Research Article
BibTex RIS Cite

Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode

Year 2023, Volume: 23 Issue: 1, 177 - 185, 01.03.2023
https://doi.org/10.35414/akufemubid.1027565

Abstract

Microbial fuel cell is a bioelectrochemical system that generate electricity with the oxidation of organic substrates by exoelectrogenic microorganisms. It can be said that the studies on microbial fuel cells (MFCs) are generally aimed to increase the amount of energy produced. In this study, domestic wastewater treatment was investigated by using a two-chamber microbial fuel cell. Ankara Tatlar Wastewater Treatment Plant influent water was used as substrate. In order to reduce the diffusional resistance by reducing the distance between the anode and cathode electrode, the cathode chamber was placed in the middle of the anode chamber. Anode and cathode chambers separated by Nafion 117 membrane. In addition, an anode consisting of a stainless-steel mesh and a graphite supported catalyst has been developed to increase the electricity generation potential. During the experiment, the maximum voltage and the maximum power density values were obtained as 595 mV and 205.867 mW/m2 respectively. COD value is a criteria which indicates the waste treatment ability of the systems. For this experiment COD values of the wastewaster were measured both the beginning and the end of the experiment as 451 mg/L O2 and 361 mg/L O2. These results proved that the developed electrode structure is at a comparable level with the values reported in the literature for two-chamber MFC studies.

References

  • Aiyer, K.S., 2021. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon, 7(1), e05935.
  • Aktan, S., Ubay Çokgör, E. and Gücin, F., 2011. Electricity generation from organic substrates by a microbial fuel cell using Shewanella putrefaciens. ITU Journal Series E: Water Pollution Control, 21(2), 79-87.
  • Ali, J., Wang, L., Waseem, H., Sharif, H.M.A., Djellabi, R., Zhang, C. and Pan, G., 2019. Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. Journal of Cleaner Production, 235.
  • Arkatkar, A., Mungray, A.K. and Sharma, P., 2020. Bioelectrochemical behaviour of a sequentially added biocatalytic coculture in a microbial fuel cell. Journal of Basic Microbiology, 60(7), 562-573.
  • Arkatkar, A., Mungray, A.K. and Sharma, P., 2021. Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochemistry, 101, 213-217.
  • Arun, S., Sinharoy, A., Pakshirajan, K. and Lens, P.N., 2020. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renewable and Sustainable Energy Reviews, 132, 110041.
  • Bagchi, S. and Behera, M., 2021. Evaluation of the effect of anolyte recirculation and anolyte ph on the performance of a microbial fuel cell employing ceramic separator. Process Biochemistry, 102, 207-212.
  • Bullen, R. A., Arnot, T.C., Lakeman, J.B. and Walsh, F.C., 2006. Biofuel cells and their development. Biosensors and Bioelectronics, 21(11), 2015-2045.
  • Casula, E., Kim, B., Chesson, H., Di Lorenzo, M. and Mascia, M., 2021. Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells. Electrochimica Acta, 368, 137568.
  • Chakraborty, I., Das, S., Dubey, B.K. and Ghangrekar, M.M., 2020. Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 239, 122025.
  • Chaudhuri, S.K. and Lovley, D.R., 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229-1232.
  • Chen, S., Jing, X., Tang, J., Fang, Y. and Zhou, S., 2017. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors and Bioelectronics, 97, 369-376.
  • Choudhury, P., Ray, R.N., Bandyopadhyay, T.K., Basak, B., Muthuraj, M. and Bhunia, B., 2021. Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. International Journal of Hydrogen Energy, 46(4), 3171-3182.
  • Elakkiya, E. and Matheswaran, M., 2013. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresource technology, 136, 407-412.
  • Erable, B., Byrne, N., Etcheverry, L., Achouak, W. and Bergel, A., 2017. Single medium microbial fuel cell: stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities. International Journal of Hydrogen Energy, 42(41), 26059-26067.
  • Gustave, W., Yuan, Z., Liu, F. and Chen, Z., 2021. Mechanisms and challenges of microbial fuel cells for soil heavy metal (loid)s remediation”, Science of The Total Environment, 756, 143865.
  • Hayder, M.A.H. and Dincer, K., 2019. Experimental investigation of 11x11 cm2 membrane microbial fuel cell performance. Materials Today: Proceedings, 18, 1903-1909.
  • Helder, M., Strik, D., Hamelers, H., Kuhn, A., Blok, C. and Buisman, C., 2010. Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using spartina anglica, arundinella anomala and arundo donax. Bioresource Technology, 101(10), 3541-3547.
  • Karra, U., Huang, G., Umaz, R., Tenaglier, C., Wang, L. and Li, B., 2013. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Bioresource Technology, 144, 477-484.
  • Karuppiah, T., Uthirakrishnan, U., Sivakumar, S. V., Authilingam, S., Arun, J., Sivaramakrishnan, R. and Pugazhendhi, A., 2021. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. International Journal of Hydrogen Energy.
  • Kumar, S. S., Kumar, V., Gude, V. G., Malyan, S. K. and Pugazhendhi, A., 2020. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in microbial fuel cells (MFC) treating sulfate-laden wastewater. Bioresource technology, 306, 123110.
  • Lakshmidevi, R., Gandhi, N.N. and Muthukumar, K., 2020. Carbon neutral electricity production from municipal solid waste landfill leachate using algal-assisted microbial fuel cell. Applied Biochemistry and Biotechnology, 191, 852-866.
  • Li, J., Liu, C., Liao, Q., Zhu, X. and Ye, D., 2013. Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules. International Journal of Hydrogen Energy, 38(35), 15723-15729.
  • Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y. and Huang, X., 2018. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1-8.
  • Lim, C. Y-X, Leong, H.M, Chandra, A.D. Phua, W., 2021. Exploring the use of apple skin to boost the energy efficiency of microbial fuel cells. IRC-SET 2020 Springer, Singapore, 317-326.
  • Ma, J., Ni, H., Su, D. and Meng, X., 2016. Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. International Journal of Hydrogen Energy, 41(36), 16191-16195.
  • Mardanpour, M. M., Esfahany, M. N., Behzad, T. and Sedaqatvand, R., 2012. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosensors and Bioelectronics, 38(1), 264-269.
  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A., 2016. Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells. International Journal of Hydrogen Energy, 41(7), 4251-4263.
  • Mohan, S.V., Velvizhi, G., Krishna, K.V. and Babu, M.L., 2014. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresource Technology, 165, 355-364.
  • Munoz-Cupa, C., Hu, Y., Xu, C.C. and Bassi, A., 2021. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of The Total Environment, 754: 142429.
  • Nasar, A. and Perveen, R., 2019. Applications of enzymatic biofuel cells in bioelectronic devices–A review. International Journal of Hydrogen Energy, 44(29), 15287-15312.
  • Nguyen, H. T. and Min, B., 2020. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Science of the Total Environment, 723, 138054.
  • Palanisamy, G., Jung, H.Y., Sadhasivam, T., Kurkuri, M.D., Kim, S.C. and Roh, S.H., 2019. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. Journal of Cleaner Production, 221, 598-621.
  • Priya, A.D. and Setty, Y.P., 2019. Cashew apple juice as substrate for microbial fuel cell. Fuel, 246, 75-78.
  • Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. and Jafary, T., 2011. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999-4004.
  • Ramesh, M., Balakrishnan, P., Dhanaprabhu, S. S., Ravanan, A. and Maniraj, J., 2021. Enzyme-modified electrodes for biofuel cells: A comprehensive review. Materials Today: Proceedings, (46,9), 3495-3501
  • Scheiblbrandner, S., Csarman, F. and Ludwig, R., 2022. Cellobiose dehydrogenase in biofuel cells. Current Opinion in Biotechnology, 73, 205-212.
  • Serra, P. M. D., Espírito-Santo, A. and Magrinho, M., 2020. A steady-state electrical model of a microbial fuel cell through multiple-cycle polarization curves. Renewable and Sustainable Energy Reviews, 117, 109439.
  • Sharma, A. and Chhabra, M., 2021. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresource Technology, 338, 125499.
  • Slate, A.J., Whitehead, K.A., Brownson, D.A. and Banks, C.E., 2019. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60-81.
  • Srikanth, S., Kumar, M., Singh, D., Singh, M.P. and Das, B.P., 2016. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation. Bioresource Technology, 221, 70-77.
  • Tacas, A.C.J., Tsai, P.W., Tayo, L.L., Hsueh, C.C., Sun, S.Y. and Chen, B.Y., 2021. Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs). Process Biochemistry, 102: 59-71.
  • Wu, S., He, W., Yang, W., Ye, Y., Huang, X. and Logan, B.E., 2017. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. Journal of Power Sources, 356, 348-355.
  • Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y. and Cao, S., 2018. Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland. Ecological Engineering, 112, 65-71.
  • Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L. and Nie, C., 2018. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277-285.
  • Yu, B., Feng, L., He, Y., Yang, L. and Xun, Y., 2021. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. Journal of Hazardous Materials, 401, 123394.
  • Zhang, K., Wu, X., Luo, H., Li, X., Chen, W., Chen, J., Mo, Y. and Wang, W, 2020. CH4 control and associated microbial process from constructed wetland (CW) by microbial fuel cells (MFC). Journal of environmental management, 260, 110071.
  • Zhao, C., Wei, D., Fan, D., Meng, S., Bian, S., Zhang, X. and Wei, Q., 2021. Coupling of nitrifying granular sludge into microbial fuel cell system for wastewater treatment: system performance, electricity production and microbial community shift. Bioresource Technology, 326, 124741.
  • Zhou, X., Chen, X., Li, H., Xiong, J., Li, X. and Li, W., 2016. Surface oxygen-rich titanium as anode for high performance microbial fuel cell. Electrochimica Acta, 209, 582-590.

Kompozit Anot Elektrotlu İki Bölmeli Mikrobiyal Yakıt Pili Kullanılarak Evsel Atıksu Arıtımı ve Elektrik Üretiminin Araştırılması

Year 2023, Volume: 23 Issue: 1, 177 - 185, 01.03.2023
https://doi.org/10.35414/akufemubid.1027565

Abstract

Mikrobiyal yakıt hücresi, ekzoelektrojenik mikroorganizmalar tarafından organik substratların oksidasyonu ile elektrik üreten bir biyoelektrokimyasal sistemdir. Mikrobiyal yakıt pilleri (MYH) üzerine yapılan çalışmaların genel olarak üretilen enerji miktarını artırmaya yönelik olduğu söylenebilir. Bu çalışmada, iki bölmeli bir mikrobiyal yakıt hücresi kullanılarak evsel atıksu arıtımı araştırılmıştır. Substrat olarak Ankara Tatlar Atıksu Arıtma Tesisi giriş suyu kullanılmıştır. Anot ve katot elektrotu arasındaki mesafeyi azaltarak difüzyon direncini düşürmek için katot bölmesi anot bölmesinin ortasına yerleştirilmiştir ve bu bölmeler Nafion 117 membranı ile ayrılmıştır. Ayrıca elektrik üretim potansiyelini artırmak için paslanmaz çelik kafes ve grafit destekli bir anot elektrodu geliştirilmiştir. Deney sırasında maksimum voltaj 595 mV ve maksimum güç yoğunluğu değerleri 205.867 mW/m2 olarak elde edilmiştir. KOİ değeri, sistemlerin atıksu arıtma kabiliyetini gösteren bir kriterdir. Bu deney için atıksuların KOİ değerleri deney başlangıcında ve sonunda 451 mg/L O2 ve 361 mg/L O2 olarak ölçülmüştür. Bu sonuçlar, geliştirilen elektrot yapısının iki bölmeli MYH çalışmaları için literatürde bildirilen değerlerle karşılaştırılabilir düzeyde olduğunu kanıtlamıştır.

References

  • Aiyer, K.S., 2021. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon, 7(1), e05935.
  • Aktan, S., Ubay Çokgör, E. and Gücin, F., 2011. Electricity generation from organic substrates by a microbial fuel cell using Shewanella putrefaciens. ITU Journal Series E: Water Pollution Control, 21(2), 79-87.
  • Ali, J., Wang, L., Waseem, H., Sharif, H.M.A., Djellabi, R., Zhang, C. and Pan, G., 2019. Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. Journal of Cleaner Production, 235.
  • Arkatkar, A., Mungray, A.K. and Sharma, P., 2020. Bioelectrochemical behaviour of a sequentially added biocatalytic coculture in a microbial fuel cell. Journal of Basic Microbiology, 60(7), 562-573.
  • Arkatkar, A., Mungray, A.K. and Sharma, P., 2021. Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochemistry, 101, 213-217.
  • Arun, S., Sinharoy, A., Pakshirajan, K. and Lens, P.N., 2020. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renewable and Sustainable Energy Reviews, 132, 110041.
  • Bagchi, S. and Behera, M., 2021. Evaluation of the effect of anolyte recirculation and anolyte ph on the performance of a microbial fuel cell employing ceramic separator. Process Biochemistry, 102, 207-212.
  • Bullen, R. A., Arnot, T.C., Lakeman, J.B. and Walsh, F.C., 2006. Biofuel cells and their development. Biosensors and Bioelectronics, 21(11), 2015-2045.
  • Casula, E., Kim, B., Chesson, H., Di Lorenzo, M. and Mascia, M., 2021. Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells. Electrochimica Acta, 368, 137568.
  • Chakraborty, I., Das, S., Dubey, B.K. and Ghangrekar, M.M., 2020. Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 239, 122025.
  • Chaudhuri, S.K. and Lovley, D.R., 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229-1232.
  • Chen, S., Jing, X., Tang, J., Fang, Y. and Zhou, S., 2017. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors and Bioelectronics, 97, 369-376.
  • Choudhury, P., Ray, R.N., Bandyopadhyay, T.K., Basak, B., Muthuraj, M. and Bhunia, B., 2021. Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. International Journal of Hydrogen Energy, 46(4), 3171-3182.
  • Elakkiya, E. and Matheswaran, M., 2013. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresource technology, 136, 407-412.
  • Erable, B., Byrne, N., Etcheverry, L., Achouak, W. and Bergel, A., 2017. Single medium microbial fuel cell: stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities. International Journal of Hydrogen Energy, 42(41), 26059-26067.
  • Gustave, W., Yuan, Z., Liu, F. and Chen, Z., 2021. Mechanisms and challenges of microbial fuel cells for soil heavy metal (loid)s remediation”, Science of The Total Environment, 756, 143865.
  • Hayder, M.A.H. and Dincer, K., 2019. Experimental investigation of 11x11 cm2 membrane microbial fuel cell performance. Materials Today: Proceedings, 18, 1903-1909.
  • Helder, M., Strik, D., Hamelers, H., Kuhn, A., Blok, C. and Buisman, C., 2010. Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using spartina anglica, arundinella anomala and arundo donax. Bioresource Technology, 101(10), 3541-3547.
  • Karra, U., Huang, G., Umaz, R., Tenaglier, C., Wang, L. and Li, B., 2013. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Bioresource Technology, 144, 477-484.
  • Karuppiah, T., Uthirakrishnan, U., Sivakumar, S. V., Authilingam, S., Arun, J., Sivaramakrishnan, R. and Pugazhendhi, A., 2021. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. International Journal of Hydrogen Energy.
  • Kumar, S. S., Kumar, V., Gude, V. G., Malyan, S. K. and Pugazhendhi, A., 2020. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in microbial fuel cells (MFC) treating sulfate-laden wastewater. Bioresource technology, 306, 123110.
  • Lakshmidevi, R., Gandhi, N.N. and Muthukumar, K., 2020. Carbon neutral electricity production from municipal solid waste landfill leachate using algal-assisted microbial fuel cell. Applied Biochemistry and Biotechnology, 191, 852-866.
  • Li, J., Liu, C., Liao, Q., Zhu, X. and Ye, D., 2013. Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules. International Journal of Hydrogen Energy, 38(35), 15723-15729.
  • Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y. and Huang, X., 2018. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1-8.
  • Lim, C. Y-X, Leong, H.M, Chandra, A.D. Phua, W., 2021. Exploring the use of apple skin to boost the energy efficiency of microbial fuel cells. IRC-SET 2020 Springer, Singapore, 317-326.
  • Ma, J., Ni, H., Su, D. and Meng, X., 2016. Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. International Journal of Hydrogen Energy, 41(36), 16191-16195.
  • Mardanpour, M. M., Esfahany, M. N., Behzad, T. and Sedaqatvand, R., 2012. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosensors and Bioelectronics, 38(1), 264-269.
  • Mohamed, H. O., Obaid, M., Khalil, K. A. and Barakat, N. A., 2016. Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells. International Journal of Hydrogen Energy, 41(7), 4251-4263.
  • Mohan, S.V., Velvizhi, G., Krishna, K.V. and Babu, M.L., 2014. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresource Technology, 165, 355-364.
  • Munoz-Cupa, C., Hu, Y., Xu, C.C. and Bassi, A., 2021. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Science of The Total Environment, 754: 142429.
  • Nasar, A. and Perveen, R., 2019. Applications of enzymatic biofuel cells in bioelectronic devices–A review. International Journal of Hydrogen Energy, 44(29), 15287-15312.
  • Nguyen, H. T. and Min, B., 2020. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Science of the Total Environment, 723, 138054.
  • Palanisamy, G., Jung, H.Y., Sadhasivam, T., Kurkuri, M.D., Kim, S.C. and Roh, S.H., 2019. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. Journal of Cleaner Production, 221, 598-621.
  • Priya, A.D. and Setty, Y.P., 2019. Cashew apple juice as substrate for microbial fuel cell. Fuel, 246, 75-78.
  • Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. and Jafary, T., 2011. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999-4004.
  • Ramesh, M., Balakrishnan, P., Dhanaprabhu, S. S., Ravanan, A. and Maniraj, J., 2021. Enzyme-modified electrodes for biofuel cells: A comprehensive review. Materials Today: Proceedings, (46,9), 3495-3501
  • Scheiblbrandner, S., Csarman, F. and Ludwig, R., 2022. Cellobiose dehydrogenase in biofuel cells. Current Opinion in Biotechnology, 73, 205-212.
  • Serra, P. M. D., Espírito-Santo, A. and Magrinho, M., 2020. A steady-state electrical model of a microbial fuel cell through multiple-cycle polarization curves. Renewable and Sustainable Energy Reviews, 117, 109439.
  • Sharma, A. and Chhabra, M., 2021. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresource Technology, 338, 125499.
  • Slate, A.J., Whitehead, K.A., Brownson, D.A. and Banks, C.E., 2019. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60-81.
  • Srikanth, S., Kumar, M., Singh, D., Singh, M.P. and Das, B.P., 2016. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation. Bioresource Technology, 221, 70-77.
  • Tacas, A.C.J., Tsai, P.W., Tayo, L.L., Hsueh, C.C., Sun, S.Y. and Chen, B.Y., 2021. Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs). Process Biochemistry, 102: 59-71.
  • Wu, S., He, W., Yang, W., Ye, Y., Huang, X. and Logan, B.E., 2017. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. Journal of Power Sources, 356, 348-355.
  • Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y. and Cao, S., 2018. Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland. Ecological Engineering, 112, 65-71.
  • Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L. and Nie, C., 2018. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 332, 277-285.
  • Yu, B., Feng, L., He, Y., Yang, L. and Xun, Y., 2021. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. Journal of Hazardous Materials, 401, 123394.
  • Zhang, K., Wu, X., Luo, H., Li, X., Chen, W., Chen, J., Mo, Y. and Wang, W, 2020. CH4 control and associated microbial process from constructed wetland (CW) by microbial fuel cells (MFC). Journal of environmental management, 260, 110071.
  • Zhao, C., Wei, D., Fan, D., Meng, S., Bian, S., Zhang, X. and Wei, Q., 2021. Coupling of nitrifying granular sludge into microbial fuel cell system for wastewater treatment: system performance, electricity production and microbial community shift. Bioresource Technology, 326, 124741.
  • Zhou, X., Chen, X., Li, H., Xiong, J., Li, X. and Li, W., 2016. Surface oxygen-rich titanium as anode for high performance microbial fuel cell. Electrochimica Acta, 209, 582-590.
There are 49 citations in total.

Details

Primary Language English
Subjects Electrochemistry, Energy Systems Engineering (Other)
Journal Section Articles
Authors

Gizem Hazan Akçay 0000-0002-5885-7934

İrfan Ar 0000-0002-6473-9205

Early Pub Date March 1, 2023
Publication Date March 1, 2023
Submission Date November 23, 2021
Published in Issue Year 2023 Volume: 23 Issue: 1

Cite

APA Akçay, G. H., & Ar, İ. (2023). Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(1), 177-185. https://doi.org/10.35414/akufemubid.1027565
AMA Akçay GH, Ar İ. Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2023;23(1):177-185. doi:10.35414/akufemubid.1027565
Chicago Akçay, Gizem Hazan, and İrfan Ar. “Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell With Composite Anode Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 1 (March 2023): 177-85. https://doi.org/10.35414/akufemubid.1027565.
EndNote Akçay GH, Ar İ (March 1, 2023) Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 1 177–185.
IEEE G. H. Akçay and İ. Ar, “Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, pp. 177–185, 2023, doi: 10.35414/akufemubid.1027565.
ISNAD Akçay, Gizem Hazan - Ar, İrfan. “Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell With Composite Anode Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/1 (March 2023), 177-185. https://doi.org/10.35414/akufemubid.1027565.
JAMA Akçay GH, Ar İ. Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:177–185.
MLA Akçay, Gizem Hazan and İrfan Ar. “Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell With Composite Anode Electrode”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, 2023, pp. 177-85, doi:10.35414/akufemubid.1027565.
Vancouver Akçay GH, Ar İ. Investigation of Domestic Wastewater Treatment and Electricity Generation Using A Two Chambered Microbial Fuel Cell with Composite Anode Electrode. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(1):177-85.