. Journal of Cluster Science, 31, 265-275. https://doi.org/10.1007/s10876-019-01644-2
  • Lee, H., Yeo, S. and Jeong, S., 2003. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of Materials Science, 8, 2199-2204. https://doi.org/10.1023/A:1023736416361
  • Luo, L.J., Lin, T.Y., Yao, C.H., Kuo, P.Y., Matsusaki, M., Harroun, S.G., Huang, C.C. and Lai, J.Y., 2019. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of Colloid and Interface Science, 536, 112-126. https://doi.org/10.1016/j.jcis.2018.10.041
  • Mohan, S., Oluwafemi, S.O., George, S.C., Jayachandran, V.P., Lewu, F.B., Songca, S.P., Kalarikkal, N. and Thomas, S., 2014. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers, 106, 469-474. http://dx.doi.org/10.1016/j.carbpol.2014.01.008
  • Naten, Z., Moloto, M.J., Mubiayi, P.K. and Sibiya, P.N., 2018. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Advances, 3(42-43), 1-13. https://doi.org/10.1557/adv.2018.368
  • Nur Hanani, Z.A., Roos, Y.H. and Kerry, J.P., 2011. Fourier transform infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. International Congress on Engineering and Food, Proceedings.
  • Rai, M., Yadav, A. and Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  • Raveendran, P., Fu, J. and Wallen, S.L., 2003. Completely green synthesis and sta-bilization of metal nanoparticles. Journal of American Chemical Society, 125,13940-13941. https://doi.org/10.1021/ja029267j
  • Ravindra, S., Murali Mohan, Y., Narayana Reddy, N. and Mohana Raju, K., 2010. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via ‘‘Green Approach.’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367, 31-40. https://doi.org/10.1016/j.colsurfa.2010.06.013
  • Rujitanaroj, P.O., Pimpha, N. and Supaphol, P., 2008. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49, 4723-4732. https://doi.org/10.1016/j.polymer.2008.08.021
  • Seong, M. and Lee, D.G. 2017. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Current Microbiology, 74(6), 661-670. https://doi.org/10.1007/s00284-017-1235-9
  • Sharma, V.K., Yngard, R.A. and Lin, Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  • Shin, Y., Bae, I.T. and Exarhos, G.J., 2009. “Green” approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids Surface A, 348, 191-195. https://doi.org/10.1016/j.colsurfa.2009.07.013
  • Sivera, M., Kvitek, L. Soukupova, J., Panacek, A., Prucek, R. Vecerova, R. and Zboril, R., 2014. Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity. Plos One, 9, 103675. https://doi.org/10.1371/journal.pone.0103675
  • Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y., 2010, Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Yue, X., Lin, H., Yan, T., Zhang, D., Lin, H. and Chen, Y., 2014. Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fibers and Polymers, 15, 716-722. https://doi.org/10.1007/s12221-014-0716-8

Synthesis and Characterization of Gelatin Coated Silver Nanoparticles for Use as Active Agent in Wound Dressing Materials

Year 2021, , 1247 - 1258, 31.10.2021
https://doi.org/10.35414/akufemubid.889646

Abstract

In this study, gelatin protein was used both as a reducing agent and as a coating agent to synthesize gelatin coated silver nanoparticles (J-AgNPs) that can be used as an antimicrobial agent in dressing materials. For the synthesis of J-AgNPs, 1% gelatin solution and AgNO3 solution of certain concentration were mixed and the mixture was incubated at 100 °C for 2 hours. The yellow color-brown transformation observed in silver nitrate solutions added with gelatin solution indicates that the Ag (I) ion has been reduced to Ag (0). After this color change occurred, the mixture was continued to stir for 8 hours at room temperature. By measuring the absorbance spectra of J-AgNPs complexes between 300 and 600 nm with UV-Vis spectrophotometer, AgNPs formation were detected with the observation of surface plasmon peaks. Stability and dimensions of J-AgNPs in water were examined with Zetasizer. The zeta potential of all synthesized J-AgNPs groups were found to be positive and zeta-dimensions were found to be in the range 116.3-170 nm. The chemical structure of J-AgNPs was examined by fouirer transform infrared spectrophotometer (FTIR) analysis and it was shown that there was gelatin around AgNPs. It was understood that the morphologies of J-AgNPs synthesized by scanning electron microscopy (SEM) examinations were in spherical form, and the presence of carbon, nitrogen and silver in the structure of J-AgNPs was proved by energy dispersion spectrometry (EDS) analyzes made on SEM images. Crystal structure and thermal properties of synthesized J-AgNPs were examined by X-Ray diffractometer (XRD) and thermogravimetric analysis (TGA) methods, respectively. The amorphous structure of gelatin and the presence of metallic silver in J-AgNPs were shown by XRD analysis. According to the TGA analysis results, it was observed that J-AgNPs were thermally more stable than pure gelatin and the remaining amount at the end of 900 °C increased with the presence of silver. With further studies, the antimicrobial and cytotoxic effects of J-AgNPs will be examined and the J-AgNPs groups capable of being used as antimicrobial agents in wound dressing materials will be determined.

Project Number

YOK

References

  • Akbulut, M., Reddy, N.K., Bechtloff, B., Koltzenburg, S., Vermant, J. and Prudhomme, R.K., 2008. Flow-induced conformational changes in gelatin structure and colloidal stabilization. Langmuir, 24, 9636-9641. https://doi.org/10.1021/la800487b
  • Anjum, S., Gupta, A., Sharma, D., Kumari, S., Sahariah, P., Bora, J., Bhan, S. and Gupta, B., 2017. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 32(3), 263-279. https://doi.org/10.1177/088391151666866 Aramwit, P., Bang, N., Ratanavaraporn, J. and Ekgasit, S., 2014. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Research Letters, 9, 79. https://doi.org/10.1186/1556-276X-9-79
  • Bang, Y.J., Shankar, S. and Rhim, J.W., 2019. In situ synthesis of multi-functional gelatin/resorcinol/silver nanoparticles composite films. Food Packaging and Shelf Life, 22, 100399. https://doi.org/10.1016/j.fpsl.2019.100399
  • Chaloupka, K., Malam, Y. and Seifalian, A.M., 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006
  • Chen, X. and Schluesener, H.J., 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letter, 176, 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
  • Darroudi, M., Ahmad, M.B., Abdullah, A.H. and Ibrahim, N.A., 2011. Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. International Journal of Nanomedicine, 6, 569-574. https://doi.org/0.2147/IJN.S16867
  • Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., Rai, M., 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103, 1931-1944. https://doi.org/10.1002/jps.24001
  • Farhadi, S., Ajerloo, B. and Mohammadi, A., 2017. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chimica Slovenica, 64, 129-143. https://doi.org/10.17344/acsi.2016.2956
  • Goel, A., Meher, M.K., Gupta, P., Gulati, K., Pruthi, V. and Poluri, K.M., 2019. Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydrate Polymers, 206, 854-862. https://doi.org/10.1016/j.carbpol.2018.11.033
  • Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M. and Vargel, İ., 2020. Coating of modified poly(ethylene terephthalate) fibers with sericin‑capped silver nanoparticles for antimicrobial application. Polymer Bulletin, 77, 1649-1665. https://doi.org/10.1007/s00289-019-02820-0
  • Gün Gök, Z., Karayel, M. and Yiğitoğlu, M., 2021a. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Research on Chemical Intermediates, https://doi.org/10.1007/s11164-021-04399-6
  • Gün Gök, Z., Yiğitoğlu, M., Vargel, İ., Şahin, Y. and Alçığr, M.E., 2021b. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Materials Chemistry and Physics, 259, 124043. https://doi.org/10.1016/j.matchemphys.2020.124043
  • Inyang, M., Gao, B., Wu, L., Yao, Y., Zhang, M. and Lin, L., 2013. Filtration of engineered nanoparticles in carbon-based fixed bed columns. Chemical Engineering Journal, 220, 221-227. https://doi.org/10.1016/j.cej.2013.01.054
  • Jain, P. and Pradeep, T., 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90, 59-63. https://doi.org/10.1002/bit.20368
  • Khanh, L.L., Truc, N.T., Dat, N.T., Nghi, N.T.P., Toi, V., Hoai, N.T.T., Quyen, T.N., Loan, T.T.T. and Hiep, N.T., 2019. Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study. Science and Technology of Advanced Materials, 20, 276-290. https://doi.org/10.1080/14686996.2019.1585131
  • Kong, J. and Yu, S., 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39, 549-59. https://doi.org/10.1111/j.1745-7270.2007.00320.x
  • Lavanya, K., Kalaimurugan, D., Shivakumar, M.S. and Venkatesan, S., 2020. Gelatin Stabilized Silver Nanoparticle Provides Higher Antimicrobial Efficiency as Against Chemically Synthesized Silver Nanoparticle. Journal of Cluster Science, 31, 265-275. https://doi.org/10.1007/s10876-019-01644-2
  • Lee, H., Yeo, S. and Jeong, S., 2003. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of Materials Science, 8, 2199-2204. https://doi.org/10.1023/A:1023736416361
  • Luo, L.J., Lin, T.Y., Yao, C.H., Kuo, P.Y., Matsusaki, M., Harroun, S.G., Huang, C.C. and Lai, J.Y., 2019. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of Colloid and Interface Science, 536, 112-126. https://doi.org/10.1016/j.jcis.2018.10.041
  • Mohan, S., Oluwafemi, S.O., George, S.C., Jayachandran, V.P., Lewu, F.B., Songca, S.P., Kalarikkal, N. and Thomas, S., 2014. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers, 106, 469-474. http://dx.doi.org/10.1016/j.carbpol.2014.01.008
  • Naten, Z., Moloto, M.J., Mubiayi, P.K. and Sibiya, P.N., 2018. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Advances, 3(42-43), 1-13. https://doi.org/10.1557/adv.2018.368
  • Nur Hanani, Z.A., Roos, Y.H. and Kerry, J.P., 2011. Fourier transform infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. International Congress on Engineering and Food, Proceedings.
  • Rai, M., Yadav, A. and Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  • Raveendran, P., Fu, J. and Wallen, S.L., 2003. Completely green synthesis and sta-bilization of metal nanoparticles. Journal of American Chemical Society, 125,13940-13941. https://doi.org/10.1021/ja029267j
  • Ravindra, S., Murali Mohan, Y., Narayana Reddy, N. and Mohana Raju, K., 2010. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via ‘‘Green Approach.’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367, 31-40. https://doi.org/10.1016/j.colsurfa.2010.06.013
  • Rujitanaroj, P.O., Pimpha, N. and Supaphol, P., 2008. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49, 4723-4732. https://doi.org/10.1016/j.polymer.2008.08.021
  • Seong, M. and Lee, D.G. 2017. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction. Current Microbiology, 74(6), 661-670. https://doi.org/10.1007/s00284-017-1235-9
  • Sharma, V.K., Yngard, R.A. and Lin, Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  • Shin, Y., Bae, I.T. and Exarhos, G.J., 2009. “Green” approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids Surface A, 348, 191-195. https://doi.org/10.1016/j.colsurfa.2009.07.013
  • Sivera, M., Kvitek, L. Soukupova, J., Panacek, A., Prucek, R. Vecerova, R. and Zboril, R., 2014. Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity. Plos One, 9, 103675. https://doi.org/10.1371/journal.pone.0103675
  • Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y., 2010, Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Yue, X., Lin, H., Yan, T., Zhang, D., Lin, H. and Chen, Y., 2014. Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fibers and Polymers, 15, 716-722. https://doi.org/10.1007/s12221-014-0716-8
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zehra Gün Gök 0000-0001-6426-0395

Project Number YOK
Publication Date October 31, 2021
Submission Date March 2, 2021
Published in Issue Year 2021

Cite

APA Gün Gök, Z. (2021). Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1247-1258. https://doi.org/10.35414/akufemubid.889646
AMA Gün Gök Z. Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2021;21(5):1247-1258. doi:10.35414/akufemubid.889646
Chicago Gün Gök, Zehra. “Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 5 (October 2021): 1247-58. https://doi.org/10.35414/akufemubid.889646.
EndNote Gün Gök Z (October 1, 2021) Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1247–1258.
IEEE Z. Gün Gök, “Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, pp. 1247–1258, 2021, doi: 10.35414/akufemubid.889646.
ISNAD Gün Gök, Zehra. “Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (October 2021), 1247-1258. https://doi.org/10.35414/akufemubid.889646.
JAMA Gün Gök Z. Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1247–1258.
MLA Gün Gök, Zehra. “Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, 2021, pp. 1247-58, doi:10.35414/akufemubid.889646.
Vancouver Gün Gök Z. Yara Örtü Materyallerinde Aktif Ajan Olarak Kullanılmak Üzere Jelatin Kaplı Gümüş Nanoparçacıkların Sentezlenmesi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1247-58.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.