Kesirli Mertebeden Gecikmeli-İntegro Diferansiyel Denklemler için Etkili Yöntemler
Year 2025,
Volume: 25 Issue: 2, 321 - 328
Eda Akarsu
,
Mustafa Gülsu
Abstract
Bu çalışmada, kesirli mertebeden gecikmeli integro diferansiyel denklemlerin nümerik çözümleri için Gauss-Legendre quadrature integrasyonu ile birlikte Caputo kesirli türevi ve Legendre kolokasyon yöntemi uygulanmıştır. Ötelenmiş Legendre polinomları yardımıyla denklem sistemi elde edilmiş ve kesirli mertebeden gecikmeli-integro diferansiyel denklemleri nümerik olarak çözülmüştür. Elde edilen denklem sistemi Newton iterasyon yöntemi kullanılarak çözülmüştür. Yöntemin uygulanabilirliği ve etkinliği sayısal örneklerle gösterilmiştir. Elde edilen sonuçlar tam çözümler ile karşılaştırılmış ve uyumlu olduğu gösterilmiştir. Tüm hesaplamalar için Maple ve MATLAB programları kullanılmıştır.
References
- Alipour, M. and Baleanu, D., 2013. Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices. Advances in Mathematical Physics, 9.
http://dx.doi.org/10.1155/2013/954015
- AlHabees, A. and Maayah, B., 2016. Solving Fractional Proportional Delay Integro Differential Equations of First Order by Reproducing Kernel Hilbert Space Method, Global Journal of Pure and Applied Mathematics, 12(4), 3499–3516.
- Baillie, R. T., 1996. Long Memory Processes and Fractional Integration in Econometrics, Journal of Econometrics, 73, 5–59.
https://doi.org/10.1016/0304-4076(95)01732-1
- Baker, C.T.H., Bocharov, G.A. and Rihan, F.A., 1999. A report on the use of delay differential equations in numerical modelling in the biosciences. MCCM Technical Report, 343.
- Balatif, O., Rachik, M., Hia, M. E. and Rajraji, O., 2015. Optimal control problem for a class of bilinear systems via shifted Legendre polynomials. IJSIMR, 3, 2347-3142.
- Baleanu, D., Diethelm, K., Scalas, E., and Triyillo, J. J., 2012. Fractional Calculus: Models and Numerical methods. World Scientific.
- Bellour, A. and Bousselsal, M., 2014. A Taylor collocation method for solving delay integral equations. Numerical Algorithms, 65, 843-857.
https://doi.org/10.1007/s11075-013-9717-8
- Bhrawy, A. H., Zaky, M. A. and Tenreiro Machado J.A., 2015. Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation. Journal of Vibration and Control, 22, 1–16.
https://doi.org/10.1177/1077546314566835
- Cushing, J. M., 1977. Integro Differential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, Vol. 20, Springer, Berlin.
- Driver, R. D., 1977. Ordinary and Delay Differential Equations, Applied Mathematics Series, Vol. 20, Springer, Berlin.
Engheta, N., 1997. On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Magazine, 39, 35-46.
- Fazeli, S. and Hojjati, G., 2015. Numerical solution of Volterra integro differential equations bysuperimplicit multistep collocation methods. Numer. Algorithms. 68, 741-768.
https://doi.org/10.1007/s11075-014-9870-8.
- Gu, Z., 2020. Chebyshev spectral collocation method for system of nonlinear Volterra integral equations. Numerical Algorithms. 83(1), 243-263.
https://doi.org/10.1007/s11075-019-00679-w
- Hethcote, H.W., Lewis, M.A. and Driessche, P., 1989. An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol., 27, 49-64.
https://doi.org/10.1007/BF00276080
- Khader, M. M. and Hendy, A.S., 2012. The approximate and exact solutions of the fractional-order delay differential equations using Legendre seudospectral method. International Journal of Pure and Applied Mathematics, 74 (3) 287-297.
- Liu, L., Mo, H. and Deng, F. 2019. Split-step theta method for stochastic delay integro-differential equations with mean square exponential stability. Appl. Math. Comput., 353, 320–328.
https://doi.org/10.1016/j.amc.2019.01.073.
- Mainardi, F., 1997. Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri A and Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer-Verlag, 291–348.
- Marchuk, G.I., 1997. Mathematical Modelling of Immune Response in Infectious Diseases, Kluwer, Dordrecht.
Nemati, S., Lima, P. M. and Sedaghat, S., 2020. Legendre wavelet collocation method combined with the Gauss–Jacobi quadrature for solving fractional delay-type integro-differential equations. Applied Numerical Mathematics.
https://doi.org/10.1016/j.apnum.2019.05.024
- Qin, H., Zhiyong, W., Fumin, Z. and Jinming, W. 2018. Stability analysis of additive Runge-Kutta methods for delayintegro-differential equations. International Journal of Differential Equations.
https:// doi.org/10.1155/2018/8241784
- Panda,A., Mohapatra, J. and Amirali, A., 2021. A Second Order Post-Processing Technique for Singularly perturbed Volterra Integro Differential Equation. Mediterranean Journal of Mathematics, 18(231):1-25.
https://doi.org/10.1007/s00009-021-01873-8
- Podlubny, I. 1999. Fractional differential equations. New York: Academic Pres.
Rajagopal, N., Balaji, S., Seethalakshmi, R. and Balaji, V. S. 2020., A new numerical method for fractional order Volterra integro-differential equations. Ain. Shams Eng. J., 11, 171–177.
https://doi.org/10.1016/j.asej.2019.08.004
- Saadatmandi, A. and Dehghan, M., 2011. A Legendre collocation method for fractional integro-differential equations. Journal of Vibration and Control,17(13),2050–2058. https://doi.org/10.1177/1077546310395977
- Sokhanvar, E. and Askarı-Hemmat, A., 2015. A numerical method for solving delay-fractional differential and integro- differential equations. Journal of Mahani Mathematical Research Center, 4(1-2) 11-24.
https://doi.org/10.22103/JMMRC.2017.1643
- Waltman, P., 1974. Deterministic Threshold Models in the Theory of Epidemics. Lecture Notes in Biomathematics, Vol. 1, Springer, Berlin.
- Yousefi, A., Javadi, S., Babolian, E. and Moradi, E., 2019. Convergence analysis of the Chebyshev–Legendre spectral method for a class of Fredholm fractional integro differential equations. J. Comput. Appl. Math., 358, 97–110.
https://doi.org/10.1016/j.cam.2019.02.022.
Efficient Computational Techniques for Fractional Order Delay-Integro Differential Equations
Year 2025,
Volume: 25 Issue: 2, 321 - 328
Eda Akarsu
,
Mustafa Gülsu
Abstract
In this paper, we present Legendre - collocation method, together with the Gauss–Legendre quadrature integration for solving fractional order delay-integro differential equations (FDIDE) with Caputo fractional derivative. The properties of shifted Legendre polynomials are used to solve the FDIDE to system of equations. The equation system obtained is solved by using Newton iteration method based on our present method with numerical examples is shown both applicability and efficiency of method. The results obtained by the collocation method are compared with exact solution and is shown to be compatible. The Maple and MATLAB programs are used for the calculations required in the study.
References
- Alipour, M. and Baleanu, D., 2013. Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices. Advances in Mathematical Physics, 9.
http://dx.doi.org/10.1155/2013/954015
- AlHabees, A. and Maayah, B., 2016. Solving Fractional Proportional Delay Integro Differential Equations of First Order by Reproducing Kernel Hilbert Space Method, Global Journal of Pure and Applied Mathematics, 12(4), 3499–3516.
- Baillie, R. T., 1996. Long Memory Processes and Fractional Integration in Econometrics, Journal of Econometrics, 73, 5–59.
https://doi.org/10.1016/0304-4076(95)01732-1
- Baker, C.T.H., Bocharov, G.A. and Rihan, F.A., 1999. A report on the use of delay differential equations in numerical modelling in the biosciences. MCCM Technical Report, 343.
- Balatif, O., Rachik, M., Hia, M. E. and Rajraji, O., 2015. Optimal control problem for a class of bilinear systems via shifted Legendre polynomials. IJSIMR, 3, 2347-3142.
- Baleanu, D., Diethelm, K., Scalas, E., and Triyillo, J. J., 2012. Fractional Calculus: Models and Numerical methods. World Scientific.
- Bellour, A. and Bousselsal, M., 2014. A Taylor collocation method for solving delay integral equations. Numerical Algorithms, 65, 843-857.
https://doi.org/10.1007/s11075-013-9717-8
- Bhrawy, A. H., Zaky, M. A. and Tenreiro Machado J.A., 2015. Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation. Journal of Vibration and Control, 22, 1–16.
https://doi.org/10.1177/1077546314566835
- Cushing, J. M., 1977. Integro Differential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, Vol. 20, Springer, Berlin.
- Driver, R. D., 1977. Ordinary and Delay Differential Equations, Applied Mathematics Series, Vol. 20, Springer, Berlin.
Engheta, N., 1997. On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Magazine, 39, 35-46.
- Fazeli, S. and Hojjati, G., 2015. Numerical solution of Volterra integro differential equations bysuperimplicit multistep collocation methods. Numer. Algorithms. 68, 741-768.
https://doi.org/10.1007/s11075-014-9870-8.
- Gu, Z., 2020. Chebyshev spectral collocation method for system of nonlinear Volterra integral equations. Numerical Algorithms. 83(1), 243-263.
https://doi.org/10.1007/s11075-019-00679-w
- Hethcote, H.W., Lewis, M.A. and Driessche, P., 1989. An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol., 27, 49-64.
https://doi.org/10.1007/BF00276080
- Khader, M. M. and Hendy, A.S., 2012. The approximate and exact solutions of the fractional-order delay differential equations using Legendre seudospectral method. International Journal of Pure and Applied Mathematics, 74 (3) 287-297.
- Liu, L., Mo, H. and Deng, F. 2019. Split-step theta method for stochastic delay integro-differential equations with mean square exponential stability. Appl. Math. Comput., 353, 320–328.
https://doi.org/10.1016/j.amc.2019.01.073.
- Mainardi, F., 1997. Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri A and Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer-Verlag, 291–348.
- Marchuk, G.I., 1997. Mathematical Modelling of Immune Response in Infectious Diseases, Kluwer, Dordrecht.
Nemati, S., Lima, P. M. and Sedaghat, S., 2020. Legendre wavelet collocation method combined with the Gauss–Jacobi quadrature for solving fractional delay-type integro-differential equations. Applied Numerical Mathematics.
https://doi.org/10.1016/j.apnum.2019.05.024
- Qin, H., Zhiyong, W., Fumin, Z. and Jinming, W. 2018. Stability analysis of additive Runge-Kutta methods for delayintegro-differential equations. International Journal of Differential Equations.
https:// doi.org/10.1155/2018/8241784
- Panda,A., Mohapatra, J. and Amirali, A., 2021. A Second Order Post-Processing Technique for Singularly perturbed Volterra Integro Differential Equation. Mediterranean Journal of Mathematics, 18(231):1-25.
https://doi.org/10.1007/s00009-021-01873-8
- Podlubny, I. 1999. Fractional differential equations. New York: Academic Pres.
Rajagopal, N., Balaji, S., Seethalakshmi, R. and Balaji, V. S. 2020., A new numerical method for fractional order Volterra integro-differential equations. Ain. Shams Eng. J., 11, 171–177.
https://doi.org/10.1016/j.asej.2019.08.004
- Saadatmandi, A. and Dehghan, M., 2011. A Legendre collocation method for fractional integro-differential equations. Journal of Vibration and Control,17(13),2050–2058. https://doi.org/10.1177/1077546310395977
- Sokhanvar, E. and Askarı-Hemmat, A., 2015. A numerical method for solving delay-fractional differential and integro- differential equations. Journal of Mahani Mathematical Research Center, 4(1-2) 11-24.
https://doi.org/10.22103/JMMRC.2017.1643
- Waltman, P., 1974. Deterministic Threshold Models in the Theory of Epidemics. Lecture Notes in Biomathematics, Vol. 1, Springer, Berlin.
- Yousefi, A., Javadi, S., Babolian, E. and Moradi, E., 2019. Convergence analysis of the Chebyshev–Legendre spectral method for a class of Fredholm fractional integro differential equations. J. Comput. Appl. Math., 358, 97–110.
https://doi.org/10.1016/j.cam.2019.02.022.