Research Article
BibTex RIS Cite

B p F q s g Sequence Space On The Spaces With Seminorm

Year 2018, Volume: 18 Issue: 1, 118 - 124, 30.04.2018

Abstract

In this work we introduce a new ( , , , ) B p F q s g sequence space that consists of F f   k  a modulus function, p p   k  a sequence with positive terms and A a   mk  a matrix with positive terms, and study some topological properties of this space and some inclusion relations related to this space. 

References

  • Akbayır, K., 2003. Modulus fonksiyon dizileri yardımıyla tanımlanmış bazı dizi uzayları, Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimler Enstitüsü. Van.
  • Banerji, P.K.; Galiz, A.S., 2000. Weighted composition operators on the modulus function space. J.Indian Math.Soc. 67(1-4): 53-58.
  • Bhardwaj, V. K., Bala, I., 2009. The sequence space F(Xk, f, p, s) on seminormed spaces, Tamkang J. Math. 40: 247–256
  • Bilgin, T., 1994. The sequence space `(p, f, q, s) on seminormed spaces. Bull. Calcutta Math. Soc. 86: 295–304.
  • Bilgin, T., 1996. On strong A-summability defined by a modulus, Chinese J. Math. 24 159–166.
  • Bilgin, T.,2004., Lacunary strong A-convergence with respect to a sequence of modulus functions, Appl. Math. Comput. 151: 595– 600.
  • Bilgin, T, Altun, Y., 2007, Strongly (V λ , A, p)- summable sequence spaces defined by a modulus, Math. Model. and Anal. 12: 419– 424.
  • Connor, J., 1989. On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (2):194- 198.
  • Esi, A.; Et, M., 1996. Some new sequence spaces defined by a modulus function. Pure Appl. Math.Sci. 43(1-2): 95-99.
  • Esi, A., 2000. Some new sequence spaces defined by a modulus function. İstanbul Üniv. Fen Fak.Mat.Derg. 55/56: 17-21.
  • Gupta, j.S.; Bhola, D.K. 1975. Maximum modulus function of entire functions defined by Dirichlet series. İstanbul Tek. Üniv. Bül. 28(1): 32-38.
  • Işik, M., 2011. Strongly almost (w, λ, q)-summable sequences, Math. Slovaca. 61:779–788
  • Karakaya, V., Şimşek N., 2004. On lacunary invariant seuqence spaces defined by a sequence of modulus functions, Appl. Math. Comput. 156: 597–603.
  • Kolk, E., 1990. Sequence spaces defined by a sequence of modulus. Abstracts of Conference Problems of pure and applied mathematics. Tartu. 131-134.
  • Kolk, E., 1997. F-seminormed sequence spaces defined by a sequence of modulus functions and strongly summability, Indian J. Pure Appl.Math. 28: 1547-1566.
  • Kolk, E., 1998. Inclusion relations between the statitiscal convergence and strong summability, Acta Et Commentationes Univ. Tartuensis de Mathematica. 2: 39-54.
  • Kolk, E., 1999. Counterexamples concerning topologization of spaces of strongly almost convergent sequence, Acta et Commentations Universitatis Tartuensis de Mathematica. 3: 63-72
  • Kolk, E., 2013. On generalized sequence spaces defined by modulus functions, Acta Et Commentationes Univ. Tartuensis de Mathematica. Vol 17,No 2:179 -205.
  • Maddox, I. J., 1986. Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100:161-166.
  • Nakano, H., 1953. Concave modulars. J. Math. Soc. 5:29-49.
  • Pehlivan, S.; Fisher, B., 1995. Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolinae. 36(1):69-76.
  • Raj, K., Sharma, S. K., 2011. Difference sequence spaces defined by a sequence of modulus functions, Proyecciones. 30: 189–199.
  • Soomer, V., 2000. On r-convex sequence spaces defined by a modulus functions, Acta Comment. Univ.Tartu. Math. (4): 17-22.
  • Şahiner, A., 2002. Some new paranormed Spaces defined by modulus function, Indian J. Pure Appl. Math. 33(2): 1877-1888.

SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI

Year 2018, Volume: 18 Issue: 1, 118 - 124, 30.04.2018

Abstract

Bu çalışmada F f   k  bir modulus fonksiyon dizisi, p p   k  pozitif terimli bir dizi ve A a   mk  pozitif terimli sonsuz bir matris olmak üzere ( , , , ) B p F q s g dizi uzayı tanımlanarak, bu uzayın bazı Topolojik özellikleri ve uzayla ilgili bazı kapsama bağıntıları verilecektir.

References

  • Akbayır, K., 2003. Modulus fonksiyon dizileri yardımıyla tanımlanmış bazı dizi uzayları, Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimler Enstitüsü. Van.
  • Banerji, P.K.; Galiz, A.S., 2000. Weighted composition operators on the modulus function space. J.Indian Math.Soc. 67(1-4): 53-58.
  • Bhardwaj, V. K., Bala, I., 2009. The sequence space F(Xk, f, p, s) on seminormed spaces, Tamkang J. Math. 40: 247–256
  • Bilgin, T., 1994. The sequence space `(p, f, q, s) on seminormed spaces. Bull. Calcutta Math. Soc. 86: 295–304.
  • Bilgin, T., 1996. On strong A-summability defined by a modulus, Chinese J. Math. 24 159–166.
  • Bilgin, T.,2004., Lacunary strong A-convergence with respect to a sequence of modulus functions, Appl. Math. Comput. 151: 595– 600.
  • Bilgin, T, Altun, Y., 2007, Strongly (V λ , A, p)- summable sequence spaces defined by a modulus, Math. Model. and Anal. 12: 419– 424.
  • Connor, J., 1989. On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (2):194- 198.
  • Esi, A.; Et, M., 1996. Some new sequence spaces defined by a modulus function. Pure Appl. Math.Sci. 43(1-2): 95-99.
  • Esi, A., 2000. Some new sequence spaces defined by a modulus function. İstanbul Üniv. Fen Fak.Mat.Derg. 55/56: 17-21.
  • Gupta, j.S.; Bhola, D.K. 1975. Maximum modulus function of entire functions defined by Dirichlet series. İstanbul Tek. Üniv. Bül. 28(1): 32-38.
  • Işik, M., 2011. Strongly almost (w, λ, q)-summable sequences, Math. Slovaca. 61:779–788
  • Karakaya, V., Şimşek N., 2004. On lacunary invariant seuqence spaces defined by a sequence of modulus functions, Appl. Math. Comput. 156: 597–603.
  • Kolk, E., 1990. Sequence spaces defined by a sequence of modulus. Abstracts of Conference Problems of pure and applied mathematics. Tartu. 131-134.
  • Kolk, E., 1997. F-seminormed sequence spaces defined by a sequence of modulus functions and strongly summability, Indian J. Pure Appl.Math. 28: 1547-1566.
  • Kolk, E., 1998. Inclusion relations between the statitiscal convergence and strong summability, Acta Et Commentationes Univ. Tartuensis de Mathematica. 2: 39-54.
  • Kolk, E., 1999. Counterexamples concerning topologization of spaces of strongly almost convergent sequence, Acta et Commentations Universitatis Tartuensis de Mathematica. 3: 63-72
  • Kolk, E., 2013. On generalized sequence spaces defined by modulus functions, Acta Et Commentationes Univ. Tartuensis de Mathematica. Vol 17,No 2:179 -205.
  • Maddox, I. J., 1986. Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100:161-166.
  • Nakano, H., 1953. Concave modulars. J. Math. Soc. 5:29-49.
  • Pehlivan, S.; Fisher, B., 1995. Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolinae. 36(1):69-76.
  • Raj, K., Sharma, S. K., 2011. Difference sequence spaces defined by a sequence of modulus functions, Proyecciones. 30: 189–199.
  • Soomer, V., 2000. On r-convex sequence spaces defined by a modulus functions, Acta Comment. Univ.Tartu. Math. (4): 17-22.
  • Şahiner, A., 2002. Some new paranormed Spaces defined by modulus function, Indian J. Pure Appl. Math. 33(2): 1877-1888.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kamil Akbayır This is me

Tunay Bilgin This is me

Publication Date April 30, 2018
Submission Date April 19, 2017
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Akbayır, K., & Bilgin, T. (2018). SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(1), 118-124.
AMA Akbayır K, Bilgin T. SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2018;18(1):118-124.
Chicago Akbayır, Kamil, and Tunay Bilgin. “SEMİNORMLU UZAYLARDA B P F Q S G DİZİ UZAYI”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, no. 1 (April 2018): 118-24.
EndNote Akbayır K, Bilgin T (April 1, 2018) SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 1 118–124.
IEEE K. Akbayır and T. Bilgin, “SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, pp. 118–124, 2018.
ISNAD Akbayır, Kamil - Bilgin, Tunay. “SEMİNORMLU UZAYLARDA B P F Q S G DİZİ UZAYI”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/1 (April 2018), 118-124.
JAMA Akbayır K, Bilgin T. SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:118–124.
MLA Akbayır, Kamil and Tunay Bilgin. “SEMİNORMLU UZAYLARDA B P F Q S G DİZİ UZAYI”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, 2018, pp. 118-24.
Vancouver Akbayır K, Bilgin T. SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(1):118-24.