Research Article
BibTex RIS Cite

Çift diziler için αβ-istatistiksel E-yakınsaklık

Year 2020, Volume: 20 Issue: 1, 41 - 46, 17.03.2020
https://doi.org/10.35414/akufemubid.638580

Abstract

Bu makalede, tam sayı ikilileri için verilen yoğunluk kavramının bir
genelleştirilmesi olan
αβ doğal yoğunluk kavramını
tanımladık. Bu yoğunluk kavramı yardımıyla çift diziler için
αβ-istatistiksel E-yakınsaklık kavramı tanıtıldı. Daha sonra
bu tip yakınsaklığın temel özellikleri incelendi. Ayrıca,
E-anlamında
αβ-istatistiksel alt limit ve üst limit
kavramlarını tanımladık. Son olarak bu kavramlarla ilgili teoremler verdik.

References

  • Aktuğlu, H. 2014. Korovkin type approximation theorems proved via αβ-statistical convergence. Journal of Computational and Applied Mathematics, 259, 174--181.
  • Boos, J., Leiger, T. and Zeller, K. 1997. Consistency theory for SM-methods. Acta Mathematica Hungarica, 76, 83--116.
  • Çakan, C. and Altay, B. 2006. Statistically boundedness and statistical core of double sequences. Journal of Mathematical Analysis and Applications, 317, 690--697.
  • Edely, O. H. H. and Mursaleen, M. 2006. Tauberian theorems for statistically convergent double sequences. Information Sciences, 176, 875--886.
  • Fast, H. 1951. Sur la convergence statistique. Colloquium Mathematicum, 2, 241--244.
  • Fridy, J. A. and Orhan, C. 1997. Statistical limit superior and limit inferior. Proceedings of the American Mathematical Society, 125(12), 3625--3631.
  • Hardy, G. H. 1917. On the convergence of certain multiple series. Mathematical Proceedings of the Cambridge Philosophical Society, 19, 86--95.
  • Karaisa A. 2016. Statistical αβ-Summability and Korovkin Type Approximation Theorem. Filomat, 30(13), 3483--3491.
  • Móricz, F. 2003. Statistical convergence of multiple sequences. Archiv der Mathematik (Basel), 81(1), 82--89.
  • Mursaleen, M. and Edely, O. H. H. 2003. Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288, 223--231.
  • Pringsheim, A. 1898. Elementare theorie der unendliche doppelreihen. Sitsungs berichte der Math. Akad. der Wissenschafftenzu Münch. Ber., 7, 101--153.
  • Sever, Y. and Talo, Ö. 2014. e-core of double sequences. Acta Mathematica Hungarica, 144(1), 236--246.
  • Sever, Y. and Talo, Ö. 2017. Statistical e-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables. Iranian Journal of Science and Technology. Transaction A. Science, 41(3), 851--857.
  • Sever, Y. and Talo, Ö. 2018. On statistical e-convergence of double sequences. Iranian Journal of Science and Technology. Transaction A. Science, 42(4), 2063--2068.
  • Zeltser, M. 2001. Investigation of double sequence spaces by soft and hard analitical methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, (Tartu).
  • Zeltser, M. 2002. On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica, 95(3), 225--242.
Year 2020, Volume: 20 Issue: 1, 41 - 46, 17.03.2020
https://doi.org/10.35414/akufemubid.638580

Abstract

References

  • Aktuğlu, H. 2014. Korovkin type approximation theorems proved via αβ-statistical convergence. Journal of Computational and Applied Mathematics, 259, 174--181.
  • Boos, J., Leiger, T. and Zeller, K. 1997. Consistency theory for SM-methods. Acta Mathematica Hungarica, 76, 83--116.
  • Çakan, C. and Altay, B. 2006. Statistically boundedness and statistical core of double sequences. Journal of Mathematical Analysis and Applications, 317, 690--697.
  • Edely, O. H. H. and Mursaleen, M. 2006. Tauberian theorems for statistically convergent double sequences. Information Sciences, 176, 875--886.
  • Fast, H. 1951. Sur la convergence statistique. Colloquium Mathematicum, 2, 241--244.
  • Fridy, J. A. and Orhan, C. 1997. Statistical limit superior and limit inferior. Proceedings of the American Mathematical Society, 125(12), 3625--3631.
  • Hardy, G. H. 1917. On the convergence of certain multiple series. Mathematical Proceedings of the Cambridge Philosophical Society, 19, 86--95.
  • Karaisa A. 2016. Statistical αβ-Summability and Korovkin Type Approximation Theorem. Filomat, 30(13), 3483--3491.
  • Móricz, F. 2003. Statistical convergence of multiple sequences. Archiv der Mathematik (Basel), 81(1), 82--89.
  • Mursaleen, M. and Edely, O. H. H. 2003. Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288, 223--231.
  • Pringsheim, A. 1898. Elementare theorie der unendliche doppelreihen. Sitsungs berichte der Math. Akad. der Wissenschafftenzu Münch. Ber., 7, 101--153.
  • Sever, Y. and Talo, Ö. 2014. e-core of double sequences. Acta Mathematica Hungarica, 144(1), 236--246.
  • Sever, Y. and Talo, Ö. 2017. Statistical e-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables. Iranian Journal of Science and Technology. Transaction A. Science, 41(3), 851--857.
  • Sever, Y. and Talo, Ö. 2018. On statistical e-convergence of double sequences. Iranian Journal of Science and Technology. Transaction A. Science, 42(4), 2063--2068.
  • Zeltser, M. 2001. Investigation of double sequence spaces by soft and hard analitical methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, (Tartu).
  • Zeltser, M. 2002. On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica, 95(3), 225--242.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yurdal Sever 0000-0002-5102-1384

Publication Date March 17, 2020
Submission Date October 26, 2019
Published in Issue Year 2020 Volume: 20 Issue: 1

Cite

APA Sever, Y. (2020). Çift diziler için αβ-istatistiksel E-yakınsaklık. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 41-46. https://doi.org/10.35414/akufemubid.638580
AMA Sever Y. Çift diziler için αβ-istatistiksel E-yakınsaklık. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):41-46. doi:10.35414/akufemubid.638580
Chicago Sever, Yurdal. “Çift Diziler için αβ-Istatistiksel E-yakınsaklık”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 41-46. https://doi.org/10.35414/akufemubid.638580.
EndNote Sever Y (March 1, 2020) Çift diziler için αβ-istatistiksel E-yakınsaklık. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 41–46.
IEEE Y. Sever, “Çift diziler için αβ-istatistiksel E-yakınsaklık”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 41–46, 2020, doi: 10.35414/akufemubid.638580.
ISNAD Sever, Yurdal. “Çift Diziler için αβ-Istatistiksel E-yakınsaklık”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 41-46. https://doi.org/10.35414/akufemubid.638580.
JAMA Sever Y. Çift diziler için αβ-istatistiksel E-yakınsaklık. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:41–46.
MLA Sever, Yurdal. “Çift Diziler için αβ-Istatistiksel E-yakınsaklık”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 41-46, doi:10.35414/akufemubid.638580.
Vancouver Sever Y. Çift diziler için αβ-istatistiksel E-yakınsaklık. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):41-6.