Research Article
BibTex RIS Cite

Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process

Year 2025, Volume: 25 Issue: 3, 576 - 584, 10.06.2025
https://doi.org/10.35414/akufemubid.1513268

Abstract

The use of a wide variety of raw materials in the production of cosmetic products and the variability of the process during the production phase significantly affect wastewater characterization. Cosmetic industry wastewater contains low biodegradable components and may contain various pollutants such as ammonia, oil and grease, phosphorus and heavy metals. Heavy metals that can be found in the cosmetics industry cause cancer, neurological diseases, genetic mutations, hair loss and birth defects. In this study, pH, Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), Suspended Solids (MLSS), Cu, Zn, colour and Orthophosphate (PO4-P) parameters were monitored in Gebze Organised Industrial Zone real cosmetics industry wastewater and their compliance with sewage discharge criteria was investigated. Pollutant removal was investigated by coagulation-flocculation process and removal efficiencies were found as COD: 75%; Cu: 92%; Zn: 94%; Colour: 84%; TN: 99%; TP: 91%; PO4-P: 92%. Different treatment alternatives should be investigated in order to realise the COD removal obtained as a result of the study more effectively. In order to protect the environment and human health, it will be important to increase the studies on the determination and removal of heavy metals by characterising the real cosmetics industry wastewater.

References

  • Abed, M.S., Moosa, A.A., Alzuhairi, M.A., 2023. Heavy metals in cosmetics and tattoos: a review of historical background, health impact, and regulatory limits. Journal of Hazardous Materials Advances, 13, 100390-100407. https://doi.org/10.1016/j.hazadv.2023.100390
  • Abidemi, B.L., James, O.A., Oluwatosin, A.T., Akinropo, O.J., Oraeloka, U.D., Racheal, A.E., 2018. Treatment technologies for wastewater from cosmetic industry–A review. International Journal of Chemical and Biomolecular Science 4, 69–80.
  • Abu-Dalo, M., Abdelnabi, J., Al-Rawashdeh, N.A., Albiss, B., Al Bawab, A., 2022. Coupling coagulation-flocculation to volcanic tuff-magnetite nanoparticles adsorption for olive mill wastewater treatment. Environmental Nanotechnology, Monitoring & Management 17, 100626-100637. https://doi.org/10.1016/j.enmm.2021.100626
  • Ahmad, A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Kurniawan, S.B., 2024. Aquaculture wastewater treatment using plant-based coagulants: Evaluating removal efficiency through the coagulation-flocculation process. Results in Chemistry, 7, 101390-101398. https://doi.org/10.1016/j.rechem.2024.101390
  • Akbay, H.E.G., Akarsu, C., Isik, Z., Belibagli, P., Dizge, N., 2022. Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater. Biochemical Engineering Journal 187, 108619-108628. https://doi.org/10.1016/j.bej.2022.108619
  • Alves, S.S., 2010. Conservação e reúso de água em indústria de cosméticos: estudo de caso da Natura Cosméticos. Universidade de São Paulo.
  • Araujo, D.J., Rocha, S.M.S., Cammarota, M.C., Xavier, A.M.F., Cardoso, V.L., 2008. Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor. Brazilian Journal of Chemical Engineering, 25, 443–451. https://doi.org/10.1590/S0104-66322008000300002
  • Araújo, N.S., Souza, N.F., de Lima-Faria, J.M., Paz, A.T.S., Scalize, P.S., de Sabóia-Morais, S.M.T., Junior, H.C.R., da Conceição, E.C., 2022. Treatment of cosmetic industry wastewater by flotation with Moringa oleifera Lam. and aluminum sulfate and toxicity assessment of the treated wastewater. Environmental Science and Pollution Research, 29, 1199–1209. https://doi.org/10.1007/s11356-021-15722-4
  • Bayhan, Y.K., Değermenci, G.D., 2017. Kozmetik atık sularından fenton prosesiyle organik madde gideriminin ve kinetiğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32 (1), 181-188. https://doi.org/10.17341/gazimmfd.300609
  • Bilal, M., Mehmood, S., Iqbal, H.M., 2020. The beast of beauty: environmental and health concerns of toxic components in cosmetics. Cosmetics, 7(1), 13-30. https://doi.org/10.3390/cosmetics7010013 Bom, S., Jorge, J., Ribeiro, H.M., Marto, J., 2019. A step forward on sustainability in the cosmetics industry: A review. Journal of cleaner production, 225, 270–290. https://doi.org/10.1016/j.jclepro.2019.03.255
  • Bouaouine, O., Baudu, M., Khalil, F., Chtioui, H., Hicham, Z., 2017. Comparative study between Moroccan cactus and chemicals coagulants for textile effluent treatment, Journal of Materials and Environmental Science, 8, 2687–2693.
  • Can, O.T., Gündoğdu, H., Keyikoğlu, R., ELİBOL, P.S., Aygün, A., İşleyen, M., 2024. Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30, 81–86. https://doi.org/10.5505/pajes.2023.85249
  • Comin, A.M., 2017. Proposta de tratamento complementar ao efluente proveniente de uma indústria de cosméticos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre.
  • De Melo, E.D., Mounteer, A., Reis, E., Costa, E., Vilete, A., 2018. Screening of physicochemical treatment processes for reducing toxicity of hair care products wastewaters. Journal of Environmental Management, 212, 349–356. https://doi.org/10.1016/j.jenvman.2018.02.036
  • De Melo, E.D., Mounteer, A.H., de Souza Leão, L.H., Bahia, R.C.B., Campos, I.M.F., 2013. Toxicity identification evaluation of cosmetics industry wastewater. Journal of Hazardous Materials, 244, 329–334. https://doi.org/10.1016/j.jhazmat.2012.11.051
  • De Oliveira, D.S., Prinholato, A.C., Ratusznei, S.M., Rodrigues, J.A.D., Zaiat, M., Foresti, E., 2009. AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, 90, 3070–3081. https://doi.org/10.1016/j.jenvman.2009.04.019
  • El Gaayda, J., Rachid, Y., Titchou, F.E., Barra, I., Hsini, A., Yap, P.-S., Oh, W.-D., Swanson, C., Hamdani, M., Akbour, R.A., 2023. Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805-122819. https://doi.org/10.1016/j.seppur.2022.122805
  • El Harfaoui, S., Zmirli, Z., Mohssine, A., Driouich, A., Sallek, B., Digua, K., & Chaair, H., 2023. Model development for the treatment of industrial wastewaters by the coagulation–flocculation process: an easy tool for linking experimental to theoretical data. Desalination and Water Treatment, 291, 72-91. https://doi.org/10.5004/dwt.2023.29457
  • Fard, A.K., Rhadfi, T., Mckay, G., Al-marri, M., Abdala, A., Hilal, N., Hussien, M.A., 2016. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 293, 90–101. https://doi.org/10.1016/j.cej.2016.02.040
  • Fleyfel, M. L., Matta, J., Sayegh, F. N., El Najjar, H. N., 2024. Olive mill wastewater treatment using coagulation/flocculation and filtration processes, Heliyon, 10, e40348. https://doi.org/10.1016/j.heliyon.2024.e40348.
  • Friha, I., Karray, F., Feki, F., Jlaiel, L., Sayadi, S., 2014. Treatment of cosmetic industry wastewater by submerged membrane bioreactor with consideration of microbial community dynamics. International Biodeterioration & Biodegradation, 88, 125–133. https://doi.org/10.1016/j.ibiod.2013.12.015
  • Huisman, I., 2004. Optimising UF for wastewater treatment through membrane autopsy and failure analysis. Filtration & Separation, 41, 26–27. https://doi.org/10.1016/S0015-1882(04)00146-6
  • Jagaba, A.H., Kutty, S.R.M., Hayder, G., Baloo, L., Ghaleb, A.A.S., Lawal, I.M., Abubakar, S., Al-dhawi, B.N.S., Almahbashi, N.M.Y., Umaru, I., 2021. Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Engineering Journal, 12, 57–64. https://doi.org/10.1016/j.asej.2020.06.016
  • Kaleta, J., Elektorowicz, M., 2013. The removal of anionic surfactants from water in coagulation process. Environmental Technology, 34, 999–1005. https://doi.org/10.1080/09593330.2012.733415
  • Karakas, I., Sam, S.B., Cetin, E., Dulekgurgen, E., Yilmaz, G., 2020. Resource recovery from an aerobic granular sludge process treating domestic wastewater. Journal of Water Process Engineering, 34, 101148-101156. https://doi.org/10.1016/j.jwpe.2020.101148
  • Kılıç, M.Y., Kumbasar, P., 2023. Çinko-Nikel Alaşım Kaplama Atıksularının Kimyasal Arıtabilirliğinin Araştırılması. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28, 307–316. https://doi.org/10.17482/uumfd.1249112
  • Kizil, S., Sonmez, H.B., 2022. Organogels and hydrogels for oil/water separation, in: Oil− Water Mixtures and Emulsions, Volume 2: Advanced Materials for Separation and Treatment. ACS Publications, pp. 25–50. https://doi.org/10.1021/bk-2022-1408
  • Kurniawan, S.B., Ahmad, A., Imron, M.F., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Kuncoro, E.P., 2023. Performance of Chemical-Based vs Bio-Based Coagulants in Treating Aquaculture Wastewater and Cost-benefit Analysis. Polish Journal of Environmental Studies, 32. 1177-1187. https://doi.org/10.15244/pjoes/156419
  • Lima, J.P.P., Melo, E.D., Aguiar, A., 2022. Characteristics and ways of treating cosmetic wastewater generated by Brazilian industries: A review. Process Safety and Environmental Protection, 168, 601–612. https://doi.org/10.1016/j.psep.2022.10.031
  • Marchetti, T., 2014. Tratamento de efluente líquido da indústria de cosméticos com sulfato de alumínio e biopolímero. Revista da Graduação 7. Marques, G. D., Domingos, M. F. J., Nolasco, A. M., Campos, V., 2025. Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation. Chemical Engineering Science, 304, 121094. https://doi.org/10.1016/j.ces.2024.121094
  • Mohammed, F., Ahmed, M.A., Oraibi, H.M., 2023. Health risk assessment of some heavy metals in lipsticks sold in local markets in Iraq. Journal of the Turkish Chemical Society Section A: Chemistry, 10, 147–160. https://doi.org/10.18596/jotcsa.1154686
  • Mohanraj, R., Gnanamangai, B.M., Pommurugan, P., 2023. Kinetic modeling and process optimization of textile effluent treatment with bacterial gamma polyglutamic acid. Journal of Environmental Biology, 44, 175–184. https://doi.org/10.22438/jeb/44/2/MRN-4068.
  • Monsalvo, V.M., Lopez, J., Mohedano, A.F., Rodriguez, J.J., 2014. Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR). Environmental Science and Pollution Research, 21, 12662–12670. https://doi.org/10.1007/s11356-014-3208-x
  • Muisa, N., Nhapi, I., Ruziwa, W., Manyuchi, M.M., 2020. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. Journal of Water Process Engineering 35, 101187. https://doi.org/10.1016/j.jwpe.2020.101187
  • Muszyński, A., Marcinowski, P., Maksymiec, J., Beskowska, K., Kalwarczyk, E., Bogacki, J., 2019. Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge. Journal of Hazardous Materials, 378, 120732-120740. https://doi.org/10.1016/j.jhazmat.2019.06.009
  • Naumczyk, J., Bogacki, J., Marcinowski, P., Kowalik, P., 2014. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environmental Technology, 35, 541–548. https://doi.org/10.1080/09593330.2013.808245
  • Nguyen, H. H., Tran, L. N., Luu, L. M., Nguyen, Q. T., Van Pham, Q., Van Ngo, A., & Le, O. T. H., 2022. Coagulation and flocculation of dye wastewater by FeCl3 and mucilage extracted from dragon fruit peel (Hylocereus undatus) in regard of side effects caused by the use of PACl and PAM. Desalination and Water Treatment, 250, 181-188. https://doi.org/10.5004/dwt.2022.28152
  • Obotey Ezugbe, E., Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089
  • Raza-Naqvi, S.A., Idrees, F., Sherazi, T.A., Anjum-Shahzad, S., Ul-Hassan, S., Ashraf, N., 2022. Toxicology of heavy metals used in cosmetics. Journal of the Chilean Chemical Society, 67, 5615–5622. http://dx.doi.org/10.4067/S0717-97072022000305615
  • Reinehr, R.C.R., Giordanni, P.R., Alves, A. de A., Klen, M.R.F., Tones, A.M., 2019. Application of the statistical experimental design to optimize the electrocoagulation technology in the treatment of cosmetic industry wastewater. Desalination and Water Treatment, 138, 27–35. https://doi.org/10.5004/dwt.2019.23282
  • Simate, G.S., 2015. The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ‘sandwiched’in a granular filter bed. Journal of Industrial and Engineering Chemistry, 21, 1277–1285. https://doi.org/10.1016/j.jiec.2014.06.001
  • Suarez, S., Lema, J.M., Omil, F., 2009. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource technology, 100, 2138–2146. https://doi.org/10.1016/j.biortech.2008.11.015
  • Turkay, S., Kizil, S., 2024. Forensic examination of lipsticks as trace evidence under different environmental conditions. Turkish Journal of Engineering, 8, 353–369. https://doi.org/10.31127/tuje.1363676
  • Wiliński, P.R., Marcinowski, P.P., Naumczyk, J., Bogacki, J., 2017. Pretreatment of cosmetic wastewater by dissolved ozone flotation (DOF). Desalination and Water Treatment, 71, 95–106. https://doi.org/10.5004/dwt.2017.20552
  • Zhang, L., Wang, L., Zhang, Y., Wang, D., Guo, J., Zhang, M., Li, Y., 2022. The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties. Environmental Research, 206, 112629. https://doi.org/10.1016/j.envres.2021.112629
  • Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., Zheng, H., 2021. Application of coagulation/flocculation in oily wastewater treatment: A review. Science of The Total Environment, 765, 142795-142812. https://doi.org/10.1016/j.scitotenv.2020.142795
  • Zhang, X., Han, H., Chai, H., Gao, P., Wu, W., Li, M., Gao, P., 2023. Pre-treatment of landfill leachate via coagulation-flocculation: Optimization of process parameters using response surface methodology (RSM). Journal of Water Process Engineering, 54, 103937. https://doi.org/10.1016/j.jwpe.2023.103937 http://www.saydamcevre.com.tr/mevzuatdosya/su-kirliligi-kontrol-yonetmeligi.pdf (14.01.2025)

Kozmetik Endüstrisi Atıksularının Karakterizasyonu ve Koagülasyon-Flokülasyon Prosesi ile Arıtımı

Year 2025, Volume: 25 Issue: 3, 576 - 584, 10.06.2025
https://doi.org/10.35414/akufemubid.1513268

Abstract

Kozmetik ürünlerin üretiminde çok çeşitli hammaddelerin kullanılması ve üretim aşamasındaki sürecin değişkenliği atık su karakterizasyonunu önemli ölçüde etkilemektedir. Kozmetik endüstrisi atıksuları biyolojik olarak parçalanabilirliği düşük bileşenler içermekle birlikte; amonyak, yağ ve gres, fosfor ve ağır metaller gibi çeşitli kirleticileri de içerebilmektedir. Kozmetik endüstrisinde bulunabilen ağır metaller kansere, nörolojik hastalıklara, genetik mutasyonlara, saç dökülmesine ve doğum kusurlarına neden olmaktadır. Bu çalışmada, Gebze Organize Sanayi Bölgesi gerçek kozmetik endüstrisi atıksuyundan pH, kimyasal oksijen ihtiyacı (KOİ), Toplam Azot (TN), Toplam Fosfor (TP), Askıda Katı Madde (MLSS), Cu, Zn, renk ve Ortofosfat (PO4-P) parametreleri izlenmiş ve kanalizasyon deşarj kriterlerine uygunluğu araştırılmıştır. Kirleticilerin giderimi koagülasyon-flokülasyon prosesi ile araştırılmış ve giderim verimleri KOİ: %75; Cu: %92; Zn: %94; Renk: %84; TN: %99; TP: %91; PO4-P: %92 olarak bulunmuştur. Çalışma sonucunda elde edilen KOİ gideriminin daha etkin bir şekilde gerçekleştirilebilmesi için farklı arıtma alternatiflerinin araştırılması gerekmektedir. Çevre ve insan sağlığının korunması için gerçek kozmetik endüstrisi atıksularının karakterize edilerek ağır metallerin belirlenmesi ve giderimine yönelik çalışmaların arttırılması önemli olacaktır.

References

  • Abed, M.S., Moosa, A.A., Alzuhairi, M.A., 2023. Heavy metals in cosmetics and tattoos: a review of historical background, health impact, and regulatory limits. Journal of Hazardous Materials Advances, 13, 100390-100407. https://doi.org/10.1016/j.hazadv.2023.100390
  • Abidemi, B.L., James, O.A., Oluwatosin, A.T., Akinropo, O.J., Oraeloka, U.D., Racheal, A.E., 2018. Treatment technologies for wastewater from cosmetic industry–A review. International Journal of Chemical and Biomolecular Science 4, 69–80.
  • Abu-Dalo, M., Abdelnabi, J., Al-Rawashdeh, N.A., Albiss, B., Al Bawab, A., 2022. Coupling coagulation-flocculation to volcanic tuff-magnetite nanoparticles adsorption for olive mill wastewater treatment. Environmental Nanotechnology, Monitoring & Management 17, 100626-100637. https://doi.org/10.1016/j.enmm.2021.100626
  • Ahmad, A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Kurniawan, S.B., 2024. Aquaculture wastewater treatment using plant-based coagulants: Evaluating removal efficiency through the coagulation-flocculation process. Results in Chemistry, 7, 101390-101398. https://doi.org/10.1016/j.rechem.2024.101390
  • Akbay, H.E.G., Akarsu, C., Isik, Z., Belibagli, P., Dizge, N., 2022. Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater. Biochemical Engineering Journal 187, 108619-108628. https://doi.org/10.1016/j.bej.2022.108619
  • Alves, S.S., 2010. Conservação e reúso de água em indústria de cosméticos: estudo de caso da Natura Cosméticos. Universidade de São Paulo.
  • Araujo, D.J., Rocha, S.M.S., Cammarota, M.C., Xavier, A.M.F., Cardoso, V.L., 2008. Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor. Brazilian Journal of Chemical Engineering, 25, 443–451. https://doi.org/10.1590/S0104-66322008000300002
  • Araújo, N.S., Souza, N.F., de Lima-Faria, J.M., Paz, A.T.S., Scalize, P.S., de Sabóia-Morais, S.M.T., Junior, H.C.R., da Conceição, E.C., 2022. Treatment of cosmetic industry wastewater by flotation with Moringa oleifera Lam. and aluminum sulfate and toxicity assessment of the treated wastewater. Environmental Science and Pollution Research, 29, 1199–1209. https://doi.org/10.1007/s11356-021-15722-4
  • Bayhan, Y.K., Değermenci, G.D., 2017. Kozmetik atık sularından fenton prosesiyle organik madde gideriminin ve kinetiğinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32 (1), 181-188. https://doi.org/10.17341/gazimmfd.300609
  • Bilal, M., Mehmood, S., Iqbal, H.M., 2020. The beast of beauty: environmental and health concerns of toxic components in cosmetics. Cosmetics, 7(1), 13-30. https://doi.org/10.3390/cosmetics7010013 Bom, S., Jorge, J., Ribeiro, H.M., Marto, J., 2019. A step forward on sustainability in the cosmetics industry: A review. Journal of cleaner production, 225, 270–290. https://doi.org/10.1016/j.jclepro.2019.03.255
  • Bouaouine, O., Baudu, M., Khalil, F., Chtioui, H., Hicham, Z., 2017. Comparative study between Moroccan cactus and chemicals coagulants for textile effluent treatment, Journal of Materials and Environmental Science, 8, 2687–2693.
  • Can, O.T., Gündoğdu, H., Keyikoğlu, R., ELİBOL, P.S., Aygün, A., İşleyen, M., 2024. Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30, 81–86. https://doi.org/10.5505/pajes.2023.85249
  • Comin, A.M., 2017. Proposta de tratamento complementar ao efluente proveniente de uma indústria de cosméticos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre.
  • De Melo, E.D., Mounteer, A., Reis, E., Costa, E., Vilete, A., 2018. Screening of physicochemical treatment processes for reducing toxicity of hair care products wastewaters. Journal of Environmental Management, 212, 349–356. https://doi.org/10.1016/j.jenvman.2018.02.036
  • De Melo, E.D., Mounteer, A.H., de Souza Leão, L.H., Bahia, R.C.B., Campos, I.M.F., 2013. Toxicity identification evaluation of cosmetics industry wastewater. Journal of Hazardous Materials, 244, 329–334. https://doi.org/10.1016/j.jhazmat.2012.11.051
  • De Oliveira, D.S., Prinholato, A.C., Ratusznei, S.M., Rodrigues, J.A.D., Zaiat, M., Foresti, E., 2009. AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, 90, 3070–3081. https://doi.org/10.1016/j.jenvman.2009.04.019
  • El Gaayda, J., Rachid, Y., Titchou, F.E., Barra, I., Hsini, A., Yap, P.-S., Oh, W.-D., Swanson, C., Hamdani, M., Akbour, R.A., 2023. Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805-122819. https://doi.org/10.1016/j.seppur.2022.122805
  • El Harfaoui, S., Zmirli, Z., Mohssine, A., Driouich, A., Sallek, B., Digua, K., & Chaair, H., 2023. Model development for the treatment of industrial wastewaters by the coagulation–flocculation process: an easy tool for linking experimental to theoretical data. Desalination and Water Treatment, 291, 72-91. https://doi.org/10.5004/dwt.2023.29457
  • Fard, A.K., Rhadfi, T., Mckay, G., Al-marri, M., Abdala, A., Hilal, N., Hussien, M.A., 2016. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 293, 90–101. https://doi.org/10.1016/j.cej.2016.02.040
  • Fleyfel, M. L., Matta, J., Sayegh, F. N., El Najjar, H. N., 2024. Olive mill wastewater treatment using coagulation/flocculation and filtration processes, Heliyon, 10, e40348. https://doi.org/10.1016/j.heliyon.2024.e40348.
  • Friha, I., Karray, F., Feki, F., Jlaiel, L., Sayadi, S., 2014. Treatment of cosmetic industry wastewater by submerged membrane bioreactor with consideration of microbial community dynamics. International Biodeterioration & Biodegradation, 88, 125–133. https://doi.org/10.1016/j.ibiod.2013.12.015
  • Huisman, I., 2004. Optimising UF for wastewater treatment through membrane autopsy and failure analysis. Filtration & Separation, 41, 26–27. https://doi.org/10.1016/S0015-1882(04)00146-6
  • Jagaba, A.H., Kutty, S.R.M., Hayder, G., Baloo, L., Ghaleb, A.A.S., Lawal, I.M., Abubakar, S., Al-dhawi, B.N.S., Almahbashi, N.M.Y., Umaru, I., 2021. Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Engineering Journal, 12, 57–64. https://doi.org/10.1016/j.asej.2020.06.016
  • Kaleta, J., Elektorowicz, M., 2013. The removal of anionic surfactants from water in coagulation process. Environmental Technology, 34, 999–1005. https://doi.org/10.1080/09593330.2012.733415
  • Karakas, I., Sam, S.B., Cetin, E., Dulekgurgen, E., Yilmaz, G., 2020. Resource recovery from an aerobic granular sludge process treating domestic wastewater. Journal of Water Process Engineering, 34, 101148-101156. https://doi.org/10.1016/j.jwpe.2020.101148
  • Kılıç, M.Y., Kumbasar, P., 2023. Çinko-Nikel Alaşım Kaplama Atıksularının Kimyasal Arıtabilirliğinin Araştırılması. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28, 307–316. https://doi.org/10.17482/uumfd.1249112
  • Kizil, S., Sonmez, H.B., 2022. Organogels and hydrogels for oil/water separation, in: Oil− Water Mixtures and Emulsions, Volume 2: Advanced Materials for Separation and Treatment. ACS Publications, pp. 25–50. https://doi.org/10.1021/bk-2022-1408
  • Kurniawan, S.B., Ahmad, A., Imron, M.F., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Kuncoro, E.P., 2023. Performance of Chemical-Based vs Bio-Based Coagulants in Treating Aquaculture Wastewater and Cost-benefit Analysis. Polish Journal of Environmental Studies, 32. 1177-1187. https://doi.org/10.15244/pjoes/156419
  • Lima, J.P.P., Melo, E.D., Aguiar, A., 2022. Characteristics and ways of treating cosmetic wastewater generated by Brazilian industries: A review. Process Safety and Environmental Protection, 168, 601–612. https://doi.org/10.1016/j.psep.2022.10.031
  • Marchetti, T., 2014. Tratamento de efluente líquido da indústria de cosméticos com sulfato de alumínio e biopolímero. Revista da Graduação 7. Marques, G. D., Domingos, M. F. J., Nolasco, A. M., Campos, V., 2025. Textile effluent treatment using coagulation-flocculation and a hydrodynamic cavitation reactor associated with ozonation. Chemical Engineering Science, 304, 121094. https://doi.org/10.1016/j.ces.2024.121094
  • Mohammed, F., Ahmed, M.A., Oraibi, H.M., 2023. Health risk assessment of some heavy metals in lipsticks sold in local markets in Iraq. Journal of the Turkish Chemical Society Section A: Chemistry, 10, 147–160. https://doi.org/10.18596/jotcsa.1154686
  • Mohanraj, R., Gnanamangai, B.M., Pommurugan, P., 2023. Kinetic modeling and process optimization of textile effluent treatment with bacterial gamma polyglutamic acid. Journal of Environmental Biology, 44, 175–184. https://doi.org/10.22438/jeb/44/2/MRN-4068.
  • Monsalvo, V.M., Lopez, J., Mohedano, A.F., Rodriguez, J.J., 2014. Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR). Environmental Science and Pollution Research, 21, 12662–12670. https://doi.org/10.1007/s11356-014-3208-x
  • Muisa, N., Nhapi, I., Ruziwa, W., Manyuchi, M.M., 2020. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. Journal of Water Process Engineering 35, 101187. https://doi.org/10.1016/j.jwpe.2020.101187
  • Muszyński, A., Marcinowski, P., Maksymiec, J., Beskowska, K., Kalwarczyk, E., Bogacki, J., 2019. Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge. Journal of Hazardous Materials, 378, 120732-120740. https://doi.org/10.1016/j.jhazmat.2019.06.009
  • Naumczyk, J., Bogacki, J., Marcinowski, P., Kowalik, P., 2014. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environmental Technology, 35, 541–548. https://doi.org/10.1080/09593330.2013.808245
  • Nguyen, H. H., Tran, L. N., Luu, L. M., Nguyen, Q. T., Van Pham, Q., Van Ngo, A., & Le, O. T. H., 2022. Coagulation and flocculation of dye wastewater by FeCl3 and mucilage extracted from dragon fruit peel (Hylocereus undatus) in regard of side effects caused by the use of PACl and PAM. Desalination and Water Treatment, 250, 181-188. https://doi.org/10.5004/dwt.2022.28152
  • Obotey Ezugbe, E., Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089
  • Raza-Naqvi, S.A., Idrees, F., Sherazi, T.A., Anjum-Shahzad, S., Ul-Hassan, S., Ashraf, N., 2022. Toxicology of heavy metals used in cosmetics. Journal of the Chilean Chemical Society, 67, 5615–5622. http://dx.doi.org/10.4067/S0717-97072022000305615
  • Reinehr, R.C.R., Giordanni, P.R., Alves, A. de A., Klen, M.R.F., Tones, A.M., 2019. Application of the statistical experimental design to optimize the electrocoagulation technology in the treatment of cosmetic industry wastewater. Desalination and Water Treatment, 138, 27–35. https://doi.org/10.5004/dwt.2019.23282
  • Simate, G.S., 2015. The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ‘sandwiched’in a granular filter bed. Journal of Industrial and Engineering Chemistry, 21, 1277–1285. https://doi.org/10.1016/j.jiec.2014.06.001
  • Suarez, S., Lema, J.M., Omil, F., 2009. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource technology, 100, 2138–2146. https://doi.org/10.1016/j.biortech.2008.11.015
  • Turkay, S., Kizil, S., 2024. Forensic examination of lipsticks as trace evidence under different environmental conditions. Turkish Journal of Engineering, 8, 353–369. https://doi.org/10.31127/tuje.1363676
  • Wiliński, P.R., Marcinowski, P.P., Naumczyk, J., Bogacki, J., 2017. Pretreatment of cosmetic wastewater by dissolved ozone flotation (DOF). Desalination and Water Treatment, 71, 95–106. https://doi.org/10.5004/dwt.2017.20552
  • Zhang, L., Wang, L., Zhang, Y., Wang, D., Guo, J., Zhang, M., Li, Y., 2022. The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties. Environmental Research, 206, 112629. https://doi.org/10.1016/j.envres.2021.112629
  • Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., Zheng, H., 2021. Application of coagulation/flocculation in oily wastewater treatment: A review. Science of The Total Environment, 765, 142795-142812. https://doi.org/10.1016/j.scitotenv.2020.142795
  • Zhang, X., Han, H., Chai, H., Gao, P., Wu, W., Li, M., Gao, P., 2023. Pre-treatment of landfill leachate via coagulation-flocculation: Optimization of process parameters using response surface methodology (RSM). Journal of Water Process Engineering, 54, 103937. https://doi.org/10.1016/j.jwpe.2023.103937 http://www.saydamcevre.com.tr/mevzuatdosya/su-kirliligi-kontrol-yonetmeligi.pdf (14.01.2025)
There are 47 citations in total.

Details

Primary Language English
Subjects Environmental Management (Other)
Journal Section Articles
Authors

İnci Karakaş 0000-0002-3590-3395

Soner Kızıl 0000-0003-3405-1212

Early Pub Date May 22, 2025
Publication Date June 10, 2025
Submission Date July 9, 2024
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 25 Issue: 3

Cite

APA Karakaş, İ., & Kızıl, S. (2025). Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(3), 576-584. https://doi.org/10.35414/akufemubid.1513268
AMA Karakaş İ, Kızıl S. Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2025;25(3):576-584. doi:10.35414/akufemubid.1513268
Chicago Karakaş, İnci, and Soner Kızıl. “Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 3 (June 2025): 576-84. https://doi.org/10.35414/akufemubid.1513268.
EndNote Karakaş İ, Kızıl S (June 1, 2025) Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 3 576–584.
IEEE İ. Karakaş and S. Kızıl, “Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 3, pp. 576–584, 2025, doi: 10.35414/akufemubid.1513268.
ISNAD Karakaş, İnci - Kızıl, Soner. “Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/3 (June2025), 576-584. https://doi.org/10.35414/akufemubid.1513268.
JAMA Karakaş İ, Kızıl S. Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:576–584.
MLA Karakaş, İnci and Soner Kızıl. “Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 3, 2025, pp. 576-84, doi:10.35414/akufemubid.1513268.
Vancouver Karakaş İ, Kızıl S. Characterization of Cosmetics Industry Wastewater and Treatment by Coagulation-Flocculation Process. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(3):576-84.