Research Article
BibTex RIS Cite

Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi

Year 2023, Volume: 23 Issue: 2, 448 - 458, 03.05.2023

Abstract

Yapı temellerinin tasarımında, kayma tahkikinin önemi birçok yönetmelik ve akademik çalışmada
vurgulanmıştır. Hesaplamalar sırasında zemin özellikleri ve uygulama koşulları dikkate alınırken yalıtım
amacıyla kullanılan ve etkili bir ara yüzey elemanı olan geomembranların kayma davranışları göz ardı
edildiği taktirde ve geomembran ile yapı elemanı arasındaki kayma mukavemetinin tasarımda kullanılan
kayma direncinden daha düşük olması durumunda önemli problemlerle karşılaşılabilir. Olası can ve mal
kayıplarının önüne geçebilmek için sistemde var olan tüm ara yüzeylerin dikkatle irdelenmesi gerekir.
Bu çalışmada, iki farklı geomembran ile İzmir, Karşıyaka, Mavişehir sahil şeridinden alınan deniz suyu
etkisindeki killi zeminin ara yüzey kayma davranışı incelenmiştir. Polivinil klorür (PVC) geomembranın
kalınlıkları 1.5 ve 3.0 mm ve TPO geomembranın kalınlığı 1.5 mm dir. Ara yüzey kayma dayanımı
parametreleri orta ölçekli direk kesme deneyleri ile belirlenmiştir. Direk kesme deneyleri 0.5 molar
(0.5M) tuzlu suda 4, 8 ve 16 ay kür edilmiş ve kür edilmemiş geomembranlar ile gerçekleştirilmiştir.
Zemin – TPO ara yüzeyi en büyük kayma dayanımı ve sürtünme açısına sahipken en düşük kayma
dayanımı ve sürtünme açısızemin – PVC/1.5 ara yüzeyine aittir. Tuzlu suda kür edildikten sonra ara yüzey
sürtünme açısı en fazla azalan geomembran 1.5 mm PVC iken en az azalan geomembran 3.0 mm PVC
olmuştur.

Thanks

Katkıları ve yardımları için “TOTOMAK Makina ve Yedek Parça Sanayi ve Ticaret Anonim” ve “BTM” şirketlerine teşekkür ederiz.

References

  • Abdelaal, F., Rowe, R.K. and Brachman, R.W.I., 2014. Brittle rupture of an aged HDPE geomembrane at local gravel indentation under simulated field conditions. Geosynthetic International, 21(1).
  • Araujo, G.L.S., Sanchez, N.P., Palmeira, E.M. and Almeida, M.G.G., 2022. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotextiles and Geomembranes, 50(4), 751-763.
  • Ari, A. And Akbulut, S., 2022. Evaluation of sand–geomembrane interface behavior using discrete element method. Granular Matter 24, 21.
  • ASTM D2487-17, 2017. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D3080/3080M-11, 2012. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D422-63 (2007)e2, 2016. Standard test method for particle-size analysis of soils (Withdrawn 2016), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D4318-17e1, 2018. Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D5321/5321M – 20, 2020. Standard Test Method for Determining the Shear Strength of Soil – Geosynthetic and Geosynthetic – Geosynthetic Interfaces by Direct Shear, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D6913/D6913M-17, 2017. Standard test methods for particle-size distribution (Gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D698-12, 2014. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D854-14, 2016. Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA, www.astm.org.
  • Bonnour, H., Barral, C. and Touze-Foltz, N., 2015. Altered geosynthetic clay liners: effect on the hydraulic performance of composite liners. European Journal of Environvironmental and Civil Engineering, 19(9), 1155-1176.
  • Bowles, J.E.,1997. Foundation analysis and design. Fifth edition. Singapore: McGraw-Hill.
  • Byrne, J.R., Kendall, J. and Brown, S., 1992. Cause and Mechanism of Failure of Kettleman Hills Landfill B19, Phase lA. Geotechnical Special Technical Publication, 2, 1188-1215.
  • Chai, J. C., Miura, N. and Hayashi, S., 2005. Large-scale tests for leachate flow through composite liner due to geomembrane defects. Geosynthetic International, 12(3), 134–144.
  • Chai, J.C. and Saito, A., 2016. Interface shear strengths between geosynthetics and clayey soils. International Journal of Geosynthetic and Ground Engineering, 2(19), 3-9.
  • Chen, W., Xu, T. and Zhou, W., 2021. Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation. Geotextiles and Geomembranes, 49, 276-288.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R. And Lashkaripour G.R., 2010. The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. Journal of Applied Science, 10(18), 2027-2033.
  • Das B.M., 2007. Principles of foundation engineering. Sixth edition. Canada: Thomson.
  • Effendi, R., 2011. Interface friction of smooth geomembranes and Ottawa sand. Info Teknik, 12(1), 61-72.
  • Esterhuizen, J.J.B., Filz, G.M. and Duncan, J.M., 2001. Constitutive behavior of geosynthetic interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 127, 834–840.
  • Feng, S. J., Chen, Y. M. and Gao, G. Y., 2007. Analysis on translational failure of landfill along the underlying liner system. Chinese Journal of Geotechnical Engineering, 29(1), 15-20.
  • Fleming, I.R., Sharma, J.S. and Jogi, M.B., 2006. Shear strength of geomembrane–soil interface under unsaturated conditions. Geotextiles and Geomembranes, 24, 274–284.
  • Gokhale, A.M. and Drury, W.J.A., 1990. General Method for Estimation of Fracture Surface Roughness: Part II. Practical Considerations. Metallurgical Transactions A, 21A, 1201-1207.
  • Gokhale, A.M. and Underwood, E.E.A., 1990. General Method for Estimation of Fracture Surface Roughness: Part 1. Theoretical Aspects. Metallurgical Transactions A, 21A, 1193-1199.
  • Grubb, D., Cheng, S. And Diesing, W., 1999. High altitude exposure testing of geotextiles in the Peruvian Andes. Geosynthetic International, 6(2), 119-144.
  • Hsieh, C. and Hsieh, M.W., (2003). Load plate rigidity and scale effects on the frictional behavior of sand/geomembrane interfaces. Geotextiles and Geomembranes, 21(1), 25-47.
  • Hsuan, Y. and Koerner, R., 1998. Antioxidant depletion lifetime in high density polyethylene geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 124(6).
  • Koerner, R.M., Martin, J.P. and Koerner, G.R., 1986. Shear strength parameters between geomembranes and cohesive soils. Geotextiles and Geomembranes, 4(1), 21-30.
  • Koerner, R. M. and Soong, T. Y., 2000. Stability assessment of ten large landfill failures. GeoDenver, 1–38.
  • Mccartney, J. S. and Zornberg, J. G., 2009. Analysis of a large database of GCL-geomembrane interface shear strength results. Journal of Geotechnical and Geoenvironmental Engineering, 135(2).
  • Mills, A., Fraser, B. and Beaumier, D., 2019. Long-term performance of HDPE geomembranes exposed to a high temperature brine solution. Geosynthetics Conference, Houston, Texas.
  • Mitchell, J.K., Seed, R.B. and Seed, H.B., 1990. Kettleman Hills waste landfill slope failure. I: Liner-System Properties. Journal of Geotechnical Engineering, 116 (4), 647-668.
  • Mohapatra, S.R., Mishra, S.R., Nithin, S. and Rajagobal, K., 2016. Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. Indian Geotechnical Conference, Chennai, India, 16, 111-118.
  • O'Rourke, T.D. and Druschel, S.J., 1990. Shear Strength Characteristics of Sand-Polymer Interfaces. Journal of Geotechnical Engineering, 116(5), 451-469.
  • Punetha, P., Mohanty, P. and Samanta, M., 2017. Microstructural investigation on mechanical behavior of soil – geosynthetic interface in direct shear test. Geotextiles and Geomembranes, 45, 197-210.
  • Qian, X. D., Shi, J. Y., Hui, L. and Zhu, Y. B., 2011. Failure interface behavior of multilayer landfill liner system. Chinese Journal of Geotechnical Engineering, 33(6).
  • Rinne, N.F.,1989. Evaluation of Interface Friction between Cohesionless Soils and Common Construction Materials. Master Science Thesis. Civil Engineering Department, University of British Columbia, Vancouver, Canada.
  • Rowe, R.K. and Shoaib, M., 2017. Effect of brine on long-term performance of four HDPE geomembranes. Geosynthetic International, 24(5), 508-523.
  • Sabiri, N.E., Caylet, A., Montillet, A., Le Coq, L. and Durkheim, Y., 2020. Performance of nonwoven geotextiles on soil drainage and filtration. European Journal of Environvironmental and Civil Engineering 24(5), 670-688.
  • Seed, R. B., Mitchell, J. K. and Seed, H. B., 1988. Slope Stability Failure Investigation: Landfill Unit B-19, Phase I-A, Chemical Waste Management, Inc. Facility, Kettleman Hills, California. Report of Investigation, Department of Civil Engineering, University of California, Berkeley, June 29.
  • Seed, R. B., Mitchell, J. K. and Seed, H. B., 1990. Kettleman Hills Waste Landfill Slope Failure. II: Stability Analyses. Journal of Geotechnical Engineering, 116(4), 669-690.
  • Shi, J., Shu, S., Qian, X. and Wang, Y., 2020. Shear strength of landfill liner interface in the case of varying normal stress. Geotextiles and Geomembranes, 48, 713-723.
  • Sobol, E., Sas, W. and Szymanski, A., 2015. Scale effect in direct shear tests on recycled concrete aggregate. Studia Geotechnica et Mechanica, 37(2), 45-49.
  • Stark, T.D. and Poeppel, A.R., 1994. Landfill liner interface strengths from torsional-ring-shear tests. Journal of Geotechnical Engineering, 120, 597–615.
  • Stark, T.D., Niazi, F.S. and Keuscher, T.C., 2015. Strength envelopes from single and multi-geosynthetic interface tests. Geotechical and Geological Engineering, 33, 1351-1367.
  • TBDY, Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Resmi Gazete, Tarih: 18 Mart 2018, Sayı: 30364, 2018.
  • Viebke, J., Elble, E., Ifwarson, M. and Gedde, U.W., 1994. Degradation of unstabilized medium-density polyethylene pipes in hot-water applications. Polymer Engineering Science, 34(17), 1354-1361.
  • Zahran, K. and El Naggar, H., 2020. Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Transportation Research Record, 2674(9), 1110-1119.
  • Zhou, L., Zhu, Z., Yu, Z. and Zhang, C., 2020. Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Materials, 13, 1-16.

Investigation of the Interface Shear Behavior of Geomembranes Under the Influence of Salt Water

Year 2023, Volume: 23 Issue: 2, 448 - 458, 03.05.2023

Abstract

In the design of construction foundations, the importance of shear verification has been emphasized in
many codes and academic studies. Considering the soil properties and application conditions during the
calculations, if the shear behavior of geomembranes, which is an effective interface element and used
for insulation, is ignored, and if the shear strength between the geomembrane and the structural
element is lower than the shear resistance used in the design, significant problems may be
encountered. In order to prevent possible loss of life and property, all interfaces in the system should
be carefully examined. In this study, the interface shear behavior between two different
geomembranes and the clayey soil taken from the coastal part of Izmir province, Karsiyaka district,
Mavisehir was investigated. Geomembrane types are polyvinyl chloride (PVC) and thermoplastic
polyolefin (TPO). The thickness of the TPO geomembrane is 1.5 mm, while the thickness of the PVC
geomembrane is 1.5 and 3.0 mm. Interface shear strength parameters were determined by mediumscale direct shear tests. Direct shear tests were carried out with uncured geomembranes and cured in
0.5 molar saltwater for 4, 8, and 16 months. While the soil – TPO interface has the highest shear
strength and friction angle, the soil – PVC/1.5 interface has the lowest shear strength and friction angle.
The same situation was obtained for geomembranes cured in saltwater. After curing in salt water, the
geomembrane whose interface friction angle decreased the most was 1.5 mm PVC, while the least
decreased geomembrane was 3.0 mm PVC.

References

  • Abdelaal, F., Rowe, R.K. and Brachman, R.W.I., 2014. Brittle rupture of an aged HDPE geomembrane at local gravel indentation under simulated field conditions. Geosynthetic International, 21(1).
  • Araujo, G.L.S., Sanchez, N.P., Palmeira, E.M. and Almeida, M.G.G., 2022. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotextiles and Geomembranes, 50(4), 751-763.
  • Ari, A. And Akbulut, S., 2022. Evaluation of sand–geomembrane interface behavior using discrete element method. Granular Matter 24, 21.
  • ASTM D2487-17, 2017. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D3080/3080M-11, 2012. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D422-63 (2007)e2, 2016. Standard test method for particle-size analysis of soils (Withdrawn 2016), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D4318-17e1, 2018. Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D5321/5321M – 20, 2020. Standard Test Method for Determining the Shear Strength of Soil – Geosynthetic and Geosynthetic – Geosynthetic Interfaces by Direct Shear, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D6913/D6913M-17, 2017. Standard test methods for particle-size distribution (Gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D698-12, 2014. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D854-14, 2016. Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA, www.astm.org.
  • Bonnour, H., Barral, C. and Touze-Foltz, N., 2015. Altered geosynthetic clay liners: effect on the hydraulic performance of composite liners. European Journal of Environvironmental and Civil Engineering, 19(9), 1155-1176.
  • Bowles, J.E.,1997. Foundation analysis and design. Fifth edition. Singapore: McGraw-Hill.
  • Byrne, J.R., Kendall, J. and Brown, S., 1992. Cause and Mechanism of Failure of Kettleman Hills Landfill B19, Phase lA. Geotechnical Special Technical Publication, 2, 1188-1215.
  • Chai, J. C., Miura, N. and Hayashi, S., 2005. Large-scale tests for leachate flow through composite liner due to geomembrane defects. Geosynthetic International, 12(3), 134–144.
  • Chai, J.C. and Saito, A., 2016. Interface shear strengths between geosynthetics and clayey soils. International Journal of Geosynthetic and Ground Engineering, 2(19), 3-9.
  • Chen, W., Xu, T. and Zhou, W., 2021. Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation. Geotextiles and Geomembranes, 49, 276-288.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R. And Lashkaripour G.R., 2010. The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. Journal of Applied Science, 10(18), 2027-2033.
  • Das B.M., 2007. Principles of foundation engineering. Sixth edition. Canada: Thomson.
  • Effendi, R., 2011. Interface friction of smooth geomembranes and Ottawa sand. Info Teknik, 12(1), 61-72.
  • Esterhuizen, J.J.B., Filz, G.M. and Duncan, J.M., 2001. Constitutive behavior of geosynthetic interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 127, 834–840.
  • Feng, S. J., Chen, Y. M. and Gao, G. Y., 2007. Analysis on translational failure of landfill along the underlying liner system. Chinese Journal of Geotechnical Engineering, 29(1), 15-20.
  • Fleming, I.R., Sharma, J.S. and Jogi, M.B., 2006. Shear strength of geomembrane–soil interface under unsaturated conditions. Geotextiles and Geomembranes, 24, 274–284.
  • Gokhale, A.M. and Drury, W.J.A., 1990. General Method for Estimation of Fracture Surface Roughness: Part II. Practical Considerations. Metallurgical Transactions A, 21A, 1201-1207.
  • Gokhale, A.M. and Underwood, E.E.A., 1990. General Method for Estimation of Fracture Surface Roughness: Part 1. Theoretical Aspects. Metallurgical Transactions A, 21A, 1193-1199.
  • Grubb, D., Cheng, S. And Diesing, W., 1999. High altitude exposure testing of geotextiles in the Peruvian Andes. Geosynthetic International, 6(2), 119-144.
  • Hsieh, C. and Hsieh, M.W., (2003). Load plate rigidity and scale effects on the frictional behavior of sand/geomembrane interfaces. Geotextiles and Geomembranes, 21(1), 25-47.
  • Hsuan, Y. and Koerner, R., 1998. Antioxidant depletion lifetime in high density polyethylene geomembranes. Journal of Geotechnical and Geoenvironmental Engineering, 124(6).
  • Koerner, R.M., Martin, J.P. and Koerner, G.R., 1986. Shear strength parameters between geomembranes and cohesive soils. Geotextiles and Geomembranes, 4(1), 21-30.
  • Koerner, R. M. and Soong, T. Y., 2000. Stability assessment of ten large landfill failures. GeoDenver, 1–38.
  • Mccartney, J. S. and Zornberg, J. G., 2009. Analysis of a large database of GCL-geomembrane interface shear strength results. Journal of Geotechnical and Geoenvironmental Engineering, 135(2).
  • Mills, A., Fraser, B. and Beaumier, D., 2019. Long-term performance of HDPE geomembranes exposed to a high temperature brine solution. Geosynthetics Conference, Houston, Texas.
  • Mitchell, J.K., Seed, R.B. and Seed, H.B., 1990. Kettleman Hills waste landfill slope failure. I: Liner-System Properties. Journal of Geotechnical Engineering, 116 (4), 647-668.
  • Mohapatra, S.R., Mishra, S.R., Nithin, S. and Rajagobal, K., 2016. Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. Indian Geotechnical Conference, Chennai, India, 16, 111-118.
  • O'Rourke, T.D. and Druschel, S.J., 1990. Shear Strength Characteristics of Sand-Polymer Interfaces. Journal of Geotechnical Engineering, 116(5), 451-469.
  • Punetha, P., Mohanty, P. and Samanta, M., 2017. Microstructural investigation on mechanical behavior of soil – geosynthetic interface in direct shear test. Geotextiles and Geomembranes, 45, 197-210.
  • Qian, X. D., Shi, J. Y., Hui, L. and Zhu, Y. B., 2011. Failure interface behavior of multilayer landfill liner system. Chinese Journal of Geotechnical Engineering, 33(6).
  • Rinne, N.F.,1989. Evaluation of Interface Friction between Cohesionless Soils and Common Construction Materials. Master Science Thesis. Civil Engineering Department, University of British Columbia, Vancouver, Canada.
  • Rowe, R.K. and Shoaib, M., 2017. Effect of brine on long-term performance of four HDPE geomembranes. Geosynthetic International, 24(5), 508-523.
  • Sabiri, N.E., Caylet, A., Montillet, A., Le Coq, L. and Durkheim, Y., 2020. Performance of nonwoven geotextiles on soil drainage and filtration. European Journal of Environvironmental and Civil Engineering 24(5), 670-688.
  • Seed, R. B., Mitchell, J. K. and Seed, H. B., 1988. Slope Stability Failure Investigation: Landfill Unit B-19, Phase I-A, Chemical Waste Management, Inc. Facility, Kettleman Hills, California. Report of Investigation, Department of Civil Engineering, University of California, Berkeley, June 29.
  • Seed, R. B., Mitchell, J. K. and Seed, H. B., 1990. Kettleman Hills Waste Landfill Slope Failure. II: Stability Analyses. Journal of Geotechnical Engineering, 116(4), 669-690.
  • Shi, J., Shu, S., Qian, X. and Wang, Y., 2020. Shear strength of landfill liner interface in the case of varying normal stress. Geotextiles and Geomembranes, 48, 713-723.
  • Sobol, E., Sas, W. and Szymanski, A., 2015. Scale effect in direct shear tests on recycled concrete aggregate. Studia Geotechnica et Mechanica, 37(2), 45-49.
  • Stark, T.D. and Poeppel, A.R., 1994. Landfill liner interface strengths from torsional-ring-shear tests. Journal of Geotechnical Engineering, 120, 597–615.
  • Stark, T.D., Niazi, F.S. and Keuscher, T.C., 2015. Strength envelopes from single and multi-geosynthetic interface tests. Geotechical and Geological Engineering, 33, 1351-1367.
  • TBDY, Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Resmi Gazete, Tarih: 18 Mart 2018, Sayı: 30364, 2018.
  • Viebke, J., Elble, E., Ifwarson, M. and Gedde, U.W., 1994. Degradation of unstabilized medium-density polyethylene pipes in hot-water applications. Polymer Engineering Science, 34(17), 1354-1361.
  • Zahran, K. and El Naggar, H., 2020. Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Transportation Research Record, 2674(9), 1110-1119.
  • Zhou, L., Zhu, Z., Yu, Z. and Zhang, C., 2020. Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Materials, 13, 1-16.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Inci Develioglu 0000-0001-6594-8095

Hasan Fırat Pulat 0000-0002-8298-7106

Early Pub Date April 28, 2023
Publication Date May 3, 2023
Submission Date July 21, 2022
Published in Issue Year 2023 Volume: 23 Issue: 2

Cite

APA Develioglu, I., & Pulat, H. F. (2023). Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 448-458. https://doi.org/10.35414/akufemubid.1146658
AMA Develioglu I, Pulat HF. Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2023;23(2):448-458. doi:10.35414/akufemubid.1146658
Chicago Develioglu, Inci, and Hasan Fırat Pulat. “Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 2 (May 2023): 448-58. https://doi.org/10.35414/akufemubid.1146658.
EndNote Develioglu I, Pulat HF (May 1, 2023) Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 448–458.
IEEE I. Develioglu and H. F. Pulat, “Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, pp. 448–458, 2023, doi: 10.35414/akufemubid.1146658.
ISNAD Develioglu, Inci - Pulat, Hasan Fırat. “Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (May 2023), 448-458. https://doi.org/10.35414/akufemubid.1146658.
JAMA Develioglu I, Pulat HF. Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:448–458.
MLA Develioglu, Inci and Hasan Fırat Pulat. “Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, 2023, pp. 448-5, doi:10.35414/akufemubid.1146658.
Vancouver Develioglu I, Pulat HF. Tuzlu Su Etkisindeki Geomembranların Ara Yüzey Kayma Davranışlarının İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):448-5.