Research Article
BibTex RIS Cite

Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting

Year 2017, Volume: 17 Issue: 3, 1109 - 1121, 29.12.2017

Abstract

Sediment geochemistry of the Neogene lacustrine environment from Karabakır Formation in the western of Elazığ, were used to constrain provenance and tectonic setting. The basement of the studied sediments is Permo-Triassic Keban Metamorphics, upper Cretaceous Elazığ Magmatics, middle Eocene-upper Oligocene marine Kırkgeçit Formation. The Neogene basaltic volcanics are at the top of the lacustrine sediments in the area. The lacustrine deposit of Karabakır Formation consists of clayey limestone and limestones. Clayey-limestone samples were collected from Kurttepe section of the formation, and were analyzed for major, trace and rare earth elements (REEs). Samples were compared with Aksaray Neogene lacustrine occurrences which are very close to the investigated lacustrine sediments. Geochemistry of Kurttepe and Aksaray samples shows similarity. In two group samples, Th, Zr, Nb, Y and Ba are lower, Cu, Zn, Sc, Ni, V, and Y are higher contents of with respect to PAAS which can be explained as the result of lacustrine sediments derivation from more basic source than the PAAS. La/Sc, La/Co, Th/Co, Th/Sc, La/Cr ratios of Kurttepe samples are concordant with andesites and Th/Cr are concordant with basalts. Chondrite normalized of two datagroups show that REE patterns have low LREE/HREE ratios and no Eu anomalies, and different from Post Archean Australian Shale (PAAS), showing the source of two sample groups have basic - neutral in character. The samples fall within the volcanic arc basalt (VIB) and normal MORB (N-MORB) field in the discriminant plot of 2Nb-Zr/4 - Y. Samples fall in the oceanic island arc field in the plot of La/Sc vs. Ti/Zr. All geochemical data show that Elazığ Magmatics are the main magmatic unit which could give material to the lacustrine sediments.

References

  • Akkoca, B.D. (2016). Variations in mineral and geochemical compositions of authigenic Mg-clay-bearing deposits from a Neogene Lake environment in South of Elaziğ, Karabakır Formation, Eastern Turkey. International Journal of Scientific Engineering and Applied Science (IJSEAS)., 2: 3.
  • Aksoy, E. (1993). General geological properties of west and south of Elazığ. Turkish Journal of Earth Sciences, TUBITAK, 5: 113-123 (in Turkish with English abstract).
  • Armstrong-Altrin J. S., Nagarajan R., Madhavaraju, J., Rosalez-Hoz L., Yong, L., Balaram, V., Cruz-Martınez, A., Avila-Ramırez, G, (2013). Geochemistry of the Jurassic and Upper source-area weathering, provenance, and tectonic setting. C. R. Geoscience 345: 185–202.
  • Armstrong-Altrin, J.S. (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review., 57: 11-12, 1446-1461.
  • Bahatia, M.R., Crook, K.A.W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology., 92: 181-193.
  • Bingöl, A.F., (1984). Geology of the Elazığ Area in the Eastern Taurus Region. In Tekeli, O., Göncüoğlu, M.C., (eds), Geology of the Taurus Belt, p. 209-217.
  • Condie, K.C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104: 1-37.
  • Condie, K.C., (1991). Another look at rare earth elements in shales: Geochimica et Cosmochimica Acta, 55: 2527-2531.
  • Cullers, R. L. (1995). The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in wet mountains region, Colorado, USA. Chem. Geol. 123: 107–131.
  • Dabard, M.P. (1990). Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology, 69: 45-58.
  • Feng, R., Kerrich, R. (1990). Geochemistry of fine grained clastic sediments in the Archaean Abitibi Greenstone Belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta., 54: 1061-1081.
  • Floyd, P.A., Leveridge, B.E., (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological.Society, London, 144: 531-542.
  • Gonzalez, J. M., Jurado, V., Laiz, L., Zimmermann, J., Hermosin, B., Saiz-Jimenez, C. (2005). Pectinatus portalensis sp. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 102. Int J Syst Evol Microbiol., 55: 547–549.
  • Hassan, S., Ishiga, H., Roser, B.P., Dozen, K., Naka, T., (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chemical Geology, 158: 293–314.
  • Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta., 61: 4115-4137.
  • Herron, M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 5.
  • Kürüm, S., Akgül, B., Erdem, E. (2006). Examples of Neogene Volcanism in Eastern Turkey: comparative petrographic, geochemical and petrologic features of Malatya-Elazığ-Tunceli Volcanics. Journal Geological Society of India., 68: 129-136
  • Leo, D.P., Dinelli, E., Mongelli, G., & Schiattarella, M., (2002). Geology and geochemistry of Jurassic pelagic sediments, Scisti Silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150: 229-246.
  • McLennan, S.M., (1989). “Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes”, In: Lipin B.R.., McKay G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America Reviews in Mineralogy, 169-200.
  • McLennan, S.M., Hemming, S., McDanniel, D.K., Hanson, G.N., (1993). “Geochemical approaches to sedimentation, provenance, and tectonics”. In: Johnsson, M.J., Basu, A. (eds.). Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 285, 21-40. McDonough, W.F. and Sun, S.-S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253
  • . Meschede, M., (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram: Chemical Geology, v. 56: p. 207-218.
  • Michard, A., Whitechurch, H., Ricou, L.E., Montigny, R., Yazgan, E., (1985). Tauric Subduction (Malatya–Elazıg Province) and Its Bearing on the Tectonics of the Tethyan Realm in Turkey. In: Dixon JE, Robertson AHF (eds), The Geological Evolution of the Eastern Mediterranean. Geol Soc Spec Publ Lond, 361-373.
  • Mohamed, F.H., Hassanen, M.A. (1996). Geochemical evolution of arc-related mafic plutonism in the Umm Naggat district, Eastern Desert of Egypt. Journal of African Earth Science, 22(3): 269-283.
  • Plank, T., Langmuir, C.H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology., 145: (3-4), 325-394
  • Roser, B.P., Korsch, R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology., 67: 119-139.
  • Smith, K.S., (1999a). Geoavailability, in Marshall, C.P., and Fairbridge, R.W., eds., Encyclopedia of geochemistry: Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 262–263.
  • Sun, S., McDonough, W.F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.j.Eds., Magmatism in Ocean Basins, Geol. Soc. Spec. Publ., London, pp.313-345.
  • Taylor, S. R., McLennan, S. H., (1985). The Continental Crust: Its Composition and Evolution, Blackwell, Oxford, pp. 1-312.
  • Ullah, S., Khan, T. M, Khan, U., Rahman, K., Ullah, N., Ahmad T. (2015). The perception of local community about climate change and ITS impacts on their lives at tehsil timergara, districtdir (lower), khyber pakhtunkhwa Pakistan. Asian J Agri Biol., 3(1): 15-22.
  • Ure, A.M., Berrow, M.L. (1982). The chemical constituents of soils. In: H.J.M. Bowen (Editor), Environmental Chemistry. R. Soc. Chem., Burlington House, London, pp. 94-202.
  • Üstündag, S., (1996). Petrographic Properties of Limestones of Karabakır Formation around Elazığ, Master thesis, Firat University Graduate School of Natural and Applied Sciences, pp. 1-39.
  • Yazgan, E. (1987). Geodynamics Evolution of the Southern Taurides in the Region In: O. Tekeli and M. C. Göncüoğlu (Eds.), Geology of the Taurus Belt, Int. Symp., Proceedings, 199-208.
  • Yılmaz, Y., Yiğitbag, E., Genç, C., (1993). Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics, 12(5):, 1280-1297.
  • Zaid, S.M., Gahtani, F.A. (2015). Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turk J Earth Sci 24: 72–98.
Year 2017, Volume: 17 Issue: 3, 1109 - 1121, 29.12.2017

Abstract

References

  • Akkoca, B.D. (2016). Variations in mineral and geochemical compositions of authigenic Mg-clay-bearing deposits from a Neogene Lake environment in South of Elaziğ, Karabakır Formation, Eastern Turkey. International Journal of Scientific Engineering and Applied Science (IJSEAS)., 2: 3.
  • Aksoy, E. (1993). General geological properties of west and south of Elazığ. Turkish Journal of Earth Sciences, TUBITAK, 5: 113-123 (in Turkish with English abstract).
  • Armstrong-Altrin J. S., Nagarajan R., Madhavaraju, J., Rosalez-Hoz L., Yong, L., Balaram, V., Cruz-Martınez, A., Avila-Ramırez, G, (2013). Geochemistry of the Jurassic and Upper source-area weathering, provenance, and tectonic setting. C. R. Geoscience 345: 185–202.
  • Armstrong-Altrin, J.S. (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review., 57: 11-12, 1446-1461.
  • Bahatia, M.R., Crook, K.A.W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology., 92: 181-193.
  • Bingöl, A.F., (1984). Geology of the Elazığ Area in the Eastern Taurus Region. In Tekeli, O., Göncüoğlu, M.C., (eds), Geology of the Taurus Belt, p. 209-217.
  • Condie, K.C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104: 1-37.
  • Condie, K.C., (1991). Another look at rare earth elements in shales: Geochimica et Cosmochimica Acta, 55: 2527-2531.
  • Cullers, R. L. (1995). The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in wet mountains region, Colorado, USA. Chem. Geol. 123: 107–131.
  • Dabard, M.P. (1990). Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology, 69: 45-58.
  • Feng, R., Kerrich, R. (1990). Geochemistry of fine grained clastic sediments in the Archaean Abitibi Greenstone Belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta., 54: 1061-1081.
  • Floyd, P.A., Leveridge, B.E., (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological.Society, London, 144: 531-542.
  • Gonzalez, J. M., Jurado, V., Laiz, L., Zimmermann, J., Hermosin, B., Saiz-Jimenez, C. (2005). Pectinatus portalensis sp. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 102. Int J Syst Evol Microbiol., 55: 547–549.
  • Hassan, S., Ishiga, H., Roser, B.P., Dozen, K., Naka, T., (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chemical Geology, 158: 293–314.
  • Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta., 61: 4115-4137.
  • Herron, M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 5.
  • Kürüm, S., Akgül, B., Erdem, E. (2006). Examples of Neogene Volcanism in Eastern Turkey: comparative petrographic, geochemical and petrologic features of Malatya-Elazığ-Tunceli Volcanics. Journal Geological Society of India., 68: 129-136
  • Leo, D.P., Dinelli, E., Mongelli, G., & Schiattarella, M., (2002). Geology and geochemistry of Jurassic pelagic sediments, Scisti Silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150: 229-246.
  • McLennan, S.M., (1989). “Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes”, In: Lipin B.R.., McKay G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America Reviews in Mineralogy, 169-200.
  • McLennan, S.M., Hemming, S., McDanniel, D.K., Hanson, G.N., (1993). “Geochemical approaches to sedimentation, provenance, and tectonics”. In: Johnsson, M.J., Basu, A. (eds.). Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 285, 21-40. McDonough, W.F. and Sun, S.-S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253
  • . Meschede, M., (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram: Chemical Geology, v. 56: p. 207-218.
  • Michard, A., Whitechurch, H., Ricou, L.E., Montigny, R., Yazgan, E., (1985). Tauric Subduction (Malatya–Elazıg Province) and Its Bearing on the Tectonics of the Tethyan Realm in Turkey. In: Dixon JE, Robertson AHF (eds), The Geological Evolution of the Eastern Mediterranean. Geol Soc Spec Publ Lond, 361-373.
  • Mohamed, F.H., Hassanen, M.A. (1996). Geochemical evolution of arc-related mafic plutonism in the Umm Naggat district, Eastern Desert of Egypt. Journal of African Earth Science, 22(3): 269-283.
  • Plank, T., Langmuir, C.H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology., 145: (3-4), 325-394
  • Roser, B.P., Korsch, R.J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology., 67: 119-139.
  • Smith, K.S., (1999a). Geoavailability, in Marshall, C.P., and Fairbridge, R.W., eds., Encyclopedia of geochemistry: Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 262–263.
  • Sun, S., McDonough, W.F., (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.j.Eds., Magmatism in Ocean Basins, Geol. Soc. Spec. Publ., London, pp.313-345.
  • Taylor, S. R., McLennan, S. H., (1985). The Continental Crust: Its Composition and Evolution, Blackwell, Oxford, pp. 1-312.
  • Ullah, S., Khan, T. M, Khan, U., Rahman, K., Ullah, N., Ahmad T. (2015). The perception of local community about climate change and ITS impacts on their lives at tehsil timergara, districtdir (lower), khyber pakhtunkhwa Pakistan. Asian J Agri Biol., 3(1): 15-22.
  • Ure, A.M., Berrow, M.L. (1982). The chemical constituents of soils. In: H.J.M. Bowen (Editor), Environmental Chemistry. R. Soc. Chem., Burlington House, London, pp. 94-202.
  • Üstündag, S., (1996). Petrographic Properties of Limestones of Karabakır Formation around Elazığ, Master thesis, Firat University Graduate School of Natural and Applied Sciences, pp. 1-39.
  • Yazgan, E. (1987). Geodynamics Evolution of the Southern Taurides in the Region In: O. Tekeli and M. C. Göncüoğlu (Eds.), Geology of the Taurus Belt, Int. Symp., Proceedings, 199-208.
  • Yılmaz, Y., Yiğitbag, E., Genç, C., (1993). Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics, 12(5):, 1280-1297.
  • Zaid, S.M., Gahtani, F.A. (2015). Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turk J Earth Sci 24: 72–98.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Dicle Bal Akkoca

Publication Date December 29, 2017
Submission Date April 13, 2017
Published in Issue Year 2017 Volume: 17 Issue: 3

Cite

APA Bal Akkoca, D. (2017). Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1109-1121.
AMA Bal Akkoca D. Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2017;17(3):1109-1121.
Chicago Bal Akkoca, Dicle. “Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, no. 3 (December 2017): 1109-21.
EndNote Bal Akkoca D (December 1, 2017) Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 3 1109–1121.
IEEE D. Bal Akkoca, “Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 17, no. 3, pp. 1109–1121, 2017.
ISNAD Bal Akkoca, Dicle. “Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17/3 (December 2017), 1109-1121.
JAMA Bal Akkoca D. Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17:1109–1121.
MLA Bal Akkoca, Dicle. “Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 17, no. 3, 2017, pp. 1109-21.
Vancouver Bal Akkoca D. Geochemistry of Neogene Lacustrine Sediments from Western of Elazığ (Turkey): Implications for Provenance and Tectonic Setting. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17(3):1109-21.