Research Article
BibTex RIS Cite

Test Hızının S2-Cam Elyaf Takviyeli Polimerlerin Düzlem Dışı Mekanik Özelliklerine Etkisi

Year 2025, Volume: 25 Issue: 2, 407 - 413

Abstract

Test hızları, fiber takviyeli polimerik malzemelerin mekanik tepkisini değiştiren önemli parametrelerdir. Bu çalışma kapsamında, düzlem dışı yükleme koşulu altında farklı test hızları ile S2-cam elyaf takviyeli polimerik malzemelerin eğilme davranışlarını inceledik. Düzlem dışı yükleme koşulu üç noktalı eğilme fikstürüyle sağlandı. 20 mm/dk, 40 mm/dk ve 60 mm/dk olmak üzere üç farklı test hızı bu çalışmada kullanıldı. Maksimum yükte sehim miktarı, eğilme modülü ve eğilme mukavemeti test hızına bağlı olarak analiz edildi. Test hızı 20 mm/dk’dan 40 mm/dk'ya çıktıkça hem eğilme mukavemetinin hem de eğilme modülünün artış eğilimi gösterdiği bulundu. Bununla birlikte, yer değiştirme hızı 40 mm/dk'dan 60 mm/dk'ya yükseldiğinde eğilme mukavemetinde ve modülde bir düşüş gözlemlendi.

Project Number

221M085

References

  • Amjadi, M., & Fatemi, A. (2020). Tensile behavior of high-density polyethylene ıncluding the effects of processing technique, thickness, temperature, and strain rate. In Polymers, 12(9), 1857-1870 https://doi.org/10.3390/polym12091857
  • Barre, S., Chotard, T., & Benzeggagh, M. L. (1996). Comparative study of strain rate effects on mechanical properties of glass fibre-reinforced thermoset matrix composite. Composites Part A: Applied Science and Manufacturing, 27(12), 1169–1181. https://doi.org/10.1016/1359-835X(96)00075-9
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010a). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. https://doi.org/10.1016/j.compscitech.2009.10.018
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010b). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. Cui, J., Wang, S., Wang, S., Li, G., Wang, P., & Liang, C. (2019). The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers, 11(12), 2019-2036 https://doi.org/10.3390/polym11122019
  • Hsiao, H. M., & Daniel, I. M. (1998). Strain rate behavior of composite materials. Composites Part B: Engineering, 29(5), 521–533. https://doi.org/10.1016/S1359-8368(98)00008-0
  • Jemii, H., Bahri, A., Taktak, R., Guermazi, N., & Lebon, F. (2022). Mechanical behavior and fracture characteristics of polymeric pipes under curved three point bending tests: Experimental and numerical approaches. Engineering Failure Analysis, 138, 106352. https://doi.org/10.1016/j.engfailanal.2022.106352
  • Kıyak, B., & Kaman, M. O. (2018). Karbon fiber kompozit sandviç levhaların yanal mukavemet davranışlarının araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(2), 684–691. https://doi.org/10.5578/fmbd.67199
  • Li, X., Yan, Y., Guo, L., & Xu, C. (2016). Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254–264. https://doi.org/10.1016/j.polymertesting.2016.05.002
  • Mei, J., Liu, J., & Huang, W. (2022). Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling. Composite Structures, 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206
  • Perry, J. I., & Walley, S. M. (2022). Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A Review. Journal of Dynamic Behavior of Materials, 8(2), 178–213. https://doi.org/10.1007/s40870-022-00331-0
  • Shah Khan, M. Z., Simpson, G., & Gellert, E. P. (2000). Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Composites Part A: Applied Science and Manufacturing, 31(1), 57–67. https://doi.org/10.1016/S1359-835X(99)00051-2
  • Wang, Q., Wang, J., Wang, A., Zhou, C., Hu, J., & Pan, F. (2023). Effect of strain rate and temperature on the tensile properties of long glass fiber-reinforced polypropylene composites. In Polymers, 15(15), 3260 https://doi.org/10.3390/polym15153260
  • Weng, F., Fang, Y., Ren, M., Sun, J., & Feng, L. (2021). Effect of high strain rate on shear properties of carbon fiber reinforced composites. Composites Science and Technology, 203, 108599. https://doi.org/10.1016/j.compscitech.2020.108599
  • Zhai, Z., Jiang, B., & Drummer, D. (2018a). Strain rate-dependent mechanical behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. Polymer Testing, 69, 276–285. https://doi.org/10.1016/j.polymertesting.2018.05.033
  • Zniker, H., Feddal, I., Ouaki, B., & Bouzakraoui, S. (2023). Experimental and numerical ınvestigation of mechanical behavior and failure mechanisms of pvc foam sandwich and grp laminated composites under three-point bending loading. Journal of Failure Analysis and Prevention, 23(1), 66–78. https://doi.org/10.1007/s11668-023-01596-w

Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers

Year 2025, Volume: 25 Issue: 2, 407 - 413

Abstract

Crosshead displacement rates are significant parameters that alter the mechanical response of fiber reinforced polymeric materials. In this study, we examined the bending behavior of S2-glass fiber reinforced polymeric materials with different crosshead displacement rates under out-of-plane loading condition. Out of plane loading condition is achieved with a three-point bending fixture. Three different crosshead displacement rates, 20 mm/min, 40 mm/min, and 60 mm/min, are chosen. Flexural strength, flexural modulus, and flexural strain at maximum load is analyzed. It is found that as the crosshead displacement rate increases from 20 mm/min to 40 mm/min, both flexural strength and flexural modulus shows an upward trend. However, when the crosshead displacement rate increases from 40 mm/min to 60 mm/min a drop in the flexural strength and modulus is observed.

Project Number

221M085

References

  • Amjadi, M., & Fatemi, A. (2020). Tensile behavior of high-density polyethylene ıncluding the effects of processing technique, thickness, temperature, and strain rate. In Polymers, 12(9), 1857-1870 https://doi.org/10.3390/polym12091857
  • Barre, S., Chotard, T., & Benzeggagh, M. L. (1996). Comparative study of strain rate effects on mechanical properties of glass fibre-reinforced thermoset matrix composite. Composites Part A: Applied Science and Manufacturing, 27(12), 1169–1181. https://doi.org/10.1016/1359-835X(96)00075-9
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010a). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. https://doi.org/10.1016/j.compscitech.2009.10.018
  • Brown, K. A., Brooks, R., & Warrior, N. A. (2010b). The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology, 70(2), 272–283. Cui, J., Wang, S., Wang, S., Li, G., Wang, P., & Liang, C. (2019). The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers, 11(12), 2019-2036 https://doi.org/10.3390/polym11122019
  • Hsiao, H. M., & Daniel, I. M. (1998). Strain rate behavior of composite materials. Composites Part B: Engineering, 29(5), 521–533. https://doi.org/10.1016/S1359-8368(98)00008-0
  • Jemii, H., Bahri, A., Taktak, R., Guermazi, N., & Lebon, F. (2022). Mechanical behavior and fracture characteristics of polymeric pipes under curved three point bending tests: Experimental and numerical approaches. Engineering Failure Analysis, 138, 106352. https://doi.org/10.1016/j.engfailanal.2022.106352
  • Kıyak, B., & Kaman, M. O. (2018). Karbon fiber kompozit sandviç levhaların yanal mukavemet davranışlarının araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(2), 684–691. https://doi.org/10.5578/fmbd.67199
  • Li, X., Yan, Y., Guo, L., & Xu, C. (2016). Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polymer Testing, 52, 254–264. https://doi.org/10.1016/j.polymertesting.2016.05.002
  • Mei, J., Liu, J., & Huang, W. (2022). Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling. Composite Structures, 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206
  • Perry, J. I., & Walley, S. M. (2022). Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A Review. Journal of Dynamic Behavior of Materials, 8(2), 178–213. https://doi.org/10.1007/s40870-022-00331-0
  • Shah Khan, M. Z., Simpson, G., & Gellert, E. P. (2000). Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates. Composites Part A: Applied Science and Manufacturing, 31(1), 57–67. https://doi.org/10.1016/S1359-835X(99)00051-2
  • Wang, Q., Wang, J., Wang, A., Zhou, C., Hu, J., & Pan, F. (2023). Effect of strain rate and temperature on the tensile properties of long glass fiber-reinforced polypropylene composites. In Polymers, 15(15), 3260 https://doi.org/10.3390/polym15153260
  • Weng, F., Fang, Y., Ren, M., Sun, J., & Feng, L. (2021). Effect of high strain rate on shear properties of carbon fiber reinforced composites. Composites Science and Technology, 203, 108599. https://doi.org/10.1016/j.compscitech.2020.108599
  • Zhai, Z., Jiang, B., & Drummer, D. (2018a). Strain rate-dependent mechanical behavior of quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. Polymer Testing, 69, 276–285. https://doi.org/10.1016/j.polymertesting.2018.05.033
  • Zniker, H., Feddal, I., Ouaki, B., & Bouzakraoui, S. (2023). Experimental and numerical ınvestigation of mechanical behavior and failure mechanisms of pvc foam sandwich and grp laminated composites under three-point bending loading. Journal of Failure Analysis and Prevention, 23(1), 66–78. https://doi.org/10.1007/s11668-023-01596-w
There are 15 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies, Composite and Hybrid Materials
Journal Section Articles
Authors

Cagatay Yilmaz 0000-0002-8063-151X

Sara Eltahir 0009-0000-1520-2279

Project Number 221M085
Early Pub Date March 28, 2025
Publication Date
Submission Date August 9, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Yilmaz, C., & Eltahir, S. (2025). Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 407-413.
AMA Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2025;25(2):407-413.
Chicago Yilmaz, Cagatay, and Sara Eltahir. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 2 (March 2025): 407-13.
EndNote Yilmaz C, Eltahir S (March 1, 2025) Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 407–413.
IEEE C. Yilmaz and S. Eltahir, “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 407–413, 2025.
ISNAD Yilmaz, Cagatay - Eltahir, Sara. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (March 2025), 407-413.
JAMA Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:407–413.
MLA Yilmaz, Cagatay and Sara Eltahir. “Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 2, 2025, pp. 407-13.
Vancouver Yilmaz C, Eltahir S. Effect of Crosshead Displacements Rates on the Out of Plane Mechanical Properties of S2-Glass Fiber Reinforced Polymers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):407-13.